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Chapter 1

Differential Calculus

1.1 Regions in the plane

Let D be a subset of the plane R?; often called a region.

Let (a,b) € R? be any point.

An e-disk around (a, b) is the set of all points (x,y) € R? whose distance from (a, b) is less than e.
(a,b) is an interior point of D if some e-disk around (a, b) is contained in D.

(a,b) is a boundary point of D if every e-disk around (a,b) contains points from D and points
not from D.

R is an open subset of R? if all points of D are its interior points.
D is a closed subset of R? if it contains all its boundary points.
D = DU the set of boundary points of D; It is the closure of D.

D is a bounded subset of R? if D is contained in some e-disk. (around some point)
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An interior point A boundary point

A subset D of R? is called connected if any two points in the subset can be joined by a piecewise
smooth curve entirely lying in D. A domain is an open connected subset together with some or all
of its boundary points.



Let D be a region in the plane. Let f : D — R be a function.
The graph of f is {(z,y,2) € R*: z = f(z,y), (z,y) € D}.
The graph here is also called the surface z = f(x,y).

The domain of f is D.

The co-domain of f is R.

The range of f is {z € R: z = f(z,y) for some (z,y) € D}.

Sometimes, we do not fix the domain D but ask you to find it out.

The funCtion f(x’ y) = \ y - xz 3 Interior points,
wherey — x* =0
has domain D = {(x,y) : 22 < y}. /

Its range is the set of all non-negative reals. \

\
Outside, The parahola

What is its graph? r-<o N

Some examples of surfaces are here:

{a) fix,y) = + 3T ™Y (b) flx, ) = (x* 4 3yhe

_sinxsiny
- xy

{c) flx,yy=sinx+siny (d) frx. v

1.2 Level curves and surfaces

Let f(x,y) be a function of two variables. That is, f : D — R, where D is a domain in R?. The
level curves of f are the curves f(z,y) = ¢ in the zy-plane, for some constant c in the range of f.

Consider the function f(z,y) = 100 — 2% — ¢

Its domain is R?. Its range is the interval (—oo, 100].
The level curve f(x,y) = 0is {(z,y) : 2> + y* = 100}.
The level curve f(x,y) = 511s {(x,y) : 2° + y* = 49}.



The surface

,];U” z=flx,y)
fle,y)=175 =100 — x? — y?

\ | is the graph of f

%

flx, y) = 51
(a typical
—_ = ~level curve in
: i % the function’s
domain)

fluy =0

The union of all level curves, translated in z-direction suitably, is the surface z = f(z,y); it is also
the graph of f.

The contour curve is the curve f(z,y) = ¢ in the plane z = c.

45

z=100—x% —y?

The level curve is the projection of the contour curve on the zy-plane.
Similarly, for a function f(x,y, z) of three variables, the level surfaces are the surfaces
f(z,y,z) = cfor values c in the range of f.

Let f : D — R be a function. Let (a,b) € D.

The limit of f(z,y) as (z,y) approaches (a,b) is L iff given any ¢ > 0, we can choose a cor-
responding § > 0 such that for all (z,y) € D with 0 < \/(z —a)? + (y — b)2 < 4, we have

[f(,y) = L <e

In this case, we write  lim  f(x,y) = L.
(z,y)—(a,b)

We also say that L is the limit of f at (a,b).
If for no real number L, the above happens, then limit of f at (a, ) does not exist.

It is often difficult to show that limit of a function does not exist at a point. We will come back to
this question soon. When limit exists, we write it in many alternative ways:

The limit of f(z,y) as (x,y) approaches (a, b) is L.
fle,y) = Las (z,y) = (a,b).
lim )f(:c,y) = L.

(z,y)—=(ab

lim f(z,y) = L.
T—a
y—b
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(a, b) f Ny

The intuitive understanding of the notion of limit is as follows:

The distance between f(x,y) and L can be made arbitrarily small by making the distance between
(x,y) and (a, b) sufficiently small but not necessarily zero.

2

4
Example 1.1. Determine if lim % exists.
(z,y)—=(0,0) T° + Yy

Observe that the domain D of f is R?\ {(0,0)}. And f(0,y) = 0 fory # 0; f(z,0) = 0 for z # 0.
We guess that if the limit exists, it would be 0. To see that it is the case, we start with any € > 0.
We want to choose a > 0 such that the following sentence becmes true:

2
If 0<y/22+y%<d, then

dxy
Since || = y? < 2% + y? and |2?| = 22 < 2% + y?, we have

x? + 52
4 2
Ll ‘ <A|z| <4y 22 + 32

x? + 12

< €.

So, we choose § = €/4. Assume that 0 < /z2 + 32 < §. Then

4xy?
2+ y?

—0'§4 2+ y? <40 =e.

Hence

41>

11m _— =
(z,9)—(0,0) 2 + 32

Example 1.2. Consider f(z,y) = v/1 — 22 —y2 when D = {(z,y) : 22 + 3> < 1}.
We guess that limit f(x,y)is 1 as (z,y) — (0,0).

0.

To show that the guess is right, let € > 0. Observe that 0 < f(x,y) < lon D.

So,if € > 1, then |f(x,y) — 1| varies between 0 and 1.

That s, | f(z,y) — 1] < €, for (x,y) near (0,0).

Next, assume that 0 < ¢ < 1. Choose 6 = /1 — (1 — €)% Let |(x,y) — (0,0)| < d. Then
Pry<l-(1-e?=21-22—y*>(1—-e’= flr,y) >1—c

Thatis, | f(z,y) — 1| =1 — f(x,y) < e. Therefore, f(z,y) — 1as (x,y) — (0,0).

For a function of one variable, there are only two directions for approaching a point; from left
and from right. Whereas for a function of two variables, there are infinitely many directions, and
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infinite number of paths on which one can approach a point. The limit refers only to the distance
between (z, y) and (a, b). It does not refer to any specific direction of approach to (a, b). If the limit
exists, then f(x,y) must approach the same limit no matter how (x, y) approaches (a, b). Thus, if
we can find two different paths of approach along which the function f(x,y) has different limits,
then it follows that limit of f(x,y) as (x, y) approaches (a, b) does not exist.

Theorem 1.1. Suppose that f(x,y) — Ly as (z,y) — (a,b) along a path Cy and f(z,y) — Lo
as (x,y) — (a,b) along a path Cs. If Ly # Lo, then the limit of f(z,y) as (x,y) — (a,b) does
not exist.

2 _ .2

Example 1.3. Consider f(z,y) = IQ __F yz
=Ty

for (x,y) # (0,0). What is its limit at (0,0)?

2
When y = 0, limit of f(z,y)as x — 0is lim x_2 = lim(1) = 1.

z—0 x—0
Thatis, f(z,y) — 1 as (z,y) — (0,0) along the z-axis.

2

When & = 0, limit of f(z,y) as y — 0 is lim — = —1.

y—0 y
Thatis, f(z,y) — —1 as (z,y) — (0,0) along the y-axis.

Hence lim f(z,y) does not exist.
(z,)—(0,0)

Example 1.4. Consider f(x,y) = for (z,y) # (0,0). What is its limit at (0,0)?

x? 4 32
Along the z-axis, y = 0; then limit of f(x,y) as (z,y) — (0,0) is 0.
Along the y-axis, = 0; then limit of f(x,y) as (z,y) — (0,0) is 0.

Does it say that limit of f(z,y) as (z,y) — (0,0) is 0?
2

Along the line y = =, limit of f(x,y) as (z,y) — 0 is 31613(1) o 1/2.

Hence lim f(z,y) does not exist.
(2,4)—(0,0)

2

Example 1.5. Consider f(z,y) = ——— for (z,y) # (0,0). What s its limit at (0,0)?
Xz

+ 4

2
If y = ma, for some m € R, then f(z,y) = e So, lim along all straight lines is 0.

1+ m*? 7 (2)—(00)

4
If v = y?, y #0,then f(z,y) = ﬁ =1/2.As (z,y) — (0,0) along x = 32, f(x,y) — 1/2.

Hence lim f(z,y) does not exist.
(2,y)—(0,0)
A question: are the following same?

lim )f(w,y), lim lim f(z,y), limlim f(z,y)

(x,y)—)(a,b T—a y—b y—bzx—a



(y —2)(1+x)

Example 1.6. Let f(z,y) = W) 1ty)

forz+y#0,—1 <z, y<1. Then

_ vy _ _
Sty = Iy
—z(l
lim lim f(a: y) = lim —z(lte) =—1
z—0 y— z—0 €x

—1)(1 -1
Along y =mz, lim f(z,y)= lim z(m = {1 + ) L
(2,5)—(0,0) (@) 00 (1 +m)(1 +mz) m+1

For different values of m, we get the last limit value different. So, limit of f(x,y) as (z,y) — (0,0)
does not exist. But the two iterated limits exist and they are not equal.

1 1
Example 1.7. Let f(z,y) = zsin— + ysin— forxz # 0, y # 0. Then
y x

1 1 .
lim ysin — and lim xsin — do not exist.
x—0 x y—0 Yy

So, neither lim lim f(z,y) exists not lim lim f(x,y) exists.
y—0x—0 z—0y—0

However, | f(x,y) — 0| < |z| + |y| = Va2 4+ /y? < 2¢/22 + 42 = 2|(x,y)|. That i,
If |(x,y) — (0,0)| < €/2, then |f(x,y) — 0| < €. Therefore,

lim €T =0.
i f(r,y) =

That is, the two iterated limits do not exist, but the limit exists.

Hence existence of the limit of f(x,y) as (z,y) — (a,b) and the two iterated limits have no
connection.

The usual operations of addition, multiplication etc have the expected effects as the following
theorem shows. Its proof is analogous to the single variable limits.

Theorem 1.2. Let L, M,c € R; lim f(x,y)=L; lim g(x,y) = M. Then
(z,y)—(a,b) (z,y)—(a,b)

1. Constant Multiple:  lim cf(x,y) = cL.

(z,y)—(a,b)
2. Sum: lim (f(z,y)+g(z,y)) =L+ M.
(z,y)—(a,b)

3. Product: lim (f(z,y)g(x,y)) = LM.

(z,y)—(a,b)
4. Quotient: If M # 0 and g(z,y) # 0 in an open disk around the point (a, b), then

lim  (f(z,y)/g9(z,y)) = L/M

(z,y)—(a,b)

5. Power: Ifr e R, L" € Rand lim f(a: y) = L,then lim (f(z,y))" =L".

(z,y)—(asb (@,y)—(a,b)



1.3 Continuity

Let f(x,y) be a real valued function on a domain D C R?. We say that f(x,y) is continuous at a
point (a,b) € D if

1. f(a,b) is well defined.

2. lim T exists.
(xy)—>(ab)f( )

3 M f(z.y) = f(a,b).

The function f(z,y) is said to be continuous on D if f(z,y) is continuous at all points in D.

Therefore, constant multiples, sum, difference, product, quotient, and rational powers of continu-
ous functions are continuous whenever they are well defined.

Polynomials in two variables are continuous functions.

Rational functions, i.e., ratios of polynomials are continuous functions provided they are well de-
fined.

S (2,y) # (0,0

Example 1.8. f(z,y) = {IQW is continuous on R2.

0 if (z,y) =(0,0)

At any point other than the origin, f(x,y) is a rational function; therefore, it is continuous. To
see that f(z,y) is continuous at the origin, let ¢ > 0 be given. Take § = ¢/3. Assume that

V% +y? < =¢/3. Then

322y (2% + 42y
I2+y2—f(0,0)‘§‘ e LU NERTES

Example 1.9. f(z,y) = { 2 ty? is continuous on R?. Why?

At all nonzero points, it is continuous, being a rational function. For the point (0, 0), let € > 0 be
given. Choose § = /¢. Notice that zy < 2% + y? and 2% — ¢y* < 2% + 9%
For all (z,y) with /22 + y? < §, we have

(2> +v*)(2* + )

2 _
|f(z,y) = 0] < e <=
Hence lim x,y) =0= f(0,0).
e  f(@.y) 1(0,0)
2 _ 2
E le 1.10. = —- 1 ti D =R? 0,0)}.
xample f(z,y) S is continuous on \ {(0,0)}

f(z,y) is not continuous at (0, 0) since it is not defined at (0, 0).

Also, f(x,y) is not continuous at (0, 0) since ( 1)111% : f(z,y) does not exist. See Example 1.3.
z,y)—(0,0

10



Therefore, the function g(x,y) defined on R? by the following is not continuous at (0, 0).

o) = {+ if (z,9) # (0,0)
| 0 if (z,y) = (0,0)

As in the single variable case, composition of continuous functions is continuous:

Let f : D — R be continuous at (a,b) with f(a,b) = c¢. Let g : I — R be continuous at ¢ € [ for
some interval I in R. Then g(f(x,y)) from D to R is continuous at (a, b). Proof of this fact is left
to you as an exercise.

For example, e~ is continuous at all points in the plane.
x .
COS Ty2 and In(1 4+ z? + y?) are continuous on R?.
x

At which points is tan™!(y/z) continuous?

The function y/x is continuous everywhere except when = = 0.
The function tan™! is continuous everywhere on R.
So, tan~!(y/x) is continuous everywhere except at z = 0.

The function is continuous everywhere except on the sphere 22 + 3% + 22 = 1, where

1
z24y2+22-1
it is not defined.

1.4 Partial Derivatives

Let f(x,v) be a real valued function defined on a domain D C R?. Let (a,b) € D.

Vertical axis in
~the plane v = y,

Plxg, vy flxg yo))
™,

The curve z = f(x, yy) \

in the plane y = v

Tangent line

U= (xp. ¥o)

(xg + b, ¥p)

Horizontal '.llxi.k in the plane y = v,
If C is the curve of intersection of the surface z = f(x,y) with the plane y = b, then the slope of
the tangent line to C at (a, b, f(a, b)) is the partial derivative of f(x,y) with respect to x at (a, b).
In the figure take xo = a, yo = b. A formal definition of the partial derivative follows.

The partial derivative of f(z,y) with respect to z at the point (a,b) is

_af _df<$7b) T f(a+h7b>_f<a7b)
fx(a7 b) N % (a,b) N dx r=a N flLlE)Ill) h

?
provided this limit exists. Notice that f(x,b) must be continuous at = = a.

11



The partial derivative of f(x,y) with respect to y at the point (a, b) is
:g :df(aay) :llmf(a>b+k)_f(a?b)
Oy (a,b) dy ly=b k=0 k ’

fy(a,b)
provided this limit exists. Again, f(a,y) must be continuous at y = b.

Example 1.11. Find f,(1,1) where f(z,y) = 4 — 2% — 23°.

. (4=(Q4hP-2)-(4-1-2) . —2h —h?
fx(l’ 1) N llzlir(l) h h—0 h
That is, treat y as a constant and differentiate with respect to x.

fx(l, 1) = fz<x7y)|(171) = _21"(1,1) =2

ot

The vertical plane y = 1 crosses the paraboloid in the curve C; : z = 2 — 22,y = 1. The slope
of the tangent line to this parabola at the point (1,1, 1) (which corresponds to (z,y) = (1,1)) is

fo(1,1) = =2.
Example 1.12. Find f, and f,, where f(z,y) = ysin(zy).

Treating y as a constant and differentiating with respect to x, we get f,.. Similarly, f,,.

fo(z,y) =ycos(zy)y, fy(z,y) = yxcos(zy) + sin(zy).
Example 1.13. Find 9z/0x and 0z /0y where 2z = f(x,y) is defined by x3 + 3> + 23 — 6zyz = 1.

Differentiate 2® + y> + 2® — 6zyz — 1 = 0 with respect to x treating y as a constant:

0 0
39(:2—1—0—1—3228—;—63/(24—1:8—;) —0=0.

Solving this for 9z /0x, we have

%(322 — 6xy) + (322 — 6yz) = 0, thatis,

0z % —2yz

oxr 22— 2y
Similarly,

0z y? — 2x2

Ay 22— 2y

12



Example 1.14. The plane x = 1 intersects the surface z = 2% + 3 in a parabola. Find the slope
of the tangent to the parabola at the point (1,2, 5).

The asked slope is 0z/0y at (1,2). It is

o(z* +y?) B B
3—3/(172) - (2:9)(172) = 4.

Alternatively, the parabola is 2 = 22 + y*, 2 = 1 OR, z = 1 + y%. So, the slope at (1,2,5) is

dz; _d(+y?)

= —"° = (2y)| =2 = 4.
dy y=2 dy y=2 ( y)‘y—z

For a function f(x,y), partial derivatives of second order are:

B 0 8f o*f
Jow = (fa)e = oz 0r 02
Ofs 00 0?
fmy = (f:v)y = f = f = f

dy  Oyor Oydx

_ _Of, _009f _ &F

for = y)e = or  0rdy  Oxdy
_ 9 of 82f

fyy - (fy) ay ay ayg

Similarly, higher order partial derivatives are defined. For example,

L _0a0_ o
Y 9y Oz 0x Oydrox

Observe that f,(a,b) is not the same as ( 1)1m( B fz(x,y). To see this, let
z,y)—(a

1 if x>0
flz,y) = .
0 if x <0.

Then f,(z,y) = 0 for all x > 0. Also, f.(z,y) = 0 for all z < 0. Now, . hm( fu(x,y) =0.
0,0)

But f,(0,0) does not exist. Reason?

f(OO)zlimf(ho) £(0,0) . 1lor0

does not exist
h—0 h h—0

On the other hand, f,(a,b) can exist though lim  f, does not.

(z,y)—(a,b)
However, if f,(x,y) is continuous at (a, b), then

fz(a,b) = lim  f.(z,y).

(z,y)—(a,b)

Similarly, f,, need not be equal to f,,. See the following example.

13



xy(z® — y?)

Example 1.15. Consider f(x,y) = T2
x Yy

for (z,y) # (0,0), and f(0,0) = 0.

f(a:,()) = f(O,y) :f<0’0> = 0.
fo(2,0) = f,(0,4) = f2z(0,0) = f,,(0,0) = 0.

f(hvy)_f(ovy) f(:c,k)—f(x,O)

fx(oyy) - }ILILI(I) h = —Y, fy(ZE,O) = ]lﬁl_{r(l) 2 = .
R0 - £00)  h-0
fyx(0> 0) - }lllg% h = }lllir(l) —h =1.

Thatis, f,, # fya-
But continuity of both of f,, and f,, implies their equality.

Theorem 1.3. (Clairaut) Let D C R? be a domain. Let f : D — R. Suppose that f,, and f,, are
continuous on D. Then f,, = fy..

Proof: Let (a,b) € D. Let h # 0. Write g(z) = f(x,b+ h) — f(z,b). Then
Af:=gla+h)—gla) =[fla+hb+h) = fla+h,b)] = [f(a,b+h) = f(a,b)].
By MVT, we have c between a and a + h such that

Af = g/(C)h = h[fa:(c7 b+ h) - fw(cv b)]

Again, by MVT (on f, with the second variable), we have d between b and b + h such that
Af=h-h- fo(c,d) = h*fu,(c,d).

Due to continuity of f,,, we have

. Af )
}1151(1) ﬁ - (c,d%l—rf(la,b) fmy(ca d> - fxy(aa b)

Write

Af=I[fla+hb+h)— fla,b+h)] = [f(a+h,b)— f(a,b)]
and apply MVT twice as above to get f,,(a,b) = lim;,_,o %. But the two limits with
(Af)/h? are equal. So, fu,(a,b) = f,.(a,b). O
In one variable, f'(t) exists at ¢ = « implies that f(¢) is continuous at ¢ = a. We have seen
similarly that existence of f,(a,b) and f,(a,b) guarantees continuity of f(z,b) and of f(a,y) at

(a,b). But for f(x,y), even both f,(z,y) and f,(x,y) exist at (a, b), the function f(x,y) need not
be continuous at (a, b). See the following example.

S (2,y) # (0,0)

Example 1.16. Let f(z,y) =
o) {0 if (z,y) = (0,0)

14



Here, f(z,0) = 0 = f(0,y). So, f,(0,0) = 0 = f,(0,0). And limit of f(z,y) as (z,y) — (0,0)
does not exist. Hence f(x,y) is not continuous at (0, 0).

Further, we find that f,,(z,0) = 0 = f,,(0,y). What about f,,(0,0)?

o flhy) = f(0y) y 1

f=(0,y) is not continuous at y = 0.

Notice that the second partial derivatives f,(0,0) and f,,(0,0) do not exist.

1.5 Increment Theorem

In order to see the connection between continuity of a function and the partial derivatives, the
associated geometry may help.

Let S be the surface z = f(z,y), where f,, f, are continuous on the domain D of f.Let (a,b) € D.
Let C'; and C) be the curves of intersection of the planes x = a and of y = b with S.

Let 7 and T be tangent lines to the curves C and C; at the point P(a, b, f(a,b)). The tangent
plane to the surface S at P is the plane containing 73 and 75.

The tangent plane to .S at P consists of all possible tangent lines at P to the curves C that lie on S
and pass through P. This plane approximates .S at P most closely.

Write the z-coordinate of P as ¢. Then P = (a,b,c). Equation of any plane passing through P
is z—c = A(xr — a) + B(y — b). When y = b, the tangent plane represents the tangent to the
intersected curve at P. Thus, A = f,(a,b), the slope of the tangent line. Similarly, B = f,(a,b).
Hence equation of the tangent plane to the surface z = f(x, y) at the point P(a,b,c) on S is

g—C= fUE(a?b)(x - a) + fy(CL?b)(y - b)
provided that f,, f, are continuous at (a, b).

Example 1.17. Find the equation of the tangent plane to the elliptic paraboloid z = 222 + y? at
(1,1,3).

Here, z, = 4z, z, = 2y. So, 2z,(1,1) = 4, z,(1,1) = 2. Then the equation of the tangent plane is
z—3=4(x —1)+2(y — 1). It simplifies to z = 4z + 2y — 3.
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The tangent plane gives a linear approximation to the surface at that point. Why?
Write the equation as f(z,y) — f(a,b) = f.(a,b)(x —a) + f,(a,b)(y — b). Then

f(@,y) = fla,0) + fala,b)(x — a) + fy(a,b)(y = b).

This formula holds true for all points (x,y, f(x,y)) on the tangent plane at (a,b, f(a,b)). For
approximating f(z,y) for (x,y) close to (a,b), we may take

f(a?,y) ~ f<a7b) + fz(a>b)(x - a) + fy(% b)(y - b)

The RHS is called the standard linear approximation of f(x,y, z).
Writing in the increment form,

fla+hb+ k)~ f(a,b) + fo(a,b)h + f,(a,b)k.
This gives rise to the total increment f(a + h,b+ k) — f(a,b).
The total increment can be written in a more suggestive form. Towards this, we proceed as follows:
Af = fla+hb+k)— fla+h,b) + f(a+h) — f(a,b).
By MVT, there exist ¢ € [a,a + h] and d € [b, b+ k| such that
fla+h,b) = fla,b) = hlfa(c,b) = fola,b)] + hfe(a,b)
fla+h,b+k)— fla+h,b) = E[f,(a+h,d)— f,(a,b)]+Ekf,(a,b)

Write €; = f,(d,b) — f.(a,b) and €2 = f,(a + h,c) — f,(a,b). When both b — 0,k — 0, we see
that c — a and d — b. Since f, and f, are assumed to be continuous, we have ¢; — 0 and €5 — 0.
Then the total increment can be written as

Af = fla+h,b+k)— f(a,b) = hf.(a,b) +kf,(a,b)+ e h+ ek,
where ¢, — 0and e; — O asboth h — 0,k — 0.
We also write the increments &, k in z, y as Az, Ay respectively.

From the above rewriting of A f it is also clear that f(z,y) is a continuous function. Let us note
down what we have proved.

Theorem 1.4. (Increment Theorem) Let D be a domain in R?. Let f : D — R be such that
both f, and f, are continuous on D. Then f(x,y) is continuous on D and the total increment
Af = fla+ Azx,b+ Ay) at (a,b) € D can be written as

Af = fila,b)Ax + f,Ay + e1Ax + €Ay,
where ¢ — 0 and e; — 0 as both Ax — 0 and Ay — 0.
Recall that for a function g of one variable, its differential is defined as dg = ¢'(t)dt.
Let f(x,y) be a given function. The differential of f, also called the total differential, is
df = fu(z,y)dz + fy(z,y)dy.
Here, dr = Ax and dy = Ay are the increments in x and y, respectively. The equation above

represents a linear approximation to the total increment Af.
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Example 1.18. The dimensions of a rectangular box are measured to be 75cm, 60cm, and 40 cm,
and each measurement is correct to within 0.2cm. Use differentials to estimate the largest possible
error when the volume of the box is calculated from these measurements.

The volume of the box is V' = zyz. So,

ov oV oV

Given that |Az|, |Ay|, |Az| < 0.2cm, the largest error in cubic cm is
IAV| 2 |dV] = 60 x 40 x 0.2 + 40 x 75 x 0.2+ 75 x 60 x 0.2 = 1980.

Notice that the relative error is 1980/(75 x 60 x 40) which is about 1%.

Remark: Let D be a domain in R2. A function f : D — R is called differentiable at a point
(a,b) € D if the total increment Az = f(a+ Ax, b+ Ay)— f(a,b) in f with respect to increments
Ax, Ay in x, y, can be written as

Az = fi(a,b)Az + f,(a,b)Ay + 1Az + e2Ay
where ¢, — 0 and e — 0 as both Az — 0 and Ay — 0.

The following statements state the connection between differentiability, continuity and the partial
derivatives.

e Let D be a domain in R?. Let f : D — R be such that both f, and f, exist on D and at least
one of them is continuous at (a,b) € D. Then f is differentiable at (a, b).

e Let D be a domain in R% Let f : D — R be differentiable at (a,b) € D. Then f is
continuous at (a, b).

Notice that the first statement strengthens the increment theorem. Instead of increasing the load
on terminology, we will continue with the increment theorem. Note that whenever we assume that
f» and f, are continuous, you may replace this with the weaker assumption: “ f(x,y) is differen-
tiable”.

Remember that we formulate and discuss our results for a function f(x, y) of two variables. Analo-
gously, all the notions and the results can be formulated for a function f(x1,...,x,) of n variables
forn > 2.

1.6 Chain Rules

We apply the increment theorem to partially differentiate composite functions.

Theorem 1.5. (Chain Rule 1) Ler x(t) and y(t) be differentiable functions. Let f(x,y) be such
that f, and f, are continuous. Then

df _9fdx  Ofdy
dt Oz dt Oydt
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Proof: By Theorem 2.2, f(x,y) is a differentiable function. Use the increment A f at a point P to

obtain
Af  OfAx Of Ay Ax Ay
— =t ta—te—.
At Ox At 0y At At At
As At — 0, we have Az — 0, Ay — 0,¢; — 0, €5 — 0. Then the result follows. O

For example, if z = zy and z = sint, y = cost, then
dz 0z , 0z
== )+ (¢
dt axx( )+ dy (®)

Check: z(t) = sint cost = 5 sin 2¢. So, 2/(t) = cos 2t = cos® t — sin®¢.

= cos’t — sin’t.

Theorem 1.6. (Chain Rule 2) Ler f(x,y) be a function, where f, and f, are continuous. Suppose
x = x(s,t) and y = y(s,t) are functions such that x, x;, ys and y; are also continuous. Then
8f_8f@x+8f8y of ofox Of0y
ds Ox0s Oyds Ot Oxot Oyot
Proof of this follows a similar line to that of Chain Rule - 1. The pattern is clearer if you use the
subscript notation:

fs:fzxs—i_fyys, ft:fxxt+fyyt-

Example 1.19. Let 2 = ¢"siny, x = st?, y = s°t. Then
0
a—z = (e"siny)t® + (¢* cosy)2st = te*!” (tsin(s%t) + 2s cos(s°t)).
s
0z T 3 T 2 st? : 2 2
5 = (e®siny)2st + (e* cosy)s” = se* (2t sin(s°t) + s cos(s°t)).

Substitute expressions for 2 and y to get z = z(s, ¢) and then check that the results are correct.

Example 1.20. Given that z = f(x,y) has continuous second order partial derivatives and that
x =12+ 5% y=2rs, find z,,.

We have z,, = 2r, y, = 2s. Then

2y = 2rzp + 25z,
Zar = Zzaly + ReyYr = 2r2zpe + QSny-
Zyr = Zyaly + ZyylYr = 27295 + 252y,
0z, 0
Zpp = = —(2rz; + 2sz,) = 22, + 2rz,, + 252,
or 8r( v) v

= 22, + 2r(2rzg, + 2824y) + 25(2r2y, + 252y,)

= 2z, +4r%2,, + 8182y + 4522yy.
Functions can be differentiated implicitly. If F' is defined within a sphere S containing a point
(a,b,c), where F(a,b,c) = 0, F,(a,b,c) # 0, and F,, F,, F, are continuous inside the sphere,
then the equation F'(x,y, z) = 0 defines a function z = f(z,y) in a sphere containing (a, b, ¢) and

contained in the sphere S. Moreover, the function z = f(z,y) can now be differentiated partially
with z, = —F,/F,, z, = —F,/F,.

It is easier to differentiate implicitly than remembering the formula.
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Example 1.21. Find z, and z, if 2° + y® + 2% + 62yz = 1.

We differentiate ‘the equation” with respect to z and y as follows:

2
2
3% 4+ 3222, + 6y(z + 12,) =0 = 2z, = —%.
(y? + 2x2)
3y° 4+ 32%2, + 6x(z +22,) =0 = 2, = T iony

d
Example 1.22. Find d—y if y=y(x)is givenby y? = 2% + sin(zy).
x

dy dy,
Qy% — 2z — cos(zy)(y + x@) =0=

dy 2w+ ycos(ry)
dr 2y — xcos(xy)’

Example 1.23. Find w, if w = 2% +9* + 2% and 2 = 2% + 3%

As it looks,
ow 5
— =21.
Ox
However, since z = 2 + y?, we have w = 22 + y* + (2 + y?)%. Then
0
T _ 9 + 4a® + dxy?.
Ox

Notice that, here we take z as the dependent variable and z,y as independent variables. But
suppose we know that x and z are the independent variables and y is the dependent variable. Then
the second equation says that 4> = z — . Then w = 2 + (2 — 2?) + 2? = z + 2°. Thus

ow
o 0.
The correct procedure to get Ow/0z is :
1. w must be dependent variable and z must be independent variable.
2. Decide which of the other variables are dependent or independent.
3. Eliminate the dependent variables from w using the constraints.

4. Then take the partial derivative dw/0z.

Example 1.24. Given that w = 22 + y* + 22 and 2(z, y) satisfies 2* — 2y + yz + y> = 1, evaluate
Ow/0z at (2,—1,1).

It is now clear that z, w are dependent variables and x, y are independent variables. So,

ow 0z ,0z 0z
%—21’—1—22%, 32%—y+y%—0

These two together give 22 = 2z + 1% Evaluating it at (2, —1,1) gives 22(2,—1,1) = 3.
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1.7 Directional Derivative

Recall that if f(z,y) is a function, then f, (¢, yo) is the rate of change in f with respect to change
in , at (o, yo), that is, in the direction i. Similarly, f, (o, o) is the rate of change at (g, o) in
the direction 7. How do we find the rate of change of f(x,y) at (o, o) in the direction of any unit
vector u?

/ PI[IlM_T«- 0) e
Vs
; ha/ u ¥
-7
hb ™~

/ : 0'fx, 1. 0)
X

Consider the surface S with the equation z = f(x,y). Let zo = f(x0, o). The point P(z0, yo, 20)
lies on S. The vertical plane that passes through P in the direction of 4 (containing @) intersects S
in a curve C. The slope of the tangent line 7" to C' at P is the rate of change of z in the direction of

u.

Let f(x,y) be a function defined in a domain D. Let (x¢, yo) € D. The directional derivative of
f(z,y) in the direction of a unit vector & = ai + bj at (o, yo) is given by

(Duf) (o, yo) = (Z_J;)u

— lim f(zo + ha,yo + hb) — f(zo, o)
(z0,Y0) h—0 h .

Example 1.25. Find the derivative of z = 22+ at (1, 2) in the direction & = (1/v/2)i+(1/v/2)7.

T f(1+h/\/§,2+h/\/§)—f(l,2)__ Qh/\/§+2.2h/\/§_ 6
Durtl,2) = g h R h )

Notice that f,(1,2)(1/v/2) + f,(1,2)(1/v2) = (2+2(2)) - (1/v2) = 6//2.

Theorem 1.7. If f(x,y) is a function of x and y having continuous partial derivatives f, and
fy, then f has a directional derivative at (x,y) in any direction @ = ai + bj'; and it is given by

Duf(xvy) = fx(x,y)a + fy(a:,y)b

Proof: Let (x, o) be a point in the domain of definition of f(x,y). Define the function g(-) by
g(h) = f(xo + ah,yo + bh). Then g(h) is a continuous function of /. Now,

dx dy
/ p— — —
g(h>—fmdh+fydh fea+ f,b.
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Then ¢'(0) = f.(z0,%0) + fy(z0,%0)- Since f,, f, are continuous,

iy 1 9() —g(0)
Hence D, f(xo,y0) = ¢'(0) = fu(z0, yo)a + fy(z0,Y0)b. "

Example 1.26. Find the directional derivative of f(x,y) = 2 — 3zy + 41 in the direction of the
line that makes an angle of /6 with the x-axis.

. - 3. 14
Here, the direction is given by the unit vector & = cos(7/6)i + sin(7/6)j = g  + 5 j. Thus
3 1 3 1 1
Duf(a,y) = éff +5h = §<3x2 ~ 3y) + 5(~32 + 8y) = 5 [3v/3e" — 30+ (8 - 3v3)y].

The formula for the directional derivative in the direction of the unit vector & = ai + bj can be
written as

Dof = foa + fyb= (fui + f,7) - (a1 + b)).

0. 0
The vector operator V := a—z + . j is called the gradient and the gradient of f(z,y) is
T y

of ~  Of «
Vf::gradf::a—iz—f—a—;;j.

Therefore, D, f = grad f - 4. That is, at (o, yo), the directional derivative is given by

Duf|(g;0,y0) = grad f’(woyyo) 4.
For example, for the function f(x,y) = ze? + cos(zy), grad fl(2,0) = i +27. Thus, the directional
derivative of f in the direction of 3i — 4j is grad f|(19) - ((3/5)i — (4/5)j) = —1.

However, remember that in order that this formula is applicable, we have assumed that the function
f(z,y) has continuous partial derivatives f,, f, at (zo, %)

Theorem 1.8. Let f(x,y) have continuous partial derivatives f, and f,. The maximum value of
the directional derivative D, f(x,vy) is |grad f| and it occurs when G has the same direction as
that of grad f.

This is obvious since D, f = grad f - u says that the directional derivative is the scalar projection
of the gradient in the direction of .

Proof: D,f = grad f -4 = |grad f||a| cos® = |grad f|cos6, where 0 is the angle between
grad f and @. Since maximum of cosf is 1, maximum of D, f is |grad f|. The maximum occurs
when ¢ = 0, that is, when the directions of grad f and @ coincide. O

This also says the following:
f(z,y) increases most rapidly in the direction of its gradient.
f(z,y) decreases most rapidly in the opposite direction of its gradient.
f(z,y) remains constant in any direction orthogonal to its gradient.
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Example 1.27. Find the directions in which the function f(z,y) = 2 + y? changes most, least,
and not at all, at the point (1, 1).

grad f = foi + f,7 = 221+ 2y7. (grad f)(1,1) = 20 + 27.

Thus the function f(z, %) increases most at (1,1) in the direction (i + 7)/+/2. It decreases most at
(1,1) in the direction — (7 4 j)/+/2. And it does not change at (1, 1) in the directions +( — j)/+/2.

1.8 Normal to Level Curve and Tangent Planes

Let z = f(x,y) be a given surface. A level curve to this surface is a curve f(x,y) = c for any
constant c. On this level curve, the function f(x,y) is a constant, namely, ¢ in the range of f(z,y).
Suppose 7 (t) = x(t)i + y(t)j' is a parametrization of this level curve.

Differentiating, we have < f(x(t), y(t)) = 0. Or,

d7’(t)

=0.
dt

L = gd f

Since d?’/ dt is the tangent to the curve, grad f is the normal to the level curve. That is,

At any point (zo, yo) in the domain of the differentiable function f(x,y), its gradient grad f is the
normal to the level curve that passes through (x¢, yo).

In higher dimensions, if f(x1, ..., z,) is a function of n independent variables defined on D C R™,
then its gradient at any point is

af af
ap= (2 2y
grad f 014 0y,
The directional derivative at any point 7 in the direction of a unit vector & = (u1, ..., u,) is
— hil) — —
h—>0 h

The algebraic rules for the gradient are as follows:

1. Constant multiple: grad (kf) = k(grad f) for k € R.
2. Sum: grad (f + g) = grad f + grad g.
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3. Difference: grad (f — g) = grad f — grad g.

4. Product: grad (fg) = f(grad g) + g(grad f).

df)— d
5. Quotient: grad / = glgrad /) 5 fera g).
9 9

In 3d, let 7(t) = x(t)i+y(t)] + z(t)k be a smooth curve on the level surface f(x,y, z) = c. Then
f(z(t),y(t), 2(t)) = cfor all t. Differentiating this we get

grad f - 7'(t) = 0.

Look at all such smooth curves that pass through a point P on the level surface. The velocity
vectors 7 /() to all these smooth curves are orthogonal to the gradient at P.

Let f(z,y, z) have continuous partial derivatives f,, f,, and f.. The tangent plane at Pz, yo, 2o)
on the level surface f(x,y, z) = c is the plane through P which is orthogonal to grad f at P. Its
equation is

fa (20, Yo, 20) (2 — 20) + fy (20, Yo, 20) (¥ — vo) + f=(Z0, Yo, 20) (2 — 20) = 0.

The normal line to the level surface f(z,y, z) = c at P(xq, yo, 20) is the line through P parallel to
grad f. Its parametric equation is

T = xo+ f2(20, Y0, 20) t, ¥ = yo + fy(20,Y0,20) t, 2 = 20 + f.(20, Y0, 20) L.

The equation of the tangent plane to the surface z = f(z,y) at (a, b) can be obtained as follows:

Write the surface as F'(z,y,z) = 0, where F'(z,y,2) = f(x,y) — 2. Then F, = f,, F, = f,,
F, = —1. Then the equation of the tangent plane is

fe(a,b)(x = a) + fy(a, b)(y = b) = (2 = f(a,b)) = 0.

Example 1.28. Find the tangent plane and the normal line of the surface 2> + >+ 2z — 9 = 0 at
the point (1,2, 4).

First, check that the point (1,2, 4) lies on the surface. Next, f,(1,2,4) = 2, f,(1,2,4) = 4 and
f-(1,2,4) = 1. The tangent plane is given by

2 —1)4+4(y—2)+ (2 —4)=0.
The normal line at (1,2, 4) is given by
r=14+2t, y=2+4+4t, z=4+1.
Example 1.29. Find the tangent plane to the surface z = x cosy — ye” at the origin.
f2(0,0) =1, f,(0,0) = —1. The tangent plane is
r—y—z2=0.

Example 1.30. Find the tangent line to the curve of intersection of the surfaces
flx,y,2) =2 +y*>—2=0and g(z,y,2) := x + 2z — 4 = 0 at the point (1, 1, 3).
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The tangent line is orthogonal to both grad f and grad g at (1, 1, 3). So, it is parallel to
grad f x grad g = (2i +27) x (1 + k) = 2i — 2] — 2k.

Thus the tangent lineis =z =142¢, y=1—2¢t, 2 =3 — 2¢.

1.9 Taylor’s Theorem

For a function of one variable, a polynomial approximation is given by the Taylor’s formula. Ob-
serve that it is a generalization of the Mean value theorem.

Theorem 1.9. (Taylor’s Formula for one variable) Let n € N. Suppose that ™ (z) is continuous
on [a, b] and is differentiable on (a,b). Then there exists a point ¢ € (a,b) such that

"(a (n+1) c
f( ) f ()(:c—a)"ﬂ.

1) = [@) + f@)e —a) + 2 @ =0+ Y

Proof: For x = a, the formula holds. So, let x € (a, b]. For any ¢ € [a, z], let

f"(a) f"(a)

2
or (=@t

p(t) = fa) + f'(a)(t —a) +

(t—a)".
Here, we treat = as a certain point, not a variable; and ¢ as a variable. Write

o(t) = £() = p(t) = L 2@y _ ot

(x — a)ntt

We see that g(a) = 0, ¢'(a) =0, ¢"(a) =0, ...,9™(a) =0, and g(x) = 0.

By Rolle’s theorem, there exists ¢; € (a,z) such that ¢’(c;) = 0. Since g(a) = 0, apply Rolle’s
theorem once more to get a ¢o € (a, ¢;) such that g”(cy) = 0.

Continuing this way, we get a ¢, 41 € (a, ¢,) such that g™+ (¢, ;) = 0.
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Since p(t) is a polynomial of degree at most n, p"*1(¢) = 0. Then

g e) = 10400 - HE I o,
Evaluating at £ — (n+1) (@) —p(z) o .
valuating at ¢ = ¢, we have [ (¢, 11) (e = a)r1 (n+1)! = 0. That is,
f@) —pl@) _ [ (enrn)
($ _ a)nJrl - (n + 1)| :
Consequently, g(t) = f(t) — p(t) — M (t — a)" .,

(n+1)!
Evaluating it at ¢ = x and using the fact that g(x) = 0, we get
_ f(nJrl)(Cn—H) n+1
f(x)—p($)+w($—a) ~
Since x is an arbitrary point in (a, b], this completes the proof. 0

We have a similar result for functions of several variables.

Theorem 1.10. (Taylor) Let D be a domain in R?; (a,b) be an interior point of D. Let f : D — R
have continuous partial derivatives of order up to n + 1 in some open disk Dy centered at (a,b)
and contained in D. Then for any (a + h,b+ k) € Dy, there exists 6 € [0, 1] such that

fla+hb+k) = fla,b) +Z — (h%m;) fla,b)
+ (n%) (h;x +k§y)n+1f(a—l—0h,b+€k:)
For example, m = 2 on the right gives 5 (h? fo + 2hk foy + K f,).
Proof: Let ¢(t) = f(a + th,b+ tk). Then,
¢'(t) = fola +th,b+th)h + fy(a +th,b+th)k = (hG; + k5. f(a + th, b+ tk).
O (t) = (farh + fayk)h + (frah + fyyk)k = (h3; + k5)* fa + th,b+ tk).

By induction, it follows that

) )
(m) - m
P (t) = (h_ax + k—ay) fla+th,b+tk).

Using Taylor’s formula for the single variable function qb( ), we have

(b (b n+1)<9)
)+ Z m‘ (n+1)!"

for some 6 € [0, 1]. Substituting the expression for ¢ (f), we get the required result. 0J

Example 1.31. Let f(x,y) =2 + oy —y*, a=1, b= —
Here, f(1,—-2) = =5, f,(1,-2) =0, f,(1,—2) =5, fox =2, foy =1, fyy, = —2. Then

flx,y) = -5+5(y+2)+ %[Q(x — 1) +2(z—-1)(y+2) —2(y +2)?].

This becomes exact, since third (and more) order derivatives are 0.

25



1.10 Extreme Values

We extend the notions of local maxima and local minima to a function of two variables.
Let D be a domain in R?; (a,b) € D;andlet f: D — R.

f(z,y) has a local maximum at (a,b) if f(x,y) < f(a,b) for all (z,y) near (a,b).

That is, for all (z, y) in some open disk centered at (a,b), f(x,y) < f(a,b).

The number f(a, b) is then called a local maximum value of f(z,y); and the point (a, ) is called
a point of local maximum of f(z,y).

If for all (x,y) € D, f(x,y) < f(a,b) then f has an absolute maximum at (a, b).
The number f(a, b) is called the absolute maximum value of f; and the point (a,b) is called a
point of absolute maximum of f(z,y).

absolute

Replace all < by >; then call all those minimum instead of maximum.

Let D be adomainin R?*; f: D — R.Let (a,b) € D. The function f(z,y) has a local extremum
at (a, b) if f(x,y) has a local maximum or a local minimum at (a, b).

An interior point (a,b) of D is a critical point of f(z,y) if either f,(a,b) = 0 = f,(a,b) or at
least one of f,(a,b) or f,(a,b) does not exist.

Theorem 1.11. Let D be a domain in R*;, f : D — R. Let (a,b) be an interior point of D.
If f(x,y) has a local extremum at (a,b), then (a,b) is a critical point of f(z,y).

Proof: Suppose f has a local maximum at an interior point (a, b) of D. Suppose f.(a,b) exists.
The function g(z) = f(z, b) has a local maximum at z = a. Then ¢'(a) = 0. That is, f,(a,b) = 0.
Similarly, consider h(y) = f(a,y) and conclude that f,(a,b) = 0. Give similar argument if f has
a local minimum at (a, b). O

Geometrically, it says that if at an interior point (a, b), there exists a tangent plane to the surface
z = f(z,y), and if this point (a, b) happens to be an extremum point, then there exists a horizontal
tangent plane to the surface at (a, ).

Let D be adomain in R?. Let f : D — R have continuous partial derivatives f, and f,. Let (a, b) be
a critical point of f(z,y). The point (a, b, f(a, b)) on the surface is called a saddle point of f(z,y)
if in every open disk centered at (a, b) and contained in D, there are points (z1,y1), (Z2,y2) such

that f(x1,11) < f(a,b) < f(w2,y2).

At a saddle point, the function has neither a local maximum nor a local minimum; the surface
crosses its tangent plane.
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For a function f(z,y), its Hessian is defined by

f:z:a: fmy
fxy fyy

Suppose that the function f(x,y) has second order continuous partial derivatives in an open disk
centered at a point (a,b) inside its domain of definition. If H(f)(a,b) > 0, then the surface
z = f(z,y) curves the same way in all directions near (a, b).

H(f) =

= fm:fyy - fy'

We will not prove this geometrical fact. We rather prove one of its corollaries which will help us
in determining the local maxima and local minima.

Theorem 1.12. Let f : D — R have continuous first and second order partial derivatives in an
open disk centered at (a,b) € D. Suppose (a,b) is a critical point of f(x,y).

1. If H(f)(a,b) > 0 and f..(a,b) <0, then f(x,y) has a local maximum at (a,b).
f)

)

)

(
2. IfH(
3. If H(f)(a,b) < 0 then f(x,y) has a saddle point at (a,b).
(

(a,b)
(a,b) > 0and f,.(a,b) > 0, then f(x,y) has a local minimum at (a,b).
(a,b)
(a,b)

4. If H(f)(a,b) = 0, then nothing can be said, in general.

Proof: Let (a + h,b + k) be in an open disk centered at (a,b) and contained in D. By Taylor’s
formula,

fla+hb+k)=(f+hf.+kf,) -

1
w 5(h2 fox + 20k foy + K f)

(a+0h,b+0k)

Since (a, b) is a critical point of f, f,(a,b) = 0= f,(a,b). Then

fla+h,b+k)— f(a,b) = %(hzfm + 2hk fry + K fyy) (1.1)

(a-+0h,b+0k)

(1) Let H(f)(a,b) > 0 and f,.(a,b) < 0. Multiply both sides of Equation 1.1 by 2f,,, add and
subtract (f,,)?k?, and rearrange to get (Al of fi., fuy, fyy are evaluated at (a + 6h,b+ 0k).)

2fealf(a+ R, b+ k) — f(a,0)] = (hfex + kfxy>2 + (fwa:fyy - (fwy)2>k2-
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By continuity of functions involved, f,.(a + 6h,b + 0k) < 0. The RHS is positive. Therefore,
fla+h,b+ k) — f(a,b) < 0. That is, (a, b) is a local maximum point.

(2) Let H(f)(a,b) > 0 and f..(a,b) > 0, By continuity again, f,.(a + 0h,b + 0k) > 0. So,
fla+h,b+ k) — f(a,b) > 0. That is, (a, b) is a local minimum point.
(3) Let H(f)(a,b) < 0. We want to show that f(a + h,b + k) — f(a,b) has opposite signs at
different points in any small disk around (a, b). We break this case into three sub-cases:

BA) fuz(a,b) #0. GB) fyy(a,b) #0, BOC) fu(a,b) = fyyla,b) =0.

(BA) Let H(f)(a,b) < 0and f,.(a,b) # 0.
First, set h = ¢,k = 0 in Equation 1.1 and evaluate the following limit:

_ 2
lim fla+h,b+ k) — f(a,b) ~ lim t* fou(a +t,D) _ fez(a, b).
t—0 12 t—0 2t2 2

Next, set h = —tf,,(a,b), k =tf,.(a,b). Use Equation (1.1) to obtain

oo flathbr k)~ flab) 1 (fwfm 2fue oy + fonkuy) = fxx(Qa, b)

t—0 12 t=0 2

H(f)(a,b).
Since H(f)(a,b) < 0, these two limits have opposite signs. Due to continuity,

fla+ h,b+ k) — f(a,b) will have opposite signs in any neighborhood of (a, b).

(3B) Let H(f)(a,b) < 0 and f,,(a,b) # 0. This is similar to (3A).

(BC)Let H(f)(a,b) < 0and f,.(a,b) = f,y(a,b) = 0.

First, set h = k = t. Use Equation (1.1) to get

h,b+ k) — b
hmf(a+ b+ k) — fla, ):11m (fzz+2fry+fyy)|a+t,b+t):fry(a’7b)‘

t—0 12 t—0

Next, set h = t, k = —t. Using Equation (1.1) again, we have

lim f(CL + h’ b + k> — f<a’ b) = lim 1(fcca[: - 2fa:y + fyy)|(a+t,b+t) = _fa:y(a7 b)

t—0 12 t—0 2

Asin (3A), f(a+ h,b+ k) — f(a,b) will have opposite signs in any neighborhood of (a,b). O

Notice that the case H(f)(a,b) > 0 and f,.(a,b) = 0 is not possible. Moreover, Under the condi-
tion that H(f)(a,b) > 0, both f,,(a,b) and f,,(a,b) have the same sign. Thus, in Theorem 1.12,
the sign condition on f,,(a, b) can be replaced by the corresponding sign condition on f,,(a,b).
It also says that if f,,(a,b) and f,,(a,b) have the opposite signs, then the critical point (a, b) is a
saddle point of f(z,y).

Example 1.32. Find the extreme values of f(x,y) = vy — 22 — y? — 20 — 2y + 4.

Domain of f is R? having no boundary points. f is differentiable. Its extreme values are all local
extrema. The critical points are those where both f, and f, vanish. Now,

fx:y_Qx_Q, fy:$—2y—2.
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The critical points satisfy f, = 0 = f,. Thatis, z =y = —2.
foa(—2,-2) = =2, f1,(=2,-2) =1, f,(—2,-2)=-2.
Then H(f)(—2,-2) =3 >0, fu: <0.

Thus, f has local maximum at (—2, —2).

Here also f has absolute maximum and the maximum value is f(—2, —2) = 8.
Example 1.33. Investigate f(z,y) = ! + y* — 4zy + 1 for extreme values.

The function has continuous first and second partial derivatives everywhere.
The critical points are at (z, y) where f, = 42® — 4y =0 = f, = 4y — 4a.
That is, when 23 = y and y> = . Giving 2° = 2 which has solutions z = 0,1, —1 in R. The
corresponding y values are 0,1, —1.

Now, for = 1222, f., = —4, f,, = 12y*. Thus H(f) = 144z*y* — 16.

Atz =0,y =0, H(f) = —16. Thus f has a saddle point at (0, 0).

Atz =1,y=1,H(f) >0, fyzz > 0. Thus f has alocal minimum at (1, 1).

Atz =—1,y=—1,H(f) >0, fzr > 0. Thus f has alocal minimum at (—1, —1).

The local minimum values are f(1,1) = —1 and f(—1, —1) = —1. Both are absolute minima.

Example 1.34. Find absolute extrema of f(x,y) = 2+ 2z + 2y — 2% — y* defined on the triangular
region bounded by the straight linesx =0, y =0,and x +y = 9.

1. The critical points are solutions of f, =2 —2x =0 = f, =2 — 2y. Thatis,z = 1,y = 1.
This accounts for the interior points of the domain.

2. Draw the picture. The vertices of the triangle are A(0,0), B(0,9), C(9,0). These are possible
extremum points. This accounts for the vertices which are on the boundary.

3. Next, we should consider the boundary in detail.

3(a). On the line segment AB, f is given by (y = 0):
g(z) = f(z,0) =2+2x —2*for0 < x < 9. Now, ¢'(z) = 0= 2 = 1.
Thus (1,0) is a possible extremum point.

3(b). Similarly, on the line segment AC', f is given by (x = 0):
9(y) = f(0,y) =2+2y —y*for0 <y < 9. Theng'(y) =0 =y = 1.
Thus, a possible extremum point is (0, 1).

3(c). On the line segment BC', f is given by (z + y = 9):
g(x)=f(z,9—2)=2+22+209—2z)—2? — (9 —2)? = =61 + 18z — 2z for 0 < z < 9.
Jx)=0=18—-4x=0=2=9/2, y=9—z=9/2.

Thus (9/2,9/2) is a possible extremum point.

The values at these possible extrema are
F(1,1) =4, £(0,0) = 2, £(0,9) = —61, £(9,0) = —61, £(1,0) = 3, £(0,1) = 3, £(9/2,9/2) = —41/2.

Therefore, f(z,y) has absolute minimum at (0, 9) and (9, 0) and its minimum value is —61.
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It has absolute maximum at (1, 1) and its maximum value is 4.

Example 1.35. Maximize the volume of a box of length x, width y and height z subject to the
condition that z 4+ 2y 4+ 2z = 108.

V =zyz = (108 — 2y — 22)y=z. Take f(y, z) = (108 — 2y — 2z)yz. Then

fy = (108 =4y —2z)z, f, = (108 — 2y — 42)y.
The equations f,, = 0 = f, imply that

(z=0o0r 108—4y—22=0) and (y=0 or 108 —2y —4z =0)

We have four possibilities:
(@)z=0,y=0.
(b)z=0,108 -2y —42=0=2=0, y =54.
(©)108 =4y —22=0,y=0=2=54, y =0.
(d) 108 —4y—2z =0, 108 =2y —4z = 0. Subtracting, —2y+2z =0=y =2 = 2 =18, y = 18.
Therefore, the critical points (y, z) are (0,0), (0,54), (54,0) and (18, 18).

At the first three points, f(y, z) is 0, which is clearly not the maximum value of f(y, z). The only
possibility is (18, 18). To see that this a point where f(y, z) is maximum, consider

foy = =42, fy. =108 —4y — 22 — 22 = 108 — 4y — 4z, f.. = —4y.

At (18,18), fy, < 0,and H(f) = fyyfor — f2 = 16 x 18 x 18 — 16(—9)* > 0.

Hence the volume of the box is maximum when its length is 108 — 36 — 36 = 36, width is 18 and
height is 18 units. The maximum volume is 11664 cubic units.

Example 1.36. Find the points closest to the origin on the hyperbolic cylinder 2 — 22 = 1.

® (51,00

We seek a point (z, y, z) that minimizes f(z,y, z) = ? + y* + 2% subject to 2 — 22 = 1.
As earlier, taking 2% = 2% — 1, we seek (x, y) that minimizes

g(z,y) = flr,y, £V — 1) =2 + > + 22 —1 =222 +¢* - 1
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Now, g, = 4z, g, = 2y. Equating them to zero gives x = 0 and y = 0. But z = 0 does not
correspond to any point on the surface 72 — z? = 1. So, the method fails!

Instead of eliminating z, suppose we eliminate z. In that case, we seek to minimize
gy, 2) = f(EVT +20,y,2) =1+ 22+ 2 + 22 =2 + 222 + 1.
Then g, = 0 = g, implies that 2y = 0 = 4z. The point so obtained is y = 0, z = 0. This
corresponds to the points (£1, 0, 0) on the surface.
Now, of course, we can proceed as earlier for minimizing g(y, z).
Here, g,, = 2, g,. =0, g., = 4.
Aty =0,z =0, we have H(g)(0,0) = gyy9.. — 9., = 8 > 0.
Since ¢,,(0,0) > 0, we conclude that g(y, ) has a local minimum at (0, 0).
These points (£1, 0, 0) of local minima give the minimum value of the distance f(z,y, z) as 1.
But how do we know eliminating which variable would result in a solution?

We would rather look for alternative ways of solving extremum problems with constraints.

1.11 Lagrange Multipliers

Our requirement is to minimize or maximize a certain function f(z,y, z) subject to the constraint
g(x,y, z) = 0. The constraint represents a surface in three dimensional space. Let S be a surface
given by g(x,y, z) = 0. Let f(z,y, z) have an extreme value at P(x, 3o, 29) on the surface .S. Let
C'be a curve given by 7 (t) = z(y)i + y(t)j + z(¢)k that lies on S and passes through P. Suppose
for t = tq, we get the point P, that is, P = 7’ (to).

The composite function h(t) = fo g = f(xz(t),y(t), z(t)) represents the values that f takes on C.
Since f has an extreme value at P(t = t;), the function h(t) has an extreme value at ¢ = t,. Then
h'(tp) = 0. That is,

0= h'(to) = fo(P)2'(to) + fy(P)y (to) + fo(P)'(to) = (grad f)(P) - 7'(to).

For every such curve C, (grad g)(P) is orthogonal to 7°'(¢y). Thus, (grad f)(P) is parallel to
(grad g)(P). If (grad g)(P) # 0, then

(grad f + Agrad g)(zo, Yo, 20) = 0 for some A € R.
Breaking into components, we have, at (o, Yo, 20)
Jo+Age =0, fy+/\gy:07 f2+Ag:=0,g=0.

Similar equations hold when there are more than one constraint.

Example 1.36 Contd.: We see that
f(x7yaz):'r2+y2+22; g(I,y,Z):xQ—ZZ—l.
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The necessary equations at a possible extremum point (g, yo, 2) are
Jo+ A =204+ X20=0, f,+Ag,=2y=0,
fo4+Ag.=22—-X22=0, g=a*—22-1=0.
Itgivesxg =0o0or A= —1;99=0;20=00r A = 1.

From these options, xy = 0 is not possible for any z since 72 — 22 = 1. A = 1 gives x = 0, which is
again not possible. We are left with A\ = —1,yy = 0, 29 = 0. Now, 22 — 22 — 1 = 0 gives 7y = +1.
The corresponding points are (£1,0,0). f(z,y, z) at these extremum points has value 1. Since
f(x,y, z) is unbounded above, it does not have a maximum. Therefore, f(z,y, z) at these points
is minimum. Thus the points closest to the origin on the cylinder are (1,0, 0).

Notice that if we set F'(x,y, 2, \) := f(z,y,2) + Ag(x,y, z) = 0, then
Fo=fs+X:=0F,=f,+Xg, =0, F, =f,+Xg. =0.
Moreover, g(x,y, z) = 0 also comes from F, = 0.
We can now formulate the method of solving a constrained optimization problem.
Requirement: Find extrema of the function f(x1,...,z,) subject to the conditions
gi(z1, ..., x,) =0, -+, gu(z1,...,2,) = 0.
Method: Set the auxiliary function:

F(zy, .. @, Ay ooy Am) o= fo, oo xn) F M1 (2, o 2n) 4+ - A (1, -+ ).

Equate to zero the partial derivatives of F' with respect to x1,...,%,, A1,..., Ay,. It results in
m + n equations in Ty, ..., Ty, A1, ..., A

Determine 1, ..., 2, A1, ..., A, from these equations.

The required extremum points may be found from among these values of x1, ..., x,, A1,..., A\p.

Remember that the method succeeds under the condition that such extreme values exist where
grad g; # 0 for any ;.

Example 1.37. Find the maximum value of f(z,y, z) = x + 2y + 3z on the curve of intersection
of the plane g(z,y, z) := x —y + 2 — 1 = 0 and the cylinder h(z,y,2) := 2> +y* — 1 = 0.

The auxiliary function is
F(z,y,z, A pu)i=f+Ag+ph=0+2y+3z+ XNz —y+z—1)+p@*+y*—1).
Setting F, = F,, = F,, = F) = F,, = 0, for (z0, Yo, 20), We have
T+ A+ 200 =0,2 - A+2you=0,3+A=0, 20 —yo+20—1=0, 25 +yg —1=0.

We obtain: A\ = —3, zg = 1/u, yo = —5/(2p), 1/pu* +25/(4p*) = 1. That is, u? = 29/4. Then
the extreme points are

xo = £2/v29, yo = F5/V29, 20 =1+ 7/V29.
The corresponding values of f(xg, yo, 20) show that the maximum value of f is 3 + 1/29.

Notice that if 4 = 0, then 1 + A = 0 = 2 — X leads to inconsistency. Also the conditions that
grad g # 0 and grad h # 0 are satisfied automatically for the given constraints.
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1.12 Review Problems

Probelm 1.1: Where is the function f(x,y) = xQQEQ continuous? What are the limits of f at the

points of discontinuity?

f(z,y) is defined everywhere in the plane except at the origin. When (z,y) # (0, 0), the functions
g(z) = 2zy and h(z,y) = x* + y* are continuous. Hence f(z, y) is continuous everywhere except
at the origin.

The only point of discontinuity is possibly the origin. We show that as (z,y) — (0,0), f(z,y) has
no limit. On the contrary, suppose f(x,y) has the limit L at (0, 0). Then

L= lim f(z,y)=li 2
= m fey) = lmos =
and also
L= lim f(x,y) =1 2
T oo\ T I e T

It is a contradiction.

Problem 1.2: Find the total increment Az and the total differential dz of the function z = xy at
(2,3) for Ax = 0.1, Ay =0.2.

At (2,3) with Az = 0.1, Ay = 0.2, we have
Az = (z+Azx)(y+Ay) —zy =yAr + Ay + AzAy =3 x0.1+2x0.2+0.1 x 0.2 =0.72.

dz = zdx + z,dy = ydx + xdy = yAzr + zAy. =3 x 0.1 +2 x 0.2 =0.7.

Problem 1.3: It is known that in computing the coordinates of a point (x,y, z,t) certain (small)
errors such as Az, Ay, Az, At might have been committed. Find the maximum absolute error so
committed when we evaluate a function f(z,y, z, t) at that point.

Let Au = f(x+ Az, y+ Ay, z+ Az, t+ At) — f(z,y, z,t). We want to find max Au. By Taylor’s
formula,
Au = (fAz + fyAy + f.Az + fiAt)(a,b, ¢, d)

where (a, b, ¢, d) lies on the line segment joining (z,y, z,t) to (x + Ax,y + Ay, z + Az, t + At).
Therefore,
|Aul < |ful |Az| + [fy] |Ay[ + | ] [Az] + | fe] |AL].

Problem 1.4: The hypotenuse ¢ and the side a of a right angled triangle ABC' determined with
maximum absolute errors |[Ac| = 0.2, |Aa| = 0.1 are, respectively, ¢ = 75, a = 32. Determine
the angle A and determine the maximum absolute error A A in the calculation of the angle A.
A(a,c) = sin™* a gives 04 -t o4 - ¢
’ c da 2 —a2 dc o/ —a?
x 0.2 = 0.00273.

. Then

P 3
’AA’ — (75)2_(32)2 X 01 - 75 (75)2—(32)2

Therefore sin~" 22 — 0.00273 < A < sin~' 22 4 0.00273.
Problem 1.5: Let f(x,y, 2) = 22 + y* + 2% Find (%) (1,1,1), where ¥ = 2i + j + 3k.
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The unit vector in theA direc'fion ofAU isu = \/Lﬁg + \{%—43 —i: \/iﬁl% The gradient of f at (1,1,1) is
grad f(1,1,1) = (fui + fyg + f.k)(1,1,1) = 20 + 25 + 2k. Then

91 = (gra -4 :E
(35)s (L1 1) = (grad £ )(1,1,1) = .

Problem 1.6: Find a point in the plane where the function f(x,y) = 1 — sin(2? + y?) has a local
maximum.

We see that at (0, 0), the function has a maximum value of % To prove this, consider the neighbor-
hood B = {(x,y) : 2* + y* < 7/9} of (0,0). Now, for any point (a,b) € B other than (0, 0), we
have

fla,h) = 5 — sin(a® + 1) < 3 = (0,0).

Problem 1.7: Decompose a given positive number a into three parts to make their product maxi-

mum.

Leta=z+y+ (a—x—y),for0 <z y,a —x—y < a Then x and y can take values from the
region D bounded by the straight lines x = 0,y = 0 and = + y = a. The function to be maximized
is

flx,y) =xyla—x—y)

defined from D to R. The partial derivatives of f are continuous everywhere on D. They are

fo=yla—2x—y), f,=x(a—2z—-2).
The critical points satisfy y(a — 2z —y) =0, z(a — x — 2y) = 0.

The solutions of these equations give:

a a
P1:(070)7 PQZ(Oaa)v P3:<(l,0), P4:(§7§>

Of these, the points P;, P, P3 are on the boundary of D, where the value of f(x,y) is zero. The

only interior point is P, where the value of f(x,y,z) = ‘2’—;, which is the maximum value of

f(z,y,z). Comparing f(Py), f(FP2), f(Ps),f(Fs), we get the required decomposition of a as
!

Problem 1.8: Test for maxima-minima the function z = z3 + 3% — 32y.

The function is differentiable everywhere. Thus the critical points are obtained by solving
2, =32 =3y =0, z,=3y> — 3z = 0.

These are P, = (1,1) and P, = (0,0).
The second derivatives are 2, = 67, zyy = —3, 2, = 0y.

For P, H(P) = (2Zza2yy — 25,)(P1) = 36 =9 = 27 > 0, 2x(P1) = 6 > 0. Thus, Py is a
minimum point and z,,,;,, = —1.

For Py, H(Py) = (2za2yy — 22,)(P2) = —9 < 0. Hence P, is a saddle point.
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Problem 1.9: Find the maximum of w = zyz given that zy + zx 4+ yz = a for a given positive
number a, and z > 0, y > 0, z > 0.

The auxiliary function is
F(z,y,z,\) = zyz + May + zz + yz — a).
Equating its partial derivatives to zero, we have
yz+MNy+2) =0, 22+ ANzx+2)=0, zy + ANz +y) =0.
Multiply the first by z, the second by y, and subtract to obtain:
A(y+z2)—Ay(z+2)=0= Az(z —y) =0.

If A =0, then zy + A(z + y) = 0 would imply z = O or y = 0. But z > 0 and y > 0. So, A # 0.
Also, z > 0. Therefore, x = y. Similarly, using the second and third equations, we get y = z.
Therefore, v = y = 2. Then

xy+ zx+yz =a gives r =y =z =+/a/3.

The corresponding value of w cannot be minimum, since by reducing x, y close to 0, and taking z
close to a so that zy + zx 4+ yz = a is satisfied, w can be made as small as possible. Hence w has
a maximum at (\/a/3,\/a/3,\/a/3). The maximum value of w is (a/3)>.

Problem 1.10: Determine the maximum value of z = (x; - - - xn)l/ " provided that z1 +- - -4z, =
a, where a is a given positive number.

Maximizing z is equivalent to maximizing f(z1,...,x,) = 2" = z123 - - - x,,. Set up the auxiliary
function
F(xy,...,xp,\) = 2129y + ANy + -+ 2, — ).

Equate the partial derivatives [}, to zero to obtain
$1"'$i,1$i+1"'xn+)\:0 for 1 = 1,2,...,71,.

Notice that A # 0. Then multiplying by x;, we see that \z; = z1x5 - - - x,, for each i. Therefore,
r1 = x9 = -+ = x, = a/n. In that case, f = (a/n)" and z = a/n. This value is not a minimum
value of z since z can be made arbitrarily small by choosing z; close to 0. Thus, the maximum of
zis a/n.

This gives an alternative proof that the geometric mean of n positive numbers is no more than the
arithmetic mean of those numbers.
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Chapter 2

Multiple Integrals

2.1 Volume of a solid of revolution

The solid obtained by rotating a plane region about a straight line in the same plane is called a
solid of revolution. The line is called the axis of revolution

y = X

b

y=Vx

¥ o = —

i
i3 0
X =g

= ;

4
i X

E //

Disk

R(x) = Vx

0 | X 4 g

Suppose the region is bounded above by the curve y = f(z) and below by the x-axis, where
a < z < b. To find the volume of the solid so generated, we divide the interval [a, b] into n equal
parts. Let the partition be

a=2g <1< <xp1<xy=D>o

On the ith subinterval we approximate the slice of the solid by 7[f(z})]?(x; — x;_1) for a point
xf € [x;_1,x;]. Reason: the slice is a portion of a cylinder whose cross section with a plane vertical
to its axis is a circle. Then the volume of the solid of revolution is approximated by the sum

Zﬂ[f(fﬂ:)]Q(l’z’ — Ti1).

Then the volume of the solid of revolution is the limit of the above sum where n — co. Observe
that the cross sectional area for = € [a, b] is A(z) = w(f(x))? If A(z) is a continuous function of
x, then the limit of the above sum is the required volume; that is,

V= /:A(x) i — /abﬂ[f(x)]de.

If the axis of revolution is a straight line other than the z-axis, similar formulas can be obtained for
the volume.
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Example 2.1. The region between the curve y = 1/, 0 < z < 4 and the z-axis is revolved around
x-axis. Find the volume of the solid of revolution.

As shown in the above figure, the required volume is

4 4 .TQ 4
V:/ W(\/E)de:/ dexzw[—] = 8.
0 0 2

0
Example 2.2. Find the volume of the sphere 22 + 3% + 22 = a2, a > 0.

We think of the sphere as the solid of revolution of the region bounded by the upper semi-circle
22 +y? = a?, y > 0. Here, —a < z < a. The curve is thus y = v/a? — 2. Then the volume of
the sphere is

¢ 4 r31e 4
V= / (Va2 — 22)*dr = / m(a® — 2*) dx = W[a% — —] = —ma®.

—a —a

Example 2.3. Find the volume of the solid obtained by revolving the region bounded by y = /x
and the lines y = 1, x = 4 about the line y = 1.

Rix)=Vi-1

/

0

The required volume is

4 4 4
7
Vv :/ m[R(2))* dz :/ m(vr —1)*dx = / m(r —2vr +1)dr = %
1 1 1
Example 2.4. Find the volume of the solid generated by revolving the region between the y-axis

and the curve zy = 2, 1 < y < 4, about the y-axis.

The volume is




Example 2.5. Find the volume of the solid generated by revolving the region between the parabola
x = y? + 1 and the line z = 3 about the line z = 3.

. TN S S S .
¥ OR(y)=3-—(y ] ¥ R(v) =2 —y

s % — i Y
VI N (3, V2) V2 A E5=an
g AT e
= Ml Y ety
P
£ - . ! i
0 1 3 5 0 ]".\" L] 5
.-’; ; -
— x=v + —— yra — x=y 4+ —
Ak - (3. =V 2) N *]

Notice that the cross sections are perpendicular to the axis of revolution: x = 3.

v Vi -
14 =/ m[R(y))*dy = /ﬁW[Q — PPy = 6415\/5.

\'\ 0
7o)
¥ = Rix)

\—rt\l _'

In this case, we subtract the volume of the hole to obtain the volume of the solid of revolution.
Look at the figure. In this case, the volume of the the solid of revolution is given by

The volume is

Washer

b b
V= [ A= [ #l(R@) - (@) do.

Example 2.6. The region bounded by the curve y = x? + 1 and the line x + y = 3 is revolved
about the z-axis to generate a solid. Find the volume of the solid.

The outer radius of the washer is R(x) = —z + 3 and the A
inner radius is r(z) = 2 + 1. The limits of integration are e ]
obtained by finding the points of intersection of the given Bt 3,\ Wi i
curves: e, )

?+l=—-2+3=12=-2 1 Y ‘L
|

The required volume is /

- / v 43)2 (x2+1)2]dx_%.

Example 2.7. Find the volume of the solid obtained by revolving the region bounded by the curves
y = x2 and y = 2z, about the y-axis.
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Interval of integration
Il

] 7

The given curves intersect at y = 0 and y = 4. The required volume is

V= [ 1R0P = el = [ AR - w2 =T

Example 2.8.

In the figure is shown a solid with a circular base
of radius 1. Parallel cross sections perpendicu-
lar to the base are equilateral triangles. Find the
volume of the solid.

Take the base of the solid as the disk 2?+y? < 1.
The solid, its base, and a typical triangle at a dis-
tance x from the origin are shown in the figure
below.

The point B lies on the circle y = +/1 — x2. So, the length of AB is 2/1 — x2. Since the triangle
is equilateral, its height is V/3v/1 — 2. The cross sectional area is

A(m):%Q\/l—a:Q\/g\/l—xQZ\/g(l—xQ).

Thus, the volume of the solid is

V:/_llA(x)d:cz/_llx/g(l—xQ)d:c:%.
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Example 2.9.

A wedge is cut out of a circular cylinder of radius 4 by
two planes. One plane is perpendicular to the axis of the
cylinder. The other intersects the first at an angle of 30°
along a diameter of the cylinder. Find the volume of the
wedge.

If we place the x-axis along the diameter where the planes
meet, then the base of the solid is a semicircle with equa-

=16 — 22, -4 <x <A4.
A cross-section perpendicular to the z-axis at a distance x from the origin is the triangle ABC,

whose base is y = /16 — 22; its height is |[BC| = ytan30° = /16 — 22//3. Thus the cross
sectional area is

tion

1 V16— 22 16 — 22
A(z) = =v16 — 22 = )
() =3~ N

Then the required volume of the wedge is

4 416 — 22 128
V:/ A(x)dx:/ 2T e = 2
—4 EVVE] 33
Example 2.10. Find the volume of the solid generated by revolving about the z-axis the region
bounded by the curve y = 4/(z* + 4) and the lines x = 0, z = 2, y = 0.

2 16
The volume is V = / T—dx.
o (22 +4)?
Substitute z = 2tant. do = 2sec? tdt, (z* + 4)> = 16sec't for 0 <t < /4. So,
2sec?t /4 T 1
V= dt = 2 2tdt = (— —).
/ " 16sectt /0 reos ™M1t 3

2.2 Approximating Volume

We now consider solids which are not necessarily solids of revolution. First, we take a typical
simpler case, when a given solid has all plane faces except one, which is a portion of a surface
given by a function f(z,y).

Let f(x,y) be defined on the rectangle R: a <z <b, c <y <d.
For simplicity, take f(z,y) > 0. The graph of f is the surface z = f(x,y). We approximate the
volume of the solid

S A{(z,y,2): (x,y) € R, 0< 2 < f(z,y)}
by partitioning R and then adding up the volumes of the solid rods:
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So, consider a partition of R as
P Ry =|wiy,m] X [yj—1,y;] for 1 <i<m, 1<j<n, a=mx, b=y, c=y, d= 1y,

Denote by A(R;;) the area of the rectangle R;;; Denote by || P|| = max A(R;;), the norm of P.
Choose sample points (z, yj) € R;;. An approximation to the volume of S is the Riemann sum

m n

i=1 j=1

If limit of S,,, exists as ||P|| — 0, then this limit is called the double integral of f(x,y). It is
denoted by [[,, f(x,y)dA. Whenever the integral exists, it is also enough to consider uniform
partitions, that is, z; — z,_1 = (b—a)/m = Az and y; — y;,_1 = (d — ¢)/n = Ay. In this case,
we write A(R;;) = AA = AzAy. Then

y)dA = lim Sy, = lim li £ UHAA.
//Rf(w y)dA= lim Tim Tim Y Y f(af,y;)

i=1 j=1

Since f(x,y) > 0, the value of this integral is the volume of the solid S bounded by the rectangle
R and the surface z = f(z,v).

When the integral of f(z,y) exists, we say that f is Riemann integrable or just integrable.

Riemann sum is well defined even if f is not a positive function. However, the double integral
computes the signed volume. Analogous to the single variable case, we have the following result;
we omit its proof.

Theorem 2.1. Each continuous function defined on a closed bounded rectangle is integrable.
Volumes of solids can also be calculated by using iterated integrals.

Example 2.11. Find the volume V' of the solid raised over the rectangle R : [0, 1] x [0, 2] and
bounded above by the plane z = 4 — x — y, we proceed as follows (similar to solids of revolution):
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5}

x Alx) =_£.‘= [I 4 —x— y)dy
Suppose A(x ) is the cross sectional are at z. Then V' = fo (x)dx. Now, A(x fo (4—z—y)dy.
Thus, V = fo fo — y)dydz. Therefore,

//R(él—x—y)dA:/01/02(4—x—y)dydx.

The expression on the left is a double integral and on the right is an iterated integral.

Theorem 2.2. (Fubini) Let R be the rectangle [a,b] X [c,d]. Let f : R — R be a continuous

function. Then
/f:zydA //fxydyc&—//fxydxdy

Example 2.12. Evaluate [[,(1 — 62°y)dA, where R = [0,2] 1,1].

//R(l — 62’y)dA = /_11 /02(1 — 627y)dzdy = /_11(2 ~ 16y)dy = 4.

Also, reversing the order of integration, we have

2 1 2
// (1 — 62%y)dA = / / (1 — 62%y)dydr = / 2dx = 4.
R 0o J-1 0

Example 2.13. Evaluate [, ysin(xy)dA, where R = [1,2] x [0, 7].

[Jpysin(zy)dA = [ f12 ysin(xy) dedy = [ (— cos 2y + cosy)dy = 0.

The volume of the solid above R and below the surface z = ysin(xy) is the same as the volume
below R and above the surface. Therefore, the net volume is zero.
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Example 2.14. Find the volume of the solid bounded by the elliptic paraboloid 22 + 2y% + z = 16,
planes x = 2 and y = 2, and the three coordinate planes.

Let R be the rectangle [0,2] x [0,2]. The solid is above R and below the surface defined by
z = f(x,y) = 16 — 2% — 2y*, where f is defined on R.

2 2
= // (16 — 2° — 2y*)dA = / / (16 — 2 — 2y*)dxdy = 48.
R 0 0

The double integrals can be extended to functions defined on non-rectangular regions. Essentially,
the approach is the same as earlier. We partition the region into smaller rectangles, form the
Riemann sum, take its limit as the norm of the partition goes to zero.

Aye| © o=, ¥ l

The double integral of f over such a bounded region R can also be evaluated using iterated inte-
grals. Look at R bounded by two continuous functions ¢;(x) and go(z); or, as a region bounded
by two continuous functions % (y) and ho(y).

¥ =g.(x)
. v

? 3 D ——

.t:}ﬂ[}'l. D x=h,ly)

y=glx)

Theorem 2.3. Let f(x,y) be a continuous real valued function on a region R.

1. If Ris givenbya < x < b, g1(z) <y < go(x), where g1, 9> : [a,b] — R are continuous,

then b o)
J[ remia= | /W) F (@, y)dyds.

2. If Ris given by ¢ <y < d, hi(y) < x < hy(y), where hy, hy : [c,d] — R are continuous,

then
//f:cydA // f(z,y)dzdy.
h1(y)
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Example 2.15. Find the volume of the prism whose base is the triangle in the zy-plane bounded
by the lines y = 0, = 1 and y = z, and whose top lies in the plane 2 = 3 — 2z — y.

(0.0, 3)

‘| ¥y =
| (1,1, 1)
r"“r. \.
s e [} : x=1
(1,0, 0) 7 (1, 1,0 & -
= /
P A e
R — =1
x ? o +
\ 0 1

1 x 1
V=/ / (3—w—y)dydx=/ (32 — 32%/2)dr = 1.
0 0 0
Also,
1 1 1
v:/ /(3—$—y)dxdy=/(5/2—4y+3y2/2)dy:1.
0 Jy 0

Suppose R is the region bounded by the line x + y = 1 and the portion of the circle 22 + 3% = 1
in the first quadrant. Sketch it and then find the limits:

Leaves at
L | L/ p=N1 = =
x i Enters at
y=1-x
L
x X
0 1] X 1
Write the appropriate integrals.
F Leaves at
/ y=V1-x*
: R Largesty ¥ .
= Enters at isy=1 Enters at
S y=1—x ~1 x=1-y
o
R !
L
y z
- =~
) = 1 x Smallest y > me:.']l i
/ / sy =0 e
Smallest x Largest x % o 1 x
isx=10 1sx =1

//Rf(x,y)dA = /01 /1:/:_7f(:r,y)dydx = /01 /11@ f(z,y)dzdy.
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For evaluating a double integral as an iterated integral, choose some order: first x, next y. If it does
not work, or if it is complicated, you may have to choose the reverse order.

Example 2.16. Evaluate [/ R Si‘;’”dA, where I? is the triangle in the xy-plane bounded by the lines
y=0,r=1andy = x.

Here, the triangular region R can be expressed as {(z,y) : 0 <y < 1,y < x < 1}. So,

. 1 1 .
// smmdA:/ / Smxd:cdy.
R T 0o Jy T

We are stuck. No way to proceed further. On the other hand, we express the same R in a different
way: {(z,y): 0 <y <x,0<x <1} Then

. 1 px 1 1 z !
// smwdA:/ / Smxdydx:/ (Smx/ dy)d:v:/ sinzdx = —cos(1) + 1.
R T 0 0 T 0 T 0 0

Example 2.17. Evaluate the iterated integral [, [ sin(y®)dydz.

Write D: 0<x <1, z <y < 1. We plan to change the order of integration.

y=1

/01 /:sin(yQ)dyd$ = //Dsin(yQ)dA
_ /O 1 /jsin(gf}dmdy

- /O ysin(y®)dy = %(1 — cos(1).

Properties of double integrals with respect to addition, multiplication etc. are as follows.
Theorem 2.4. Let f(x,y) and g(x,y) be continuous on a domain D. Let ¢ be a constant.
1. (Constant Multiple): [[, cf(x,y)dA =c [[, f(z,y)dA.
2. (Sum-Difference): [[,[f(z,y) £ g(z,y)]dA = [[, f(z,y)dA £ [[, g(z,y)dA.

3. (Additivity): [, . f(z,y)dA = [[, f(x,y)dA+ [[, f(z,y)dA,
provided f(x,vy) is continuous on a domain R also, and D and R are non-overlapping.

4. (Domination): If f(x,y) < g(x,y) in D, then [[, f(x,y)dA < [[, g(z,y)dA.
5. (Area): [[,1dA = A(D) = Area of D.
6. (Boundedness): If m < f(z,y) < M in D, then mA(D) < [[, f(z,y)dA < MA(D).
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2.3 Riemann Sum in Polar coordinates
Suppose R is one of the following regions in the plane:

=1 xyi=4

o] Tu. . ¥
¥+y =1 !

@ R={r.0)|0=r=10=0#=27} (b)R={(r.8)|1=r=2,0=68= 7}

It is easy to describe such regions in polar coordinates. Using polar coordinates, we define a polar
rectangle as a region given in the form:

R={(r0):a<r<b a<0<p-a<2r}

We can divide a polar rectangle into polar subrectangles as in the following:

F?:UI.
\ =8,
J =h R; .
=8 2k
R
Af
/ (o p
/ 1757 P
fr=e 6= Wt '
/ W y e r=
B _~- W e
e b=~
a [0}

Rij={(r,0) :riia <7 <y, 00 <0 <0;}.

Suppose f is a real valued function defined on a polar rectangle R. Let P be a partition of R into
smaller polar rectangles R;;. The area of R;; is

1
A(R;j) = 5(732 —174)(0; — 0,-1).

Take a uniform grid dividing r into m equal parts and ¢ into n equal parts. Write r; — ;1 = Ar
and 6; — 6,_; = Af. Also write the mid-point of 7,_; and r; as r} = %(n + r;_1), similarly,

0; = %(ej—l + 0;). Then the Riemann sum for f(z, y) in Cartesian coordinates can be written as
S=3"3" £, ARy = S0 £, 0 A,
i=1 j=1 i=1 j=1

Therefore, if f(r,#) is continuous on the polar rectangle R, then

//Rf(r,e)dA://Rf(r,G)rdrdG

If f(z,y) is continuous on the polar rectangle R, then converting this into polar form, we have

//Rf(x,y)dA:/f/abf(rcose,rsinﬁ)rdrde_
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The double integral in polar form can be generalized to functions defined on regions other than
polar rectangles. Let f be a continuous function defined over a region bounded by the rays

0 = «, 8 = [ and the continuous curves r = g;(#), r = go(6).

Then

//Rf(r,e)dA:Lﬁ/gj::j)f(r,e)rdrde.

Caution: Do not forget the 7 on the right hand side.

Example 2.18. Find the limits of integration for integrating f(r,6) over the region R that lies
inside the cardioid r = 1 + cos 6 and outside the circle 22 + y? = 1.

Better write the circle as » = 1. Now, R is the region:

T
T .
2 r=1+cosd

//Rf(r,e)dA:/:/; /11+Cosgf(r,0)rdrd0.

Example 2.19. Evaluate [ = fol I L (2 + y*)dydz.

The limits of integration say that the region is the quarter of the unit disk in the first quadrant:

¥

0 I 1
The region in polar coordinatesis R: 0<r <1, 0<6 <7/2.
Changing to polar coordinates, we have x = r cos 6, y = rsin # and then

1 pr/2 7r/21
1_/ / r2rdrd8—/ Sae =1,
0 0 0 4 8
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Example 2.20. Evaluate [ = [ jl IR =22 o+ gy di.
The region is the upper semi-unit-disk, whose polar description is

R={(r0):0<r<1,0<6<m}.

g
L

1
-1 0

1

Then I = [[, e t¥° 4 A. Using integration in polar form,

L Trl .l Te—1
I:/ / e”rdrd@z/ [—e"} d@z/ c dezz(e—l).
0 Jo 0o L2 0 0 2

2

Example 2.21. Evaluate [/’ (37 + 44%)d A, where R is the region in the upper half plane bounded
by the circles 22 + y* = 1 and 22 + ¢* = 4.

X+yi=4

i

of T,
rtyi=1

R={(r,0):1<r <2 0<60<n}. Therefore,

T 2
// (37 + 4y*)dA = / / (3r cos  + 4r? sin® 0)r dr df
R 0o Ji

"I 4 2.]° " . 9 157
= [7" cos ) + r” sin 9] dd = | (7Tcosf+ 15sin 9)d9:7.
0 1 0

Example 2.22. Find the area enclosed by one of the four leaves of the curve r = cos(26).

The region is R = {(r,0) : —n/4 <0 < 7w /4, 0 < r < cos(20)}.

Then the required area is

w/4 cos(20) w/4 2 i /4 .
//dA:/ / rdrd@z/ cos*(20) 1d¢9:/ cos(40) 1d0:
R —7/4J0 2

T
—7/4 —7/4 4 8 .
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Example 2.23. Find the volume of the solid that lies under the paraboloid z = 22 + 12, above the
xy-plane, and inside the cylinder 22 + 3 = 2x.

The solid lies above the disk D whose boundary has equation 22 +y? = 2z, or in polar coordinates,
r? = 2rcosf, orr = 2cos¥b.

(x=1+y =1
(or r=2cosf)

i
I

i THTTT

o]
I
HI T T L

N R AR RN

The disk D = {(r,0) : —7/2 <60 <7/2, 0 <r < 2cosb}.

Then the required volume V' is given by

w/2  r2cosf w/2 w/2 3
V= // (?+y?)dA = / r2rdrdf = / 4cost O dh = / (3+cos 40+4 cos 20) df = —.
D —n/2J0 —7/2 —/2 2

2.4 Triple Integral

Let f(x,y, z) be a real valued function defined on a bounded region D in R®. As earlier we divide
the region into smaller cubes enclosed by planes parallel to the coordinate planes. The set of these
smaller cubes is called a partition P. The norm of the partition is the maximum volume enclosed
by any smaller cube. Then form the Riemann sum S and take its limit as the cubes become smaller
and smaller. If the limit exists, we say that the limit is the triple integral of the function over the
domain D.

[ s =av = tim 3Gt 0= i) = )= ),

where (z7, 7, 2;) is a point in the (4, j, k)-th cube in the partition.

As earlier, Fubuni’s theorem says that for continuous functions, if the region D can be written as
D={(z,y,2):a <2 <b, gi(x) <y < go(x), hi(z,y) <2 < ho(z,y)},

then the triple integral can be written as an iterated integral:

b 92(1‘) h2(27y)
/ / / F(a,y, 2)dV = / / / F(2sy, 2)d= dy de.
D a Jgi(z) Jhi(z,y)

To find the limits of integration, we first sketch the region D along with its shadow on the zy-plane.
Next, we find the z-limits, then y-limits and then z-limits.
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Observe that the volume of D is [ L 1dv.

All properties for double integrals hold analogously for triple integrals.

Example 2.24. Find the volume of the solid enclosed by the surfaces z = x? + 3y* and

2 =8—2% -2

Leaves at
I=8— 1'2—_\'3

2 2
I=8—x"—y°

7

The curve ol mtersection

v=-V(4 - 52 —

(2,0,0)

X

¥
/
D
.\{—2, 0, 4)
z= x4 3y?
(2,0,4) TR
Enters at
1=x" 4 ]_\': ——
Enters at & (-2, 0, 0)

L ¥

Eliminating z from the two equations, we get the projection of the solid on the zy-plane, which is
x? + 2y* = 4. This gives the limits of integration for y as F1/(4 — 22) /2. Clearly, —2 < z < 2.

Leaves at
v=Vid—x7)n
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Therefore,

2 pa/(4—22)/2  p8—z?—y?
Vz///dV:// / dz dy dx
D 2 Jaa Jareay?

2 py/(4—22)/2
[y Ay
2

8 — 227 — 4y*) dy dx

£/ (4—x2)/2
4 =/ (4=2?)/2
= / [(8—2x2)y——y3r dx
9 37 ly=—1/(4—22)/2
2 4 — 12\ 3/2 4 — 2\ 3/2
- [ 5050
9 2 3 2
44/2

= %_ /22(4 — x2)3/2 dr = 87V/2.

Notice that changing the order of integration involves expressing the domain by choosing different
order of the limits of values in the axes.

Example 2.25. Write the integral of f(x,y, z) over a tetrahedron with vertices at (0,0, 0), (1, 1,0),
(0,1,0), and (0, 1, 1) as an iterated integral.

First, sketch the region D to see the limits geometrically. The right hand side bounding surface of
D lies in the plane y = 1. The left hand side bounding surface lies in the plane y = z + x. The
projection of D on the zz-plane is R. The upper boundary of R is the line z = 1 — x. The lower
boundary of R is the line z = 0.

To find the y-limits for D, we consider a typical point (z, z) in R and a line through this point
parallel to y-axis. It enters D at y = x + z and leaves at y = 1.

To find the z-limits for D, we find that the line L through (z, z) parallel to z-axis enters R at z = 0
and leaves Rat 2 =1 — .

- (0, 1,1)

y=1

(0, 1,0)
- Beidebhd 0

N M
{x, )" ..l'll

\\
/ x / Leaves at
f b ) =1
{ Enters at P
y=x+4z
/"" (1,1,0)

Finally, as L sweeps across I? the value of = varies fromz = 0 to x = 1.

Therefore, D = {(x,y,2) :0<2<1,0<z<1—-z,x+2z<y <1}

51



Thus the triple integral of a function f(x,y, z) over D is given by

//Df(m,y,z)dV:/Olfol_x/zizf(x,y,z)dydzdw'

If we interchange the orders of y and z, then first we consider limits for z and then of y. In this
case, we project D on the zy-plane. A line parallel to z-axis through (x,y) in the xy-plane enters
D at z = 0 and leaves D through the upper plane z = y — .

For the y-limits, on the xy-plane, where z = 0, the sloped side of D crosses the plane along the
line y = z. A line through (z, y) parallel to y-axis enters the zy-plane at y = x and leaves at y = 1.
The z-limits are as earlier.

Therefore D = {(z,y,2): 0 <2 <1,z <y <1,0<z<y—=zx}.

The same triple integral is rewritten as the following iterated integral:

f(z,y,2)dV = [ y_wf(:)s,y,z)dzdydx.
D o Jz Jo

Example 2.26. Evaluate fol N e1=2) dz dy dz by changing the order of integration.

Here, the domain is D = {(z,y,2) : 0 < 2 < 1,0 <y < 2,0 < z < y}. Sketch the region. Its
projection on the yz-plane is the triangle bounded by the lines y = 0, 2 = 1 and 2z = y. That is, the
projectionis {(y,2) : 0 < 2 < 1,0 < y < z}. Its projection on the xy-plane is the triangle bounded
by the lines z = 0,y = 1 and y = z, which is also expressed as {(z,y) : 0 <y < 1,0 <z < y}.
Its projection on the zz-plane is the triangle bounded by the lines = = 0,2 = 1 and x = 2, that is,
{(zyz):0<zx <1,z <z< 1}

We plan to change the order of integration from dxdydz to dzdydx. All of z, y, z take values from
0, 1], so the x-limits are 0 and 1. Next, x < y says that the y-limits are = and 1. Since y < z, the
z-limits are y and 1.

Therefore, D = {(z,y,2): 0 <z <l,x <y <1l,y<z<1}.

/// (1-2)° dxdydz-/// (1-2)? dz dy dx
/ / e(1-2)° dydx—/ ﬂe(l 2 dx
O 2

1
:—/ St with t = (1 — )3
(1o 6 6

2.5 Triple Integral in Cylindrical coordinates

Cylindrical coordinates express a point P in space as a triple (r, 6, z), where (r,0) is the polar
representation of the projection of P on the xy-plane.
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Pir. 8, z}

If P has Cartesian representation (z, y, z) and cylindrical representation (r, 6, z), then

2

r=rcosl, y=rsinf, z =z r* =2*>+y> tand =y/z.

In cylindrical coordinates,

r = a describes a cylinder with axis as z-axis.
6 = « describes a plane containing the z-axis.
z = b describes a plane perpendicular to z-axis.

The Riemann sum of f(r, 6, z) uses a partition of D into cylindrical wedges:

rArAg
r Ad
: \ __f_
i \".__- | Az
hp A
{___;J-____,,‘{__ﬂr——"f'

The volume element dV' = r dr dfdz. Thus the triple integral is

///D f(r,0,2)dV = ///D f(r,0,2)rdrdfdz.

Its conversion to iterated integrals uses a similar technique of determining the limits of integration.

Example 2.27. Find the limits of integration in cylindrical coordinates for integrating a function
f(r, 0, z) over the region D bounded below by the plane z = 0, laterally by the circular cylinder
22 + (y — 1)? = 1, and above by the paraboloid z = 2% + .

Top

Cartesian: z = x~ + y~
Cylindrical: z = rZ

M D

2
—

7] >

- % —a
R (r.0) =

Cartesian: 2 + (v — )7 =1
x* Polar: r=2sin#
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The projection of D onto the xy-plane gives the disk R enclosed by the circle 2% + (y — 1)? = 1.
It simplifies to 2% + y? = 2y. Its polar form is r? = 2rsin§ or, r = 2sin 6.

A line through a point (r, ) € R enters D at z = 0 and leaves D at z = 2% + y* = r%.

A line in the (r, #)-plane through the origin enters R at r = 0 and leaves R at r = 2sin 6.

As this line sweeps through R it enters R at § = 0 and leaves at § = 7. Hence

///f(r’e’z)dvz/oﬂ /:Sme/oﬂf(r,e, 2)r dz dr df.

Example 2.28. Evaluate [ = / / / (2% + y?) dz dy dx.
x2+y

The z-limits show that the solid is bounded below by the cone z = (/22 + y? and above bythe
plane z = 2. Its projection on the zy-plane is the disk 22 + y? = 4. The limits for y also confirm
this. A sketch of the solid looks as follows:

Since the projection of the solid on the xy-plane is a disk; cylindrical coordinates will be easier.

The projected disk gives the limits as 0 < 6 < 27, 0 < r < 2 whereas /22 +y? =r < 2z < 2.

Thus
21 2 2
I = ///(m2+y2)dV=/ //r%dzdrde
D 0 0 r
27 2 21 24 25 27 1
— / /(rB(z—r)drdez/ (2———)d9:/ Sap =254
o Jo 0 4 5 o b 5

2.6 Triple Integral in Spherical coordinates

Spherical coordinates express a point P in space as a triple (p, ¢, ), where p is the distance of
P from the origin O, ¢ is the angle between z-axis and the line O P, and @ is the angle between
the projected line of O P on the xy-plane and the x-axis. This 6 is the same as the ‘cylindrical’ 6.
Moreover, p > 0, 0 < ¢ < 7,and 0 < 0 < 2. If P(x,y, z) has spherical representation (p, ¢, §),
then

x = psingcosl, y=psingsinf, z = pcosp, r = psing, p = /2% +y> + 22
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& = ¢y, whereas p

and @ vary f
an vary B Pla, dy. Hy)

.
N &
———— p = a, whereas ¢ /
and # vary

# = thy. whereas p
and ¢ vary

In spherical coordinates,

p = a describes a sphere centered at origin.

¢ = ¢y describes a cone with axis as z-axis.

6 = 0, describes the plane containing z-axis and O P.

When computing triple integrals over a region D in spherical coordinates, we partition the region
into n spherical wedges. The size of the kth spherical wedge, which contains a point (py, ¢y, k),
is given by the changes Apy, Ay, Aby in p, ¢, 6.

Such a spherical wedge has one edge a circular arc of length p; Ay, another edge a circular arc of
length pj sin ¢, A6y, and thickness Apy. The volume of such a spherical wedge is approximately
a rectangular box with dimensions pg, pr X A¢y (arc of a circle with radius p; and angle ¢y, and
pr sin ¢ X Afy (arc of a circle with radius py, sin ¢, and angle 6,). Thus

AV, = pp sin o App AdpAby.

r, A= p,sind, Af

The corresponding Riemann sum is S = >, f(pk, ¢x, Ok) 3 sin o A pr Adyp Aby. Accordingly,

///D 1(p,,0)dV = ///D Fp,¢,0)p*sin ¢ dp dg df.

The procedure in computing a triple integral in spherical coordinates is similar to that in cylindrical
coordinates:

Sketch the region D and its projection on the xy-plane. Then find the p limit, ¢ limit and € limit.
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p = g, 8)

H=a

///fp’¢’ Jav = / /‘f’m*:z/:::" ¢,0)p* sin ¢ dp de db.

Example 2.29. Find the volume of the solid D cut from the ball p < 1 by the cone ¢ = 7/3.

Draw a ray M through D from the origin making an angle ¢ with the z-axis. Draw also its
projection L on the xy-plane. The line L. makes an angle 6 with the z-axis. Let R be the projected

»

D | Spherep =1

4

region of D in the xy-plane.

~ ™
—— Cone ¢ = T

y ' \\‘
X I v

M enters D at p = 0 and leaves D at p = 1.
Angle ¢ runs through 0 to 7 /3, since D is bounded by the cone ¢ = 7/3.
L sweeps through R as 6 varies from 0 to 27. Thus

2r  pmw/3 pl
V = /// p281n¢dV:/ / /p2Sin¢dpd¢d0
D o Jo 0
moem/3 o _cospn/3 1 s
= / / gsmgbdqde:/ [ 3 }0 :627r:§.

1= acQ—y 20,2 ,2\3/2
Example 2.30. Evaluate ] = / / / eEHHETE 0 dy d.
V1i—z?

1— $2,y

Notice that I = [, e®*+¥ *+29*2 9V where D is the unit ball.

Writing in spherical coordinates, = [[[, e”’dV. Then converting to iterated integral,

1 T 2T
I:/ // ¢’ % sin ¢ dp des df.
0 0 0



Since the integrand is a product of separate functions of p, of ¢, of 6,

3

[:/Olepsde,o /Oﬂsinqbdgb /02de: [%];[—cosqbK(Qﬂ):%(e—l).

2.7 Change of Variables

The change of coordinate system from Cartesian to Cylindrical or to Spherical are examples of
change of variables. Let us consider what happens when a different type of change of variables
occurs.

Suppose f maps a region D in R? onto a region R in R? in a one-one manner. For convenience,
we say that D is a region in the uv-plane and R is a region in the xy-plane; and f maps (u,v) to
(x,y). Then f can be thought of as a pair of maps: (fi, f2). Thatis, z = fi(u,v) and y = fo(u,v).
We often show this dependence implicitly by writing

r=z(u,v), y=uyu,v).

Example 2.31. What is the image of D = {(u,v) : 0 < u < 1,0 < v < 1} under the the map

2

givenby z = u? — v?, y = 2uv ?

Let us see the boundaries of the square D : 0 < u < 1,0 <v < 1.

The lower boundary is the line segment 0 < u < 1,v = 0. It is transformed to the line segment
x = u?, y = 0 or in the xy-plane it is the line segment 0 < z < 1,y = 0.

The left boundary of D is the line segment u = 0,0 < v < 1. It is transformed to z = —v?,y = 0.
This is the line segment joining (0, 0) to (—1,0) in the zy-plane.

The upper boundary line of D is the line segment 0 < v < 1,v = 1. This is transformed to
r = u? — 1,y = 2u. Eliminating u from these equations, we get the arc of the curve z = % -1
joining the points (—1,0) to (0, 2) in the zy-plane.

The right hand side boundary of D is the line segment v = 1 and v varying from 1 to 0. This is
transformed to z = 1 — v?,y = 2v. Eliminating v from these equations we have the arc of the
curve x = 1 — y4—2 joining the points (0, 2) to (1,0).

The interior of D is mapped onto the interior of the so obtained region IR in the xy-plane whose
boundary are the line segments and the arcs. This transformation is shown is the picture below.
oo

(0, 1) 4ttt (1. 1} A= p 1'_/ o e=le g

It

0 5 ;]_It]| u b |
: i—1.01 0 oy

If (u,v) — (z,y), then how does area of a small rectangle change?
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A typical small rectangle with sides Au and Av has corners at the points
A = (a,b), Ay = (a+ Au,b), A3 = (a,b+ Av), Ay = (a + Au, b+ Av).

Let the images of Ay under (u,v) — (z,y) be By = (ag, by) for k = 1,2, 3,4. Then

(a,b)

(a + Au,b) =~ z(a,b) + z,Au

(a,b+ Av) = x(a,b) + x,Av

(a + Au, b+ Av) = z(a,b) + z,Au + z,Av

T
X
Zz
i

as
Q4
Here, z, = x,(a,b) and =, = z,(a,b). Similar approximations hold for by, by, b3, b,.

Now, Area of the image of the rectangle A;A;A3A, is approximately equal to the area of the
parallelogram B, By B3 B, in xy-plane, which is twice the area of the triangle B, B> B4 and is

[(as — a1)(by — ba) — (a4 — az)(bs — by)| =

det {

] (a,b)AulAv.
Yu Yo

This determinant is called the Jacobian of the map (u, v) — (z,y); and is denoted by J (z(u, v), y(u, v)).
O(z,y)

O(u,v)’

We write this as Area of image of a rectangle with one corner at (a, b) and sides of length Awu and

Av is approximately |.J(x(u,v), y(u, v)|AuAv, where the Jacobian J(-, -) is evaluated at (a, b).

The Jacobian is also written as J(z(u, v), y(u,v)) =

In deriving this approximation, we have assumed that x,,, z,,, y,, ¥, are continuous.

Assume that © = x(u,v) and y = y(u, v) have continuous partial derivatives with respect to u and
v. Assume also that a region D in the uwv-plane is in one-one correspondence with a region I? in
the zy-plane by the map (u,v) — (z,y). Let f(z,y) be a real valued continuous function on the
region R. Then we have the map f (u, v) = f(z(u,v), y(u,v)).

To see how the integrals of f over R and integral of f over D are related, divide D in the uv-plane
into smaller rectangles. Now, the images of the smaller rectangles are related by

Area of R = |J(z(u,v),y(u,v))|Area of D.

By forming the Riemann sum and taking the limit, we obtain:

//Rf(x,y)dA:/Df(u,v)|J(x(ujv)’y(u’v)|dA‘

For example, in the case of polar coordinates, we have
x=2x(r,0) =rcosb,y =y(r,0) = rsind.
Thus, the Jacobian is

J(z(r,0),y(r,0)) = z,yp — xoy, = cos(rcos) — (—rsinh)sinf = r.
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Therefore, the double integral in polar coordinates for a function f(z,y) takes the form
// f(x,y)dA:/ f(rcos@,rsinf) rdA.
R D

For x = z(u,v,w), y = y(u,v,w), z = z(u, v, w), we write the Jacobian as

as we had seen earlier.

d(z,y, 2) Tu Lo T
J(z(u,v,w), y(u,v,w), z(u,v,w)) = m =det vy Yo Yu
T Zu 2o Zw

If R is the region in R3 on which f has been defined and D is the region in the uvw-space so that
the functions z, y, z map D onto R in a one-one manner, then

R R

In the case of cylindrical coordinates, z = r cos, y = rsinf, z = z. The Jacobian is

du dv dw.

Ty To T
J(x(r,0,2),y(r,0,2),z(r,0,2)) = |det |y, vo y.||=r
Zr 29 %

///Rf(w’ 2)dV = ///D f(rcos8,rsing, z)r drdf dz.

For the spherical coordinates, we see that
x = psin¢cosh, y= psingsinb, z = pcos .

The triple integral looks like

// flz,y,2)dV = // f(psingcos B, psin ¢sin b, pcos ¢)p? sin ¢ dp de db.
R D

We had already derived these results independently.

These formulas help us in evaluating double and triple integrals in z, y, z as integrals in u, v, w by
choosing a transformation (u, v, w) — (z,y, z) suitably.

Example 2.32. Evaluate the double integral [ .(y r(y —x)dA, where R is the region bounded by the
linesy —x=1,y—ax=-3, 3y+x=7, 3y+x=15.

Take u = y — x, v =3y + «. Thatis, 2 = {(v — 3u),y = (u+v). Then
D={(u,v): =3<u<1,7<wv<15}
The Jacobian is
J = |zuye — 2oyl = [(=3/4)(1/4) — (1/4)(1/4)] = —1/4.

Therefore,

//R(y—x)dA://DU\JIdA://DuidA:/_13/715;1udvdu:/_13%(15—7)udu:—
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Hy/2 90

4
Example 2.33. Evaluate / /
0 y/2

dx dy by using the transformation

u=x—-y/2, v=y/2.

|

u=10 w=1
G y o T

_‘-';[J
The domains R in the zy-plane and G in the uv-plane are
R={(z,y):0<y<4,y/2<zx<1+y/2}, G={(u,v):0<u<1,0<wv<2}

20—y
2
Notice that x = u + v, y = 2v. Thus, |J| = |x,yy — Toyu| = [(1)(2) — (0)(1)| = 2.

1+y/22 22 2
// T ydxdy—//ududv—/ 0 dv = 2.

Caution: The change of variables formula turns an zy-integral into a uv-integral. But the map that

= Uu.

And f(z,y) =

changes the variables goes from uv-domain onto xy-domain. This map must be one-one on the
interior of the uv-domain. Sometimes it is easier to get such a map from zy-domain to uwv-domain.
Then we will be tackling with the inverse of such an easy map. Here the fact that

the Jacobian of the inverse map is the inverse of the Jacobian of the original map

helps us. This may be expressed as

- (G

~ \9(z,y)

Similarly, triple integrals undergo change of variables by using the inverse of the Jacobian.
Example 2.34. Integrate f(z,y) = zy(z? + y?) over the domain

R: —3§x2—y2§3,1§$y§4.

There is a simple map that goes in the wrong direction: u = x* — y*, v = zy. Then the image of

R, which we denote as D in the uv-plane is the rectangle

D: 3<u<3 1<v<4.
We have F' : D — R defined by F(z,y) = (u,v) = (z* — y?, zy). And its inverse is G = F~ 1
where G: R — D.
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-3 3

d(u,v) o ue w20 —2y| 9 9
oz, y)  |vs vy Cly oz =20 +y7).
Nz, y) 1
Therefore, o, ): 2(x2+y2)'Then
1
//xy:c—l—y )dA = //{:cyx—l—y 2 —|—y)}dA'

Notice that the integral on the right side is in the uv-plane and the bracketed term inside [ - | is a
function of (u, v). Since the bracketed term simplifies to xy/2 which is equal to v/2, we have the
integral as

// //”d”d“_ /4221 du:%[S—(—S)]:‘l;.

2.8 Review Problems

Problem 2.1: Find the area of the region bounded by the curves y = z and y = 2 — 2.

The points of intersection of the curves satisfy y = x and x = 2 — 2. The last equation is same as
(x 4+ 2)(x — 1) = 0. Thus the points of intersection are (—2, —2) and (1, 1). Hence the area is

1 p2-2? 1 3 2.1
‘/ / dydm‘:‘/(2—x2—x)dx‘:‘[21_x__x_]
—2Jx -2 3 2 —2

Since the significant portion of the curve y = 2 — 22 lies above the portion of the line y = x, there
is no need to take the absolute value. The calculation also confirms this.

9

5"

Problem 2.2: Evaluate ] = [, (4 — 2% — y?) dA if D is the region bounded by the straight lines
r=0,z=1 y=0andy = 3/2.

3/2 1 3/2 1 32 11 35
I:/ / (4—x2—y2)dxdy:/ [4:c—m3/3—y2x} dy:/ <——y2> dy = —.
o Jo 0 0 0 3 8

Problem 2.3: Evaluate the double integral of f(x,y) = 1 + = + y over the region bounded by the
lines y = —x, y = 2 and the parabola z = /.

Draw the region. The integral is equal to
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2

2 VY 2 y y
// (1+:U+y)dxdy:/ (\/§+§+\/§y—(—y+5—y2)dy
0 —y 0

2 2
3y Y 2 59 O 51 34 1 2 1
— 27 —d:[—/ PLTE —3}:—13 44+/2).
/0(\/?+2+y\/§+2)y PR At At 3( +44V/2)

Problem 2.4: Change the order of integration in fol fxﬁ [z, y)dydz.

The domain D of integration is bounded by the straight line y = x and the parabola y = \/x. Every
straight line parallel to x-axis cuts the boundary of D in no more than two points, and it remains
in between 3% to y. Also, y lies between 0 and 1. Hence

/01 /xﬁ f(z,y)dydx = /01 /yj f(z,y)dz dy.

Problem 2.5: Evaluate / / e¥/* dA, where D is a triangle bounded by the straight lines y = ,
D
y=0,andz = 1.

In D, the variable x remains in between 0 and 1, and y lies between 0 and x. Hence

1 T 1 e—1
// ey/mdA:/ / ey/xdyd:c:/ z(e—1)dr = :
D o Jo 0 2

Problem 2.6: Find I = [/ "V dA, where D is the annular region bounded by two squares of
sides 2 and 4 each having center at (0, 0).

Draw the picture. D is not a simply connected domain. Divide D into four simply connected
domains by drawing lines x = —1 and x = 1. Let D, be the rectangle to the left of the inner square;
D, be the square on top of the inner square; D3 be the square below the inner square; and D, be
the rectangle to the right of the inner square; so that D is the disjoint union of Dy, Dy, D3, Djy.

Then
z:// e””+ydA+// ew+ydA+// ex+ydA+// T A,
Dy Do D3 Dy

Converting each integral to an iterated integral, we have

12 1 2
I= / / e Vdydx + / / " dydx
2 Joo a1
1 1 2 2
+// e“ydydx—l—/ / EVdydr = et — e —e 24 e
1/ 1 Jo2

Problem 2.7: Evaluate 22 + y?)"2 dA, where D is the shaded region in the figure below:
D




The integrand in polar coordinates is f(r,6) = r~—*. The region D is given by
0<60<m7/4,secd <r <2cosf. Thus

) oo w/4 p2cosf i 1 w/4 ) ) T
(x*+y*) “dA = rordrdd == (4cos”® 0 —sec”0) df = —.
D 0 sec 6 8 0 16

Problem 2.8: Calculate the volume of the solid bounded by the planes + = 0, y = 0, z = 0, and
r+y+z=1

The volume V = [ p(1—2—y)dA, where D is the base of the solid on the xy-plane. We see that
D is the triangular region bounded by the straight lines z = 0, y = 0, x +y = 1. Thus,

1 1—x 11 1
V:/ / (1—x—y)dydx:/ —(1 —z)%dr = =.
o Jo 0 2 6

Problem 2.9: Compute the volume V of the solid bounded by the spherical surface 22 + > + 22 =
4a* and the cylinder z? + y? = 2ay, where a > 0.

The domain of integration is the base of the cylinder. This is the circle 22 + y? — 2ay = 0, whose
centre is (0, a) and radius a. We calculate V/4, the volume of the portion of the solid in the first
octant. Now, the domain of integration D is the semicircular disk whose boundaries are given by

r=0g1(y) =0, v = g2(y) = V2ay — 3%, y =0, y = 2a.
The integrand is z = f(x,y) = \/4a? — 22 — y2. Then

174 2a  py/2ay—y?
Z:/ / Vaa? — 2?2 —y?dx dy.
o Jo

To evaluate this, use polar coordinates: x = r cosf, y = rsin 6. For the limits of integration, use
2?2 +y? =12 y=rsinf to get:

224+ y* —2ay =0 = 1% — 2arsinf = 0 = r = 2asiné.
That is, in polar coordinates, the boundaries of D are given by
r=g1(0) =0, r = ga(0) =2asinh, 0 <0 < 7/2.

The integrand is f(r,0) = v/4a®> — r?. Hence,

w/2 pr2asinf
V = 4/ vVda? —r?rdrdf
0 0

—4 [T 16
= 3 [(4a® — 4a® sin® 0)3/% — (4a2)3/2} df = §a3(37r —4).
0

Problem 2.10: Integrate f(x,y, z) = z+/x% + y? over the solid cylinder z?+y? < 4for1 < » < 5.
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The domain of integration D in cylindrical coordinates is given by 0 < 6 < 27, 0 < r <
1 < z < 5. The integrand is zr. Thus

2r 2 5
/// z\/a:Q—i-deV—/ / / (zr)rdzdrdf = 64r.
D o Jo J1

Problem 2.11: Integrate f(z,y, z) = z over the part of the solid cylinder 22 +y? < 4 for 0 < z <

x

Y.

B
- z=y
y 4
e | y J
/ B w
4 |
L i \.\_\.\_
x
"'“‘“xm,_?\(: e e '
s _— T ¥

The domain W has the projection D on the xy-plane as the semicircle depicted in the figure. The
z-coordinate varies from O to y and y = rsinf. Thus Wis givenby 0 < 0 < 7, 0 < r < 2

0 < z < rsiné. In cylindrical coordinates,

T 2 rsin @ T 2
/// de:/ / / zrd&drdz:/ / 1(7“sir10)27%1l96h':7r.
w o Jo Jo o Jo 2

Problem 2.12: Compute [ [, zdV, where D is the solid lying above the cone z* + y* = 2? and

below the unit sphere.
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R

The upper branch of the cone, which is relevant to D, has the equation ¢ = /4 in spherical
coordinates. The sphere has the equation p = 1. Thus D is given by

D: 0<60<2m,0<¢<m/4,0<p<1.

Since z = pcos ¢, the required integral is

[ = [T [ wesontsnoapasar

w/4 w/4 T
= 27r/ / p?cospsinpdpdp = — / cosgbsinqbdgﬁ:g
0

Problem 2.13: Evaluate [ = [~ e dz.
a 2 2 a 2 a 2
= lim (/ e dr) = lim [(/ = d:U)(/ e dy)|
a—o0 —_a a—00
_ lim[// ydxdy—hm// —*1® 14
a—o0 Y S a—00

where R is the square [—a, a| X [—a, a] for a > 0.

Let D = B(0,a)and S = B(0, /2 a), the balls centred at 0 and with radii a and v/2 a, respectively.
Then D C R C S. Since e=**~%* > 0 for all (z,y) € R?, we have

/ / eV A < / / eV A < / / e ™V dA.
D R s
y o 2 a ) 1 2m 2 2
[[ewrane [ [ v [ o
D 0 0 2 0

Similarly, // eV dA = (1l — 6_2“2). We see that
S

lim // eV JA = m, lim // eV JA = 7.
a—00 D a— 00 S

Therefore, by sandwich theorem, we have

—hm// m*ydA—7T:>I—\/_

Now,

a—00
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.I'Q yQ 22
Problem 2.14: Compute the volume of the elhpsmd -+ + — =1

b2
2 2

Projection of this solid on the xy-plane is the elhpse x_ + = i = 1. Therefore, the required volume

is

by/1-2  peyf1-25 - a pby/1-23 22 g2
/ / dz dydx = 2c / l—— — S dydz.
by/1-25 ey 1-5 o b 1-22 a? b

Substitute y = b(1 — 22 /a?)'/?sint. Then dy = b(1 — 22 /a?) cost dt and
—7/2 <t < /2. Therefore,

2 2
V = / / 1—— —(l—m—)sin%rmb(l—x—)costdtdw
—a J—m/2

a2
ber

= — (a — ) dr =

—a

© —ax _ ,—bx
Problem 2.15: Evaluate / £ _-° dx fora > 0,b> 0.
0 x

© ,—ax __ ,—bx oo b
/ £ T a4 = / / e Ydydx
0 x 0 a
b 0o b 1
= / / e_yxdxdy:/ —dy:lné.
a 0 a Y a

Notice the change in order of integration above.
9 3
Problem 2.16: Evaluate / / xe! dx dy.

The domain of integration is givenby 1 <y <9, /y <z < 3.

3 yooi
y=x"(orx=vy)

x

The same is expressed as 1 < x < 3, 1 < y < 2. Changing the order of integration, we have

9 r3 3 pa? 3 ) 1
/ / xe drdy = / / zve! dvdy = / (ze” —ex)dr = = (e — 9e).
1 1)1 1 2

Problem 2.17: Show that

< 7, where D is the unit disc.

/| o
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0, 2)

Closest point-—____|

{d=1) _%_\
.
D [{x.» 1'.

X
| ]

\ 4

-
Farthest point——
'f:.f =3

The quantity f(x,y) = /22 + (y — 2)? is the distance of any point (x, y) from (0, 2).
For (z,y) € D, maximum of f(z,y) is thus 3 and minimum is 1. Therefore,

1 1
5 = <1
37 Va4 (y—2)?

Integrating over D, we have

//DédAS//DmdAg//DMA.

Since [ [, dA = area of D, we obtain

w3

Problem 2.18: Evaluate [/, zdV, where W is the solid bounded by the planes z = 0, y = 0,
r+y=1,2z=2x4y,and z = 3x + by in the first octant.

W lies over the triangle D in the xy-plane defined by 0 <z <1, 0 <y <1 — x. Hence

z z=3x+5y

1 1—x 3x+5y
///de = / / / zdz dydx
D o Jo a+y

1 pl-a 1 923
= / / (42® + lday + 12¢°) dy dox = / (4 — bz + 22° — %) dx
o Jo 0

Fun Problem: The n-dimensional cube with side a has volume «”. What is the volume of an
n-dimensional ball?
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Denote by V,,(r) the volume of the n-dimensional ball with radius r. Also, write A,, = V,,(1). For
n = 1, we have the interval [—1, 1], whose volume we take as its length, that is, A; = 2, V; = 2.
For n = 2, we have the unit disk, whose volume is its area; that is, A, = 7, V5 = 7r?. Forn = 3,
we know that Az = 47 /3 and V3(r) = 4mr3/3.

Exercise 1: Show by induction that V,,(r) = A, r".

Suppose V,,_1(r) = A,_1r"~!. The slice of the n-dimensional ball 2% + - - - 22 | + 22 = r™ at the
height x,, = ¢, has the equation
:z:f+~~:cn,1—|—c =r-.

This slice has the radius v/r2 — 2. Thus

Va(r) = / Vo112 — a2 dxy, = Ay / (/12 — 22)" ' d,.
Substitute z,, = rsinf. So, dx,, = rcosf and —7/2 < 6 < 7w /2. Then
/2

Vn(r) = An—lrn/ cos”" 0df = An—lCnrn’

—7/2

where C,, = f:/r ?2 cos™ 0 df. This says that A, = A,_,C,.
Exercise 2: Prove that C5 = 4/5,Cy = 37/8 and C), = “1C,,_,.

m 2m+1 m
Exercise 3: Prove that A,,,, = % and Ay, 1 = T3 (27;n 1)
This sequence of numbers have a curious property: A,, increases up to n = 5 and then it decreases
to 0 asn — oo.
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Chapter 3

Vector Integrals

3.1 Line Integral

Line integrals are single integrals which are obtained by integrating a function over a curve instead
of integrating over an interval.

ki P

Let f(x,y, z) be a real valued function with domain D. Let C be a curve that lies in D given in
parametric form as
Tt =zt)i+yt)j+ 2k a<t<b

The values of f on the curve C are given by the composite function f(x(t),y(t), z(t)). We want
to integrate this composite function on the curve C'.

Partition C' into n sub-arcs. Choose a point (xy, yx, z;) on the kth subarc. Suppose the kth subarc
has length Asj. Form the Riemann sum

Sy = Z f(ﬂflm Yk, Zk)ASk-

k=1

When n approaches oo, the length s, approaches 0. In such a case, if lim,,_,, S,, exists, then this
limit is called the line integral of f over the curve C.

/f(x,y,z)ds = lim S,.
C n—oo

In practice, the line integral is computed by parameterizing the curve C.
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Theorem 3.1. Let C : x(t)i + y(t) ] + z(t) k be a parametrization of the curve C lying in a
domain D C R®. If f : D — R is continuous and the component functions z(t),y(t), z(t) are
differentiable, then the line integral of f over C' exists and is given by

b dx 2 dy 2 dz 2
| s [ a0 0 ()7 + () (B

We also write ds = |77/(t)|dt = \/(C;_f,f)2 (e (G an

Example 3.1. Integrate f(x,y,2) = x — 3y* + 2 over the line segment from (0,0,0) to (1,1,1).

Parametrize the curve C': 7 (t) = ti+t] +tl%, 0<t<l1.

Then z(t) = y(t) = z(t) = t. So, |7/(t)| = V12 + 12 + 12 = V/3.

(1,1, 1)

I
i
I
I
I
I
e )
X |
A
L
N
%
LY
\

(1, 1,0

1

/Cfds = /01 [2(t) — 3y°(t) + 2(t) ] V3dt = /Ol[t —3t2 4+ t]V3dt = V3 [t2 — tﬂ = 0.

0

Example 3.2. Evaluate / (2 4+ 2*y)ds, where C'is the upper half of the unit circle in the xy-plane.
c

Here, f = f(z,y) is a function of two variables.
Parametrize the curve. C': z(t) = cost, y(t) =sint, 0 <t <. Then

/C(Q + 2%y)ds = /(:(2 +cos? t sint)/(x'(t))2 + (y/(t))2dt = 27 + g

If C' is a piecewise smooth curve, i.e., it is a join of finite number of smooth curves, written as
C=C,U---UC(C,, then we define

/ f(I,y,Z)dSZ f(%y, Z)d3++ f(fE,y,Z)dS.
C C1 Cm

Example 3.3. Let C be the curve consisting of line segments joining (0,0,0) to (1,1,0) and
(1,1,0) to (1,1,1). Evaluate / (z — 3y® + 2)ds.
c

C is the join of C'; and (5, whose parametrization are given by

~

Cr: P()=ti+t],0<t<1; Co:T{t)=i+ J+tk, 0<t<1.
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pi(l, 1, 1)

(0,0,0) Y

Then On Cy, |7'(t)] = /2 andon Cj, |7/(t)| = 1. Now,

/(:c—3y2+z)ds = /(:U—By +zd5—|—/ (z — 3y* + 2)ds
C C1

Ca

::,/ f(t,t,0)v/2dt + 1f(1,1,t)1dt

= /(L%W+0M6ﬁ+/%1—3+ﬂﬁ::ﬁ%lz

Example 3.4. Evaluate / 2zds, where C'is the arc of the parabola y = z* from (0,0) to (1, 1)
c
followed by the line segment joining (1,1) to (1, 2).

¥

1,2)
c|

(0,0) X

Parametrize: C' = C U Cy, where
Ci:z=x,y=2a° 0<z<l1; Co:x=1Ly=y, 1<y<2.
Choosing x = t for C'; and y = t for C5, we have
Ci:x=t,y=t>, 0<t<1l, Cy:z=1y=t 1<t<2.

On Cy, dx=1dt, dy =2tdt, ds = +/1+ 4t>dt. Similarly, on Cy, ds = dt. Then

1 2
/ 2xds = / 2xds +/ 2xds = / 20V 1 4+ 42 dt +/ 2(1)dt
C C1 Co 0 1

5v5 — 1

(1 +4t2)3/2 1 B
0 N 6

2.
G +

Example 3.5. Evaluate [ ysin zds, where C'is the circular helix given by

S~

z(t) = cost, y(t) =sint, z(t) =t, 0 <t < 2.
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2w
/ ysin zds = / sint tv/sin?t + cos? t + 1dt = /2.
c 0

If the curve C' happens to be a line segment on the x-axis, then ds = dx. In that case, the line
integral over the curve becomes

/ f(z,y,z)dx = h_)rn Zf(xkaykazk)Axh
C n ook:1

As earlier, if f(x,y, z) has continuous partial derivatives and 7°(¢) is smooth, and C' has parametriza-
tionasz = x(t), y = y(t), z = 2(t), a <t <b,then

b
/f(:v,y,Z)dxzf Flz(t),y(t), ()2 (t)dt.
C a

Similarly, if the curve C'is a segment on the y or z-axis, then the line integrals are, respectively

b b

[ reaiy = [ 1o, 00 0 [ fepd= [ a0 0
C a C a

These line integrals are called as the line integrals of f over C with respect to z, y, z respectively.

Example 3.6. Evaluate [ ydx + zdy + xdz, where C'is the curve joining the line segments from
c
(2,0,0) to (3,4,5) to (3,4,0).

Parameterize: C' = C; U (5, where

Ci:x=2+4t,y=4t, z=5t, 0<t<1; Cy:x=3,y=4, z2=5-5t, 0<t<1.

(2,0.0)

Then / ydr + zdy + xdz = / ydxr + zdy + xdz + / ydr + xdz + zdx
C 4 Co

1 1
:/ (48)dt + (5t)Adt + (2 + £)5dt + / 3(—5)dt = 49/2 — 15 = 9.5,
0 0
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3.2 Line Integral of Vector Fields

We want to generalize line integrals to vector fields.

A vector field is a function defined on a domain D in the plane or space that assigns a vector to
each point in D. If D is a domain in space, a vector field on D may be written as

F(z,y,2) = M(z,y,2)i + N(z,y,2) j + P(z,y,2) k.

v

Vectors in a gravitational field point toward the center of mass that gives the source of the field.
The velocity vectors on a projectile’s motion make a vector field along the trajectory.

Let f(z,y, z) be a function from a domain in R? to R. If f,,y,, f. exist, then the gradient field of
f(z,y, 2) is the field of gradient vectors

grad f = Vf— 9f; +Z—£j+a—fk‘

The gradient field of the surface f(x,y, z) = ¢ may be drawn as follows:

At each point on the surface, we have a vector, the gradient vector, which is normal to
the surface. And we draw it there itself to show it.

-
£y

flr.y.z)=r¢ \
For example, the gradient field of f(x,y, 2) = zyz is
grad f =yzi + 21 —I—xyl;:.

Notice that f(x,y,2) has a continuous gradient iff f,, f,, f. are continuous on the domain of
definition of f.

A vector field F is called conservative if there exists a scalar function f such that F= grad f.
In such a case, the scalar function f is called the potential of the vector field F'.

mMG

—
For example, consider the gravitational force field F' = —W?. It is also written in the form:
r

mMG
(22 + 32 + 22)3/2

F(z,y.2) = - [wi+yj+ 2kl
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N
Here, F' is a conservative field. Reason?

mMG
Define f(z,y,2) = CETrTSrE Then
gradf——fi%—gjﬂL%k—l?
oy 0z

Physically, the law of conservation of energy holds in every conservative field.

Let F(m, y, z) be a continuous vector filed defined over a curve C' given by
T(t)=a(t)i+y(t) ]+ 2(t) k for a <t <b.

The line integral of F along (', also called the work done by moving a particle on C' under the
force field I is
[ Fear = [ By 7= [ FoTas
c c c

is the unit tangent vector at a point on C'.

where ?(t) =

Example 3.7. Evaluate the line integral of the vector field F (2,y,2) = 22 i — 1y along the first
quarter unit circle in the first quadrant.

0 P x

The curve C'is given by 7(t) = costi +sint j, 0 <t < 7/2. Then
F(?(t)) =cos’ti—costsintj, d7 = —sinti+ costj.

The work done is

y

> /2 _, )
F-d?z/ F(7)-7'dt =
c 0 ER

Let the vector filed be ]_5(:1: y,2) = M(z,y,2) i+ N(z,y,2) ] + P(z,y,2) k.
Let C be the curve given by 7 () = z(t)7 4+ y(t) j + 2(t) k fora < t < b. Then

/Cf-d? _ /F(?(t))?’(t)dt
::/UWﬂmmmdmf@+Ny®+Pﬂmﬁ

b
= / Mdx + Ndy + Pdz.
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Example 3.8. Evaluate | o F. d7, where F= Tyi+yz g+ 2z k and C is the twisted cube given
byr=t y=1t> z=1, 0<t<1.

™~ l\
1.57 ‘\\FII‘\]:I
.\I.
\-\:1 1,1

0.5t F(r(3/4)) \\K
F(ri1/2)) ™

03
[}

i

z 11

1N, -
23 1

Mdz = [ +#21dt = 1/4, Ndy = 2132t dt = 2/7, and
C 0 C
Jo Pdz =t*t3t*dt = 3/7. So,
/ﬁd?:1/4+2/7+3/7:27/28.
C

Also, )
1
/ F-d7 = / [zyx’ + yzy' + za2'|dt = / [t? + 265 + 3t%)dt = 27/28.
c 0 0

3.3 Conservative Fields

Recall: ff f'(t)dt = f(b) — f(a) for a function f(t). In case of line integrals, the gradient acts as
a sort of derivative.

Theorem 3.2. Let C be a smooth curve given by 7(t) = z(t)i + y(t) ] + () k fora < t < b.
Suppose C joins points (x1, Y1, z1) to (T2, Ys, 22). That is,

7(a) :x1%+y15+zll;: and 7 (b) :x2i+y2§+2’2f€.
Let f(x,y, z) be a function whose gradient vector is continuous on a domain containing C. Then
[ 95d7 = FEO) = 17 @) = Sonnz) = o 2)

Proof:

[vrar = [wiem-roa
c a
brofde  Ofdy Ofdz
= [ 55t oyt ")
b
= [ LaEea = SEO) = 170) - 7@ -

N
Theorem 3.2 is sometimes called as the Fundamental theorem for line integrals. It says that if F'
is a conservative vector field with potential f, then the line integral over any smooth curve joining
points A to B can be evaluated from the potential by:

Cﬁd?: F(B) — f(A).
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In such a case, the line integral is independent of path of C; it only depends on the initial point and
the end point of C.

We say that a hne integral | o F-d7is independent of path iff for any curve C” that is lying in
the domain of F and having the same initial and end points as that of C', we have

/F’-d?:/ F.-d7.
C !

Thus, if Fis conservative, then the line integral | o F-d7is path independent. Then the following
result is obvious:

Theorem 3.3. Let F be a continuous vector field defined on a domain D. Let C' be any smooth
curve lying in D. The line integral fC F - d7 is path independent iﬁ‘fc, F -d7 = 0 for every
closed curve C' lying in D.

Remark: A closed curve is a curve having the same initial and end points. “Smooth curve” may

be replaced by “Piecewise smooth curve” everywhere. When C' is a closed curve, the line integral
. . - —_—>

over C'is written as 3% F-dr.

Theorem 3.4. Let F be a continuous vector field defined on an open connected region D. If
i) o F- d7 is path independent for each smooth curve C lying in D, then F is conservative.

Hints for the Proof: Suppose D is in the plane. Fix any point (a,b) in D. Let C be a curve from
(a,b) to (x,y). Define
N (zy) _,
flx,y) = F-d?’:/ F-d7,
c (a,b)

due to path independence. Next show that F= grad f. 0J
If F(m y) = M(z,y)i + N(z,y) ] is conservative, then we have a scalar function f(z,y) such
that foe =M, fy N. Then using Clairaut’s theorem, we have f,, = M, = f,, = N,. That s, if
F=Mi + N j is conservative, then M, = N,. Similar result holds in three dimensions.

Theorem 3.5. Let F(a:, y,2) = M(z,y,2)1+ N(z,y,2) j + P(x,y, 2) k, where the gradients of
the component functions M, N, P are continuous on a domain D. If F' is conservative, then we
have M, = N, N, = P,, P, = M, on D.

The converse of Theorem 3.5 holds if the domain of F is a simply connected domain.

A simple curve is a curve which does not intersect itself. A connected region D is said to be a
simply connected region iff every simple closed curve lying in D encloses only points from D.

simply-connected region
ke W O /)
| @

\ =i W l\

simple, not simple,
closed closed regions that are not simply-connected
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Theorem 3.6. Let I = M i+ N j+P k be a vector field on a simply connected region D, where
gradients of M, N, P are continuous. If M, = N, N, = P,, and P, = M, hold on D, then F'is
conservative.

Proof of this can be done here, but it follows from Green’s theorem in the plane and from Stokes’
theorem in space, which we will do later.

These equations help in determining the potential function of a conservative field.

Example 3.9. Find the line integral of the field F= yzi+ 2] + LEin along any smooth curve
joining the points A(—1,3,9) to B(1,6, —4).

Notice that F is conservative since F' = grad (zyz) = Vf, where f = xyz. Let C be any such
curve. Then

/Cﬁ-d?:/ABVf-d?:f(B)—f(A):3.

Example 3.10. Are the following vector fields conservative?

@ F(z,y)=(x—y)i+(@—2)]
b) F(z,y) = 3+ 2xy)i + (22 — 3y?) .
(©) F(x,y,z) — (20— 3)1+ 2] +cos z k.

(a)]_f:M%—i-Nﬁ',whereM:x—y, N=x2-2 M,= -1, N, = 1. Since M, # N,, the
vector field F' is not conservative.

(b) Here, M = 3+ 2zy, N = 2% — 3y®. M, = 22 = N,. The vector filed is defined on R?, which
is a simply connected region. The partial derivatives of M and N are continuous. Therefore, F’ is
a conservative field.

) F=Mi+Nj+ Pk where M =2z —3, N=2z, P =cosz.
M,=0,N,=0, N,=1,FP, =0, P,=0, M, =0.
Since N, # P,, the field F' is not conservative.

Example 3.11. Find a potential for the vector field F' = (3 + 22y) i + (22 — 3y?) j. Then evaluate
Jo F - d7, where C' is given by 7(t) = €' sinti+elcosty, 0 <t <.

— -
We know that F' is conservative. To determine the scalar function f(x,y, z) such that F' = grad f,
we have

fz =3+ 2zy, f, = z? —3y2.

Integrate the first one with respect to x and integrate the second with respect to y to obtain:
fla,y) =3+ 2%y +g(y), fla,y)=2"y—y’ +h(2).
Taking g(y) = 3 + const. and h(x) = 3x + const., we have
f(z,y) =3x+ 2%y —y* +k for any constant k.
Next, [, F - d7 = f(z(m),y(r)) — f(2(0),y(0)) = €* + 1.
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Example 3.12. Find a potential for the vector field F= y2i+ (2zy + €3) ) + 3ye k.
Denote the potential by f(x,y, z). Then
fo=9% fy = 2zy + €%, f. = 3ye™.
Integrate with respect to suitable variables:
f=ay’ +9(y.2), f =y’ +ye* +h(z,2), f=ye” +dx,y).
Taking g(x, z) = ye**, ¢(x,y) = xvy?, h(x,z) = k, a constant, we get one such f.
Sometimes matching may not be obvious. So, differentiate the first:
fy = 2xy + g,(y, 2) = 2zy + €**.
Thus, g, (y, z) = €*. Integrate: g(y, z) = ye** + ¢(z). Then
f=ay® +ye* + ().
This gives f, = 3e3* +1/(z) = 3y>*. Thus, 1(z) = k, a const. Therefore,
f(z,y,2) = 2y* + ye** + k.

Example 3.13. Show that the vector field F = (e cosy +yz) i+ (xz — e siny) j + (zy + 2) k
is conservative by finding a potential for it.

Let the potential be f(z,y, z). Then
fz=¢€"cosy+yz, f, =x2z—e"siny, f, =ay+ 2.
Integrate the first w.r.t. = to get
f=e"cosy+ zyz + g(y, 2).
Differentiate w.r.t. y to get
fy=—€"siny +xz + g,(y,2) = vz — e"siny = ¢,(y,2) = 0.

Thus ¢(y, z) = h(z). And then f = e” cosy + zyz + h(z). Differentiate w.r.t. z to obtain

fr=ay+ W) =ay+z2=h(2)=2= h(z)=2%/2+ k.
Then f(x,y,2) = e®cosy + zyz + 22/2 + k.
If M, N, P are functions of x,y, z, on a domain D in space, then the expression

M(x,y,z)dx + N(z,y, z)dy + P(z,y, z)dz

Is called a differential form. The differential form is called exact iff there exists a function
f(z,y, z) such that

of
ox

of
dy

, P(x,y,z) = g

M(z,y,z) = P

Y N('IJ y? Z) =
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Notice that if the differential form is exact, then
M(:Ev Y, Z)dlL’ + N([L’, Y, Z>dy + P(ZL’, Y, Z)dZ = df:

which is an exact differential. In that case, if C' is any curve joining points A to B in the domain
D, then

/B[de+Ndy+sz]:/CVf.d?:/ABdf:f(B)—f(A).

A

Therefore, the differential form is exact iff F=Mi+N j+ P k is conservative. Then the scalar
function f(x,y, z) is the potential of the field F'.

Example 3.14. Show that the differential form ydz + xdy + 4dz 1is exact. Then evaluate the
integral [, (ydx + xdy + 4dz) over the line segment C' joining the points (1,1,1) to (2,3, —1).

M=y N=xz, P=4Then M,=1=N,, N.=0=P,, P, =0=M..

Therefore, the differential form is exact.
Also, notice that ydx + xdy + 4dz = d(xy + 4z + k). Hence it is exact.
In case, f is not obvious, we can determine it as earlier by differentiating and integrating etc. Next,

(2:3-1) 2,3,—1)

/(ydw+xdy+4dz):/ d(xy+4z+k):(my+4z+k)(”7 = —3.
c (

1,1,1
1,1,1) L1

3.4 Green’s Theorem

Let C' be a simple closed curve in the plane. The positive orientation of C' refers to a single
counter-clockwise traversal of C. If C'is given by 7(t), a < t < b, then its positive orientation
refers to a traversal of C' keeping the region D bounded by the curve to the left.

W W

0 x 0 X
(a) Positive orientation (b) N egative orientation
Theorem 3.7. (Green’s Theorem) Let C' be a positively oriented simple closed piecewise smooth

curve in the plane. Let D be the region bounded by C'. (That is, C = 0D.) If M (x,y) and N(z,y)
have continuous partial derivatives on an open region containing D, then

%(dejLNdy // a—j\[—a—]\/[dA

M N
2. %(Mdy Ndx) // 8 8 dA
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Green s theorem helps in evaluating an integral of the type f F - d7 in a non-conservative vector
field F. It gives a relationship between a line integral around a simple closed curve C' and the
double integral over the plane region D bounded by this closed curve.

¥ i
. ¥ =gafx)
;

S
T
\'R___
cf o e,
___':_/,--'

y=gilx)

0 a h x

Proof: We only prove for a special kind of regions to give an idea of how it is proved.

Consider the region D = {(z,y) : a < x < b, f(z) <y < g(x)}. Assume that f, g are continuous
functions. Then

/ —dA / f(g:)Mydydx: /ab[M(x,g(:c))—M(x, F(@))]da

Now we compute |, o Mdz by breaking C' into four parts C'y, Cy, C'3 and Cj.
The curve C is givenby x = z, y = f(x), a < x < b. Thus

b
Mdx :/ M(z, f(x))dz
Ch a
On (5 and also on (Y, the variable z is a single point. So,

Mdx = Mdx = 0.
CQ 04

As x increases, Cj is traversed backward. That is, —C5 is given by z = 2,y = g(z), a < x < b.
So,

b
Mdr =— | Mdx = —/ M(x,g(x))dz.
Cs Cs a

Therefore, / / —dA = / Mdz. Similarly, express D using the variable of integration as y.
c

(‘9
Then we have / 8_dA = / Ndy. Next, add the two results obtained to get
c

p Ox
/(de—l—Ndy // 8_N_8_M dA.
?/

The second form follows similarly. 0

Example 3.15. Verify Green’s theorem for the field F= (x—1y) i+ 7, where C is the unit circle
oriented positively.

Here, we have C' : 7 (t) = cos ti+ sint}', 0 <t < 27. The region D is the unit disk.
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M = cost —sint, N =cost, dx = —sintdt, dy = costdt.
M,=1 M,=-1, N,=1, N, =0.
Now,

2m
%(Mdy — Ndzx) = / [(cost — sint) cost — cost(—sint)|dt = .
c 0

//D(Mm—l—Ny)dA://]j(1+0)dA:AreaofD:7r_

2
j{ (Mdx + Ndy) = / [(cost —sint)(—sint) + cos® t]dt = 2.

//N — M,)dA = // (1 —-(=1))dA =2 x Areaof D = 2.

Example 3.16. Evaluate the integral I = 560 xy dy + y* dx, where C is the square cut from the
first quadrant by the lines + = 1 and y = 1, with positive orientation.

Take M (x,y) = zy, N(x,y) =y, D as the region bounded by C. Then

I= ]{C(Mdy—Ndx) = //D(Mx—l—Ny)dA: /01 /01(y+2y)dxdy:3/2.

Also, taking M = —y?, N = zy, we have

= 7§C(de + Ndy) = //D(Nz _ M,)dA = /01 /01<y 4 %y)dady — 3/2.

Example 3.17. Evaluate the integral I = ¢ (3y — e *)dz + (T2 + /1 + y*)dy,

Similarly,

where C'is the positively oriented circle 22 + y? = 9.

Take D as the disk 2% + y? < 9. Then by Green’s theorem,

[—// (T2 + /1 + 94, — (3y — ) dA //7 3)dA = 36m.

Example 3.18. Evaluate I = §,, z* dz+xy dy, where C'is the triangle with vertices at (0,0), (0, 1)
and (1, 0); its orientation being from (0,0) to (1,0) to (0, 1) to (0,0).

(0, 1) = 1—x

- ¥

(0, 0 (1,04

The triangle is positively oriented. Let D be the region bounded by the triangle.
Take M = z* = xy. Then

1 -z 1 1
I—// TY)z )y]dA—/ / ydydm——/ (1—2*)dx = —.
0 Jo 2 Jo 6

81



Example 3.19. Evaluate |, clrdy — y*dx), where C'is the positively oriented square bounded by
the lines r = +1 and y = +1.

Let F be the vector field i + j Here, M = x, N = y2, and D is the region bounded by C. By
Green'’s theorem,

ﬁ(Mdy—Nda:)=//D(Mx+Ny)dA:/11/11(1—2y)dxdy:4.

Two important Observations

1. Suppose M(x,y) and N(z,y) are zero on a simple closed curve C.
If D is the region bounded by C', then

//D(Nx — M,)dA = fC(de + Ndy) =0, //D(Mx +N,)dA = fC(Mdy ~ Ndz) =0

2. Let D be the region bounded by a simple closed curve C.
Suppose N, — M, = 1. Then Area of D = [ (N, — M,)dA = §,(Mdz + Ndy) gives

1
AreaofD:fxdy:—j{ydx: —]{(xdy—ydx).
c c 2 Jc

For example, the constraint is satisfied when

M=0,N==z, O, M=-y, N=0; Or, M=—y/2, N=uz/2.

2 2
As an application, to compute the area enclosed by the ellipse C': — + = = 1, we parameterize

b2
Casx =acost, y=bsint, 0 <t < 2. And then the area is

1

1 2m 1 2w
—%(xdy—yda:):—/ [(acostbcost)—(bsint(—bsint))]dt:—/ abdt = 7 ab.
2 Je 2.Jo 2.Jo

Example 3.20. Evaluate fc(y2 dx + xy dy), where C is the boundary of the semi- annular region
between the semicircles 22 + y? = 1 and 22 + y? = 4 in the upper half plane.

¥

0 i x
x +y =1 ;

Write, in polar coordinates, D = {(r,0) : 1 <r <2, 0 <6 < r}. Then

9 5
//D [a—x(?)xy ——y)} dA = //DydA
2 T 14
= //rsm@rdrd@—/r 7’/ sinfdf = —.
1 Jo 0 3
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In fact, Green’s theorem can be applied to domains having holes, provided the domain can be
divided into simply connected regions.

The boundary C' of the region D consists of two simple closed curves C'; (Outer) and C5 (inner).
Assume that these boundary curves are oriented so that the region D is always on the left as the
curve C is traversed.

Thus the positive direction is counterclockwise for the outer curve C'; but clockwise for the inner
curve Cs. Divide D into two regions D’ and D" as shown in the figure. Green’s theorem on D’ and
D" gives

//D(Nx—My)dA = //D,(Nx_My)dA+//D//(Nw—My)dA

= / (de+Ndy)+/ (de—i—Ndy):/(de—I—Ndy).
oD’ oD c

This is the general version of Green’s Theorem.

Example 3.21. Show that if C' is any positively oriented simple closed path that encloses the
origin, then

dx + =2,
7Cx2+y2 2y

No idea how to show it for every such curve. So, take a positively oriented circle C’, of radius a,
around origin that lies entirely in the region bounded by C'. Let D be the annular region bounded
by C'and C". Take F (z,y) = (—yi + z ) /(2% + y?).

v

C

=
Then the positively oriented boundary of D is 9D = C' U (—C"). Green’s theorem on D gives
]{(Mdac + Ndy) —i-]{ (Mdx + Ndy) = // (N, — M,)dA =0
c —c’ D
Reason? Here, F' = M i + N j gives N, = M, = (y* — 2*)/(z2 + y*)?. Then

fc (Mdz + Ndy) = 74 (Mdz + Ndy)

But " is parameterized by () = cost, y(t) = sint, 0 <t < 27. So,
2m
/ (Mdx + Ndy) = / F(acosti+asintj)- (acosti+ asintj)dt = 2.
' 0
Generalize this example by taking the constraint N, = M, on the vector field.
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3.5 Curl and Divergence of a vector field
IfF =Mi+ N 7+ Pk is a vector field in R3, where the partial derivatives of the component

functions exist, then curl F is a vector field given by
curl F = (———)1 —_— - = — - — ) k.
oy 0z 0z oz )’ ox dy

_;9 50 9
- Yoy T "oz

Writing in operator notation, recall that grad =V

1
9
ox

ZQe .,
v SR N

Thencurl F =V x F =
For example, if F=zrit ryz ) — y? ]Af, then curl F = —y(2+ ) i+x)+yz k.

=

N
Theorem 3.8. Let F' be a vector field defined over a simply connected region D whose component
— —
functions have continuous second order partial derivatives. Then F' is conservative iff curl F' = 0.

— -
Proof of =: If I is conservative, then F' = V f for some f, where f is some scalar function

defined on D. Now,
ik
Cuerf:VX (Vf): g_m g_y % = (fyz_fzy)l—i_(fzx_fmz)]+<fwy_fyx)kzo
fe fy [-
O

The converse follows from Stokes’ theorem, which we will discuss later.
Remember: The curl of gradient of any scalar function is zero:
curl grad f = 0.
Example 3.22. Is the vector field F=zrit ryz ] — y? k conservative?

Here, curl F = —y(2+a)i+x]+yzk#0.So, T is not conservative.

Example 3.23. Is the vector field F= Y2231 + 2zy23 J + 3wy222 k conservative?

Here, F is defined on R2 and
(6zy22% — 6xy?22) i

curl F' = % g—y % = —(3y%? - 3y222);7 — 0.
223 2uyzd 3wyt +(2yz3 — 2y23) k

Hence F is conservative. In fact, I = grad f, where f(z,y,2) = zy?z°.
The name game: curl F measures how quickly a tiny peddle (at a point) in some fluid in a vector
field moves around itself. If curl /' = 0, then there is no rotation of such a tiny peddle.
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If ]—5 =Mi+N j + P k is a vector field defined on a domain, where its component functions have
first order partial derivatives, then

> - OM ON 0P
diVF:V'F:%+a_y+%'
The divergence is also called flux or flux density.
For example, if F=zxi + xyzj — 12 l%, then div F = » + xz.
The divergence of the vector field F= (22 —y)i+ (zy —y?) J is
o —y) Oy —y’)
ox dy

=3 — 2y.

Intuitively, div F measures the tendency of the fluid to diverge from the point (a, b). When the gas

(fluid) is expanding, divergence is positive; and when it is compressing, the divergence is negative.

The fluid is said to be incompressible iff div /' = 0.

Theorem 3.9. Let F = M + N j + Pk be a vector field defined on a simply connected domain

D C R®, where M, N, P have continuous second order partial derivatives. Then div curl F' = 0.

- - 0 (0P ON 0 (OM OP 0 (ON OM

Proof: divewrl FF = V- (Vx F) = 0 (S0 = S5 ) 4 2 (S5 = S0 )+ (5= - 20

roof. div cur ( ) or\dy 0z + oy \ 0z ox * 0z \ Ox y

This is equal to zero, due to Clairaut’s Theorem. O
Example 3.24. Does there exist a vector field GG such that F=zrit zyzj — y? k = curl G?

div F =z + zz # 0. Hence there is no such G.

Divergence of grad f is the Laplacian of a scalar function f since

. = Of Pf  0f 2
divgrad f=V - (VF) = 52 + e + 5.2 =V-f.

The operator V2 = 88—;2 + 53—:2 + g—; is called the Laplacian.
Green’s Theorem - Vector form - 1

Let D be a simply connected region whose boundary is the simple closed curve C.
Let F' = M i+ N j be a vector field defined on D.
Let C be parameterized by 7 () = z(t)7 + y(t) 7. Then

F-TWdt=F -7'(t)dt = F -d7 = Mdz + Ndy.

The line integral of F over C'is
7{1?- T(t)dt = f F.d7 = ]{(deJrNdy).
c c
Consider F as a vector field on R? with P = 0. Then
curl F = (N, - M)k = curl F - k = N, — M,
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Thus Green’s theorem takes the form

jéﬁ-?(t)d fﬁd? //curle

Recall: T is the unit tangent vector and 7 is the unit normal vector.

Green’s Theorem - Vector form - 2

Let C be given by 7(t) = x(t) i + y(t) j. Then
I I (O NS Ul

[ 7)) ’

Consequently, F = [M(z(t),y(t)y'(t) — N(x(t),y(t))z’

Now, §. F - ads = [P F - a|7'(t)|dt = §.(Mdy — Ndx).

Also, [, div FdA = [[, (M, + N,)dA.

O/ (@)1

Hence Green’s theorem takes the form

fﬁ-ﬁds://divﬁd/l,
C D

The first form is called the tangent-form and the second form is called the normal-form of
Green’s theorem.

3.6 Surface Area of solid of Revolution
Suppose a smooth curve is given by y = f(x), where f(x) > 0.Its arc when a < = < bis revolved
about the z-axis to generate a solid. How do we compute the area of the surface of this solid?

We follow a strategy similar to computing the volume of revolution. Partition [a, b] into n subin-
tervals [x;_1,xr]. When each Az, is small, the surface area corresponding to this subinterval is
approximately same as the area on the frustum of a right circular cone.

If a right circular cone has base radius R and slant height ¢, then its surface area is given by 7 R/.
Now, for the frustum, we subtract the smaller cone surface area from the larger. Look at the figure.
The area of the frustum is

A =7ro(ly + £) — wrily = w[(re — 1)l + 12f).
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l 0+ 0
Using similarity of triangles, we have h_ b+ :
T T2

This gives 7201 = 1101 + r1{ = (r9 — r1)¢; = r1{. Therefore,

1+ 7o

A=m(ril+ryl) =2mrl, where r = 5

To use this this formula on the frustum obtained on the subinterval [z)_1, zx], we notice that the
slant height ¢ is approximated by \/(Axk)Q + (Ayg)?, where Az = xp — 21 and Ay, =
f(zx) — f(xr—1). Next, the average radius r = 2312 is { (I’H;Jrf (#+) Thus the area of the frustum

A, = 27Tf(17k—1)2+ f(xr) \/(Axk)2 + (Ayp)2.

Due to MVT, we have ¢;, € [x_1, x| such that

Ay = f(zr) — f(zrp—1) = f(er)(xr — zp-1) = f(cr) Ay

So, \/(Axg)? + (Ayy)2 = /1 + (f'(ck))? Azy. The surface of revolution is approximated by

ZAk =27 f(xk_l);_ f() L+ (f'(cr))? Axy.

Its limit as n — oo is the Riemann sum of an integral, which is the required area:

b
S = / 27 f(x) /14 (f'(x))? dx —/ 2y/1+ (f'(x))%dx.

If the arc is given by = = ¢(y), ¢ < y < d, then the surface area of revolution is given by

S = /27Tg V1 dy—/ 2rx\/14 (g'(y))? dy.

Cc

Notice that with relevant limits of integration, if the revolution is about z-axis, then S = / 2myds.

If the revolution is about y-axis, then the surface area of revolution is S = / 2mxds.

¥ ¥
[x, ¥) .

circumference = 2y | circumference = 277

0 | X

For parameterized curves, suppose the smooth curve is given by x = z(t), y = y(¢t) fora <t <b.
If the curve is traversed exactly once while ¢ increases from a to b, then the surface area of the
solid generated by revolving the curve about the coordinate axes are as follows:
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b
1. Revolution about the z-axis (y > 0): S = / 21 y(t) /(@' (1))2 + (v/(1))2 dt.

b
2. Revolution about the y-axis (x > 0): S = / 2m w(t) /(2 (1))% + (y/(t))2 dt.

Example 3.25. Find the surface area of the solid obtained by revolving about z-axis, the arc of the
curve y = 2y/x, 1 <z < 2.

Since y = 2v/z, ¥ = 1/v/z, \/1+ (¥')2 = /1 + 1/x. Then

2 1/2 2 1 8
S:/ 27Ty<1—|—[y']2> dx:/ 21 2/7 1—|——dx:?7r(3\/§—2\/§).
1 1 Z
Example 3.26. The arc of the parabola y = 22, 1 < z < 2 is revolved about the y-axis. Find the

surface area of revolution.

The curve can be parameterized by 7(t) = x(t)7 + y(t)j, 1 < t < 2, where z(t) = t and
y(t) = t2. Then 2/(t) = 1 and ¢/ (t) = 2t. The surface area is

S - /227rx(t) \/(x’(t))2+(y’(t))2dt:2%/2t\/1—|—4t2dt

1

_ %/12 VIFA2d(1 + 4t2) = %[(1 +4t2)3/2ﬁ = %(17\/1_7— 5V/5)

Example 3.27.

The circle of radius 1 centered at (0, 1) is revolved about Circle 3

X=cCost

the z-axis. Find the surface area of the solid so generated. y=1+sine

The circle can be parameterized as
x=cost, y=1+sint, 0 <t < 27.

Then (2/(t))? + (y/(t))? = 1. Thus the area is

2T
S = / 21 (1 +sint) dt = 47>
0

3.7 Surface area

As we know, a smooth surface can be given by a function such as z = f(x,y). More generally,
a smooth surface is given parametrically by x = z(u,v), y = y(u,v), z = z(u,v), where (u, v)
varies over a given parameter domain. Normally, we say that the point (u, v) varies over a domain
in uv-plane. The parametric equation is also written in vector form as

7 = 2(u, v)i + y(u,v)] + z(u, v)k.
Some examples:
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The cone z = /22 4+ 32, 0 < z < 1 can be parametrized by
x=rcost, y=rsinf, z=r, where )0 <r <land0 <60 < 2.

Then its vector form is
7(r,0) =rcosfi+rsindj+rk.
The sphere 2% + y? + 22 = a® can be parametrized by

xr=acosfsing, y=asinfsing, z=acos¢pfor0 <0 <2m, 0 < ¢ <.

In vector form the parametrization is

—

7(6,¢) = acosfsin i+ asinfsin g j + acos o k.
The cylinder 22 + y? = a?, 0 < z < 5 can be parametrized by
7(0,2) = acosfi+asinb )+ z k, for0 < 0 < 2r.

Let S be a smooth surface given parametrically by x = z(u,v), y = y(u,v), z = z(u,v), where
(u, v) ranges over a parameter domain D in the uv-plane. Suppose that S is covered exactly once
as (u,v) varies over D. For simplicity, assume that D is a rectangle. We write S in vector form:

7 = 2(u,v)i + y(u,v)] + z(u, v)k.

rAr r

(U 0]

Divide D into smaller rectangles R;; with the lower left corner point as F;; = (uy, v;). For sim-
plicity, let the partition be uniform with u-lengths as Au and v-lengths as Av. The part S;; of S

that corresponds to R;; has the corner P;; with position vector 7’ (u;, v;). The tangent vectors to S
at P;; are given by

=T u(ug,v)) = xu(ui,vj)% + yu (ui, Uj)j + Zul%(uz‘,'Uj)

—>k —-> ~

7= To(Ui, ;) = Ty (Wi, 0;)1 + Yy (wi, v)] + 2ok (u;, vj)
The tangent plane to S is the plane that contains the two tangent vectors 77, (u;, v;) and 7, (u;, v;).

The normal to S at P;; is the vector 77, (u;, v;) X 7, (u;, v;). Notice that since S is assumed to be
smooth, the normal vector is non-zero.

The part S;; is a curved parallelogram on S whose sides can be approximated by the vectors 7% Au
and 77 Av. Then the area of S;; can be approximated by

Area of S;; ~ |77 x Tk Aulw.
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Then an approximation to the area of S is obtained by summing over both indices ¢ and j:
Area of S ~ Z Z |75 x 7 Aulv.
i

We thus define the surface area by taking the limit of the above approximated quantity. It is as
follows:

Let S be a smooth surface given parametrically by
7 = (u,0)i +y(u,v)j + 2(u, )k,

where (u,v) € D, a domain in the uv-plane. Suppose that S is covered exactly once as (u,v)
varies over D. Then the surface area of S is given by

Areaof S = // |7y X 7| dA
D

where 7y = Tui + Yu) + 2ok and Ty = Toi + Yo + 20k

In case, the surface S is given by the graph of a function such as z = f(z,y), where (z,y) € D,
then we take the parameters as u = x, v = y and z = z(u,v) = f(z,y). Thatis, S is given by

7 =i+ vj + zk.

We see that
i 7k
PuXTy=11 0 fol = —fat — fyj + k.
01 f,
Therefore,

AreaofS—// ?ux?vdA—// 2+ f2+1dA.
D\ | LV ;

This formula can also be derived from the first principle as we had done for the parametric form.
For this, suppose that S is given by the equation z = f(x,y) for (z,y) € D. Divide D into smaller
rectangles R;; with area A(R;;) = AxzAy. For the corner (z;,y;) in R;;, closest to the origin, let
P, be the point (x;,y;, f(x;,y;)) on the surface. The tangent plane to S at P;; is an approximation
to S near P;;.
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The area T;; of the portion of the tangent plane that lies above R;; approximates the area of .S;;,
the portion of .S that is directly above R;;. Therefore, we define the area of the surface S’ as

A(S) = lim_lim f:zn:T]

i=1 j=1

Let @ and b be the vectors that start at P;; and lie along the sides of the parallelogram whose area
is T;;. Then T;; = |d x b|. However, f,(z;,y;) and f,(x;,y;) are the slopes of the tangent lines
through P;; in the directions of @ and b, respectively. Therefore,

~

T =Axi+ fu (s, yj)Ax/%, b= Ayj+ Jy(@iyy;) Ay k.

Tij = |a) X ?;| = | - fx(xiayj)% - fy(xmyj)j + k‘| A(Rz‘j)
= ) + @)+ 1ARy).

Summing over these 7;; and taking the limit, we obtain:

AreaofS://D\/f:?—l—fj—irldA.

Example 3.28. Find the surface area of the part of the surface z = 2% + 2y that lies above the
triangular region in the zy-plane with vertices (0, 0), (1,0) and (1, 1).

3

(0,0 (1.0}

T={(z,9):0<z<1,0<y<z}, flz,y)=a>+2y.

The required surface area is

1 T 1
// V(21)2 +22 + 1dA = / / VAz? + 5dydr = 5(27 —5V5).
T o Jo
Surface Area - a generalized form
Recall that for a surface S which is given by f(z,y) = z, the surface area is / / \/fE+ f2+ 1dA.
D

Here, D is the rectangle on the xy-plane obtained by projecting .S onto the plane.

Look at this surface as f(z,y) —z = 0. Then V.f = f, i + fyj' — 1k. If T is the unit normal to
the projected rectangle, then 7 = k. Then

IV IR+l

IVf-TBl 17 ’
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which is the integrand in the surface area formula.
Warning: V f - p must not be ZERO.
A derivation similar to the surface area formula gives the following:

Let the surface S be given by f(z,y, z) = c. Let R be a closed bounded region which is obtained
by projecting the surface to a plane whose unit normal is 7. Suppose that V f is continuous on R
and Vf - p # 0on R. Then

The surface area of S = / / |v—f’_,dA.
rIVf-D]

Of course, whenever possible, we project onto the coordinate planes.

Example 3.29. Find the area of the surface cut from the bottom of the paraboloid z* + y* = z by
the plane z = 4.

Surface S is given by f(z,y, 2) = 2* + y* — z = 0. Project it onto zy-plane to get the region R as

2?2 +y? <4 Then Vf =2zi+2yj — k. |Vf| = /1+42? + 492
P=k|Vf Pl=1

Risgivenby x =rcosf, y =rsinf, 0 <0 < 27,0 <r < 2. So, the surface area is

2w 2
//\/1+4x2+4y2dA:/ / \/1+4r2rdrd9:%(17\/ﬁ—1).
R 0 0

Example 3.30. Find the surface area of the cap cut from the hemisphere 22 + 2 + 22 =2, 2 >0
by the cylinder 2% + 3% = 1.
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The surface projected on zy-plane gives R as the disk 22 + y? < 1. The surface is f(z,y, 2) = 2,
where f(z,y,2) = 2? + y? + z*. Then

Vf=2xi+2y)+2zk |Vfl=2V224y%+22=2V2.

P =k.|Vf- P|=|2z| = 2z. Thus the surface area is

// dA = f// 2 hdA = \/'//2—33 —y?) " dA.

Risgivenby x =rcosf,y =rsinf, 0 <0 <2x, 0 <r < 1. So,

A= \/_/ / rdrdh o2 - \3).

3.8 Integrating over a surface

Suppose over a surface f(z,y, z) = ¢, we have distribution of charge. The charge density, that is,
the charge per unit area, may be given by a real valued function g(x, y, z) defined on the surface.
Then we may calculate the total charge on the surface as an integral.

So, we consider a real valued function g(z, y, z) defined over a surface S given by f(x,y, z) =
c; and our task is to compute the integral of g, where the area elements are taken over the surface.
We look at the region R in the xy-plane on which this surface is defined by f(z,y, z) = c. Divide
the region R into smaller rectangles A A;. Consider the corresponding surface areas Aoy.

flx,yz)=r

(Ve 2 AP
-

A, -

Let A P, denote the projection of Aoy, onto the tangent plane at (xy, yx, zx). Then
Ao kX AP k-

If 7 is the unit normal to the region R, and if i}, and Uy are the vectors that lie along the edges
of the patch AP, then

Write ~y;, = the angle between u, x vy, and P. Since P is a unit vector, we have
AAk = ’ﬂ)k X Fk . ]_9)’ = |Uk X ?k‘ ’?ﬂ |COS(’yk>| = AP]ACOS’YH.
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Also, we have |V f - B| = |[Vf||P||cosvy| = |V f]| | cos~|. Therefore,

Ay, :< IV f]
| cos | V-7

Aoy, ~ AP, = |)kAAk.

Assuming that g is nearly constant on the smaller surface fragments o, we form the sum

V/I ’> A,

Zg(xk,yk,zk)Aak ~ g(xk’yk’zk)<|Vf—-ff N

k

If this sum converges to a limit as the number of partitions, k& approaches oo, then we define that
limit as the integral of g over the surface S. We thus define the surface integral as follows.

Let S be a surface S given by f(z,y, z) = c. Let the projection of S onto a plane with unit normal
P be the region R. Let g(x, v, z) be defined over S. Then the surface integral of g over S is

//sgdaz //Rg@yvz)%m

Also, we write the surface differential as

V/]

dO':—_,
IVf- P

dA.

Warning: |V f - | must not be ZERO.

If the surface S can be represented as a union of non-overlapping smooth surfaces 51, . . . , Sy, then

//Sgda://Slgdg+..._|_//Sngda

If g(v,y,2) = g1(2,y,2) + -+ gm(x,y, z) over the surface S, then

//gda—//gldaJr //gmda.

Similarly, if g(z,y, z) = k h(z, y, z) holds for a constant k, over .S, then

J[ stwyde = [[ kniey.z) do

Example 3.31. Integrate g(z,y, z) = xyz over the surface of the cube cut from the first octant by
the planesz =1, y = 1,and z = 1.

i

1 o

/ f// Side C
Side B

X
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We integrate g over the six surfaces and add the results. As g = xyz is zero on the coordinate
planes, we need integrals on sides A, B and C.

Side A is the surface defined on the region R4 : 0 < x < 1, 0 < y < 1 on the xy-plane. For this
surface and the region,

Therefore,

1,1 Ly 1
x,, da—//:v dxd ://$dxd :/—:—.
// e R y|vf P’ Y 0 Jo e 0o 2 4

Similarly,

Thus, //gdo :§
g 4

Example 3.32. Evaluate the surface integral of g(x,y, z) = x? over the unit sphere.

S can be divided into the upper hemisphere and the lower hemisphere. Let S be the upper hemi-
sphere f(x,y,z) := 2> +y*+ 22 = 1, z > 0. Its projection on the zy-plane is the region

R: xz=rcost,y=rsinf, 0 <r <1,0<6<2m.
Here,
D=k [Vfl=2Va2+y2+22=2,
IVf- Pl =2z =21 — (22 +y2) = 2V1 — 12

[l = Jrt e Jf =

r2 cos? 0 2 r3 2
rdrdf COSQQdG/ dr = —.
/0 /0 V1—r? /0 0o V1—r? 3

Since the integral of 22 on the upper hemisphere is equal to that on the lower hemisphere, the
2 4

required integral is 2 X ot
3 3

Recall that when ' = l%, that is, when the region R is obtained by projecting the surface S onto the

\Y4 . . ..
xy-plane, % = /1 + 22+ 22. Now, if the surface f(r,y,z) = c can be written explicitly
" p

by z = h(z,y), then the surface integral takes the form

J[ st rde = [[ gwnte) i+ nz+ngan iy

Hence
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Similarly, if the surface can be written as y = h(z, z) and R is obtained by projecting .S onto the
xz-plane, then

[ swayae = [[ ganiez).0) Vv Rz R0

If the surface can be written as x = h(y, z) and R is obtained by projecting S onto the yz-plane,

then
g(z,y, 2 da—_//ghy,z,y,z \/1+h2+h2dydz.

Example 3.33. Evaluate [,y do, where S'is the surface z =z + 3%, 0<2<1,0<y <2

:

Projecting the surface onto xy-plane, we obtain the region R as the rectangle
R: 0<2<1,0<y<2

Here, the surface is given by z = h(x,y) = = + 3*. So,

//Sydo—:/LymdA:/ol/OZ@ymdydx:%?

Suppose the surface S is given in a parameterized form:

~

7 (u,v) = z(u,v) i +y(u,v) j + 2(u,v) k,

where (u, v) ranges over the region D in the uv-plane. Here, a change of variable happens. The
Jacobian is simply 7, X 7°,. Then

do = |7, X 7| dA,

where 7y = Zu i + Yu ] + 2o k and Ty = 2y i + Yo j + 2y k. Then

//Sf(x’y’z)d": //Df(?(u,w)!?’u x Tyl dA.

Also this formula can directly be derived as we had done for computing surface area when a surface
is given parametrically. It is as follows.

Suppose the smooth surface S has the parametric equation in vector form as
7 = 2(u,v)i + y(u,v)] + z(u, v)k.

Assume that the parameter domain D is a rectangle. Divide D into smaller rectangles I?;; by taking
grid lengths Au and Aw.
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| /A r

—D—p= I -

Then the surface S is divided into corresponding patches S;;. We evaluate f at a point F;; in \S;;
and form the Riemann sum » ;> f(F;;)AS;;, where AS;; is the area of the patch S;;. Taking
limit as the number of sub-rectangles approach co, we obtain the surface integral of f over S as

//fxy, )do = lim L 3" 3" F(P)AS,;

=1 j=1

However, AS;; = [7,( 74(P;;)|AuAv. Therefore, the surface integral is given by

><
//f:vy, da—//f ) |70 % 70| dA.

Observe that the surface area of S is simply [ ¢ 1 do as it should be. The relation between a surface
integral and surface area is much the same as that between a line integral and the arc length of a
curve.

Example 3.34. Evaluate || ¢ Zdo, where S is the surface whose sides S; are given by the cylinder
r? + y* = 1, bottom S, is the disk 2 + y*> < 1, z = 0, and whose top S3 is part of the plane
z = 1 + x that lies above S,.

Sy is givenby 7 = xi 4y + zk with & = cosf, y = sinf, z = z, where D is given by
0<0<2rand 0 < z2<1+2x =1+ cosf. Then

|79 X 7| = |cos@i+sinfj| = 1;

27 14+cos 6 21 1 2
// zdaz//z|?9><?z|dA:/ / Zdzd&:/ —( + cos ) d9:3_7r.
S D 0 0 0 2 2

Sy lies in the plane z = 0. Hence [, 2do = 0.
Ss lies above the unit disk and lies in the plane z = 1 4 .
Here, u = z,v =y and 7 = xi + yj + 2(z,y)j. Then

70 X T = (i + 2k) % (J + 2,k)| = /22 + 22 + 1.
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So,

//S 2do = //D(l—l—x)\/mdfl

27 1
= / /(1+TCOS€)\/1—|—1+Ordrd9:\/§7r.
o Jo

//zdazf/ zda—l—// zda—l—// zd0:3—ﬂ+\/§7r.
S S S S 2

3.9 Surface Integral of a Vector Field

Hence,

A smooth surface is called orientable iff it is possible to define a vector field of unit normal vectors
n to the surface which varies continuously with position. Once such normal vectors are chosen,
the surface is considered an oriented surface.

Start

n\WH]Y"f &

.
/ ” ’n }"-\r 2 (C'N Py Finish [}
AR ¥ I,',n ":l { \E-at ?

\ I‘ ’I- / i ! .

If the surface S is given by z = f(z,y), then we take its orientation by considering the unit normal
—foi—fyit+ k

vectors 1 = :
VITTEFT
: . Vy
If S is a part of a level surface g(z,y, z) = ¢, then we may take n = m
g

— —
.. . 4 A A o Ty X T
If S is given parametrically as 7 (u,v) = z(u,v) i + y(u,v) 7 + 2(u,v) k, then 1 = %
Ty X Ty
Sometimes we may take negative sign if it is preferred. Conventionally, the outward direction is
taken as the positive direction. Note that the outward direction of a normal makes sense when the

surface is oriented.

N

Let F' be a continuous vector field defined over an oriented surface S with unit normal 7. The
— -

surface integral of [ over .S, also called, the flux of F' across S is

//Z_T)-ﬁda.
S

The flux is the integral of the scalar component of F along the unit normal to the surface. Thus
in a flow, the flux is the net rate at which the fluid is crossing the surface S in the chosen positive
direction.

Vgl
V9.7 |

If S is part of a level surface g(x, y, z) = ¢, which is defined over the domain D, then do = dA.

So, the flux across S is

S - +Vyg - +Vyg
F-nda::/YiF-———da::/ykF-————:rdA.
//s s Vgl p IVg-p|
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If S is parametrized by 7°(u, v), where D is the domain in uv-plane, then
do = |7, x 7| dA. So, flux across S is

//F-ﬁdaz//F :u quda—// F(7(u,v)) - (7, x p) dA.
s S |70 X Ty

Example 3.35. Find the flux of F= yzj+ 22 k outward through the surface S which is cut from
the cylinder 3* + 2% = 1,2 > 0 by the planes z = 0 and z = 1.

(1,-1,0) ¥

(1, 1.0)
x

Sis given by g(z,y,2) := y* + 2% — 1 = 0, defined over the rectangle R = R, as in the figure.

\V4 . .
The outward unit normal is n = —I—ﬁ =yj+zk.
o v 2L 22 1
Here, p = k. So, do = Vgl dA = VY = —dA.
Vg -kl z z

F-fionSisy?s + 25 = 2(y? + 2?) = z. Therefore, outward flux through S is

//F-ﬁda://zlcm://dA:AreaofRzz.
S R < R

Example 3.36. Find the flux of the vector field F=zi+ yj+a k across the unit sphere.

If no direction of the normal vector is given and the surface is a closed surface, we take 7 in the
positive direction, which is directed outward.

Using the spherical coordinates, the unit sphere S is parametrized by
7(¢,0) = sin ¢ cos 1 + sin psin f j + cosd k,
where 0 < ¢ < mand 0 < 6 < 27 give the domain D. Then
F(?(qﬁ, 0)) = cos ¢ i + sin ¢ sin 0 j + sin ¢ cos 0 k.

Ty X Tg = sin® ¢ cos i+ sin® ¢sin 6 j + sin ¢ cos 0 k.

Consequently,

//F-ma _ //F.(mxn)cm
S D

2m g 4
= / / (2sin* ¢ cos ¢ cos ) + sin® ¢ sin® 0) do df) = %
o Jo
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Example 3.37. Find the surface integral of the vector field

F):yz%%—zj’—lez,‘ *k

(1,0,4)

over the portion of the parabolic cylinder given by
y=2",0<2<1,0<2<4 ne

We assume the positive direction of the normal 7. On the . |2
surface, we have v = z, y = 22, 2 = z giving the /\ 3
parametrization as 7 (x,z) = zi + 22 + z k where D x
isgivenby0 <z <1, 0< 2 <4,

On the surface F = 2227 + zj — 2%k. So,

//z?-ﬁdg = //ﬁ-(?}x?y)cm
S D

= //(x22€+xj—221%)~(2x5—j)
D

4 1 4,
= / / (22°2 — x) dx dz :/ dz = 2.
o Jo o 2

If S is given by z = f(z,y), then think of x, y as the parameters v and v. We have
F:M(x,y)%—FN(x,y)}—i—P(x,y)l;:and?:x5+y5+f(x,y)/%.
Then 7, x 7y = (i + fo k) x (j+ f k) = —fui— f, ] + k.

Therefore, the flux is

//Sf.ﬁda://[)l_f.(?xx?’y)dA://D(_fo_ny+P)dA_

Example 3.38. Evaluate [/ F - fido, where F = yi+xj + 2k and S is the boundary of the
solid enclosed by the paraboloid z = 1 — 2% — y? and the plane z = 0.

The surface S has two parts: the top portion .S; and the base Ss. Since S is a closed surface, we
consider its outward unit normal 7. Projections of both S} and .S, on xy-plane are D, the unit disk.
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By the simplified formula for the flux, we have

//Slﬁ-ﬁdo = //D(—Mfz—nyJrP)dA

- //D[_y(—zx) —z(-2y)+1—2° — y’]dA

27 1
= / / (14 4r*cosfsin® — r?)rdrdf
o Jo

7

2m 1 .
= /0 <Z+C0898m9)d9_2

The disk S5 has positive direction, when n = — k. Thus

//SQF.ﬁda://SQ(_F.;;)dg://D(_Z)dAZO

sinceon D = S5, 2 = 0. Then

//F-ﬁda:// F-ﬁda+// Ffhdo=2,
S S1 Sa 2

3.10 Stokes’ Theorem

Consider an oriented surface with a unit normal vector n. Call the boundary curve of S as C. The
orientation of S induces a positive orientation on C.

If you walk in the positive direction of C' keeping your head pointing towards 7, then S will be to
your left.

Recall that Green’s theorem relates a double integral in the plane to a line integral over its boundary.
We will have a generalization of this to 3 dimensions. Write the boundary curve of a given smooth
surface as 05. The boundary is assumed to be a closed curve, positively oriented unless specified
otherwise.

Theorem 3.10. (Stokes’ Theorem) Let S be an oriented piecewise-smooth surface that is bounded
by a simple, closed, piecewise-smooth boundary curve 0S with positive orientation.

Let F=Mi+Nj+P k be a vector field with M, N, P having continuous partial derivatives on
an open region in space that contains S. Then

jf F-d?://cuﬂﬁ-ﬁda
0S8 S
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In particular, if S is a bounded region D in the xy-plane, 0S = C, the smooth boundary of D, then
f = kand do = dA. We obtain

fﬁd?:// curl]_f-/%dA://(Nx—My)dxdy.
C D D

as Green’s theorem states. In fact, we can use Green’s theorem to prove Stokes’ theorem in case

—
S is the graph of a smooth function z = f(z,y) with a smooth boundary, and the vector field F’ is
smooth.

Proof: Letf:M§+Nj+Pl%.Weseethat

]f F-dP =¢ Mdr+ Ndy+ Pdz.
oS oS

//curlﬁ-ﬁda = //curl(M%)-ﬁda
s s
+ //curl (Nj)~ﬁda+//curl (Pk)-ndo.
s S

And

it - _;"l

S gy

(] Ty //:

| | jgee— s |

| 0 ____;_ | :

el
/ | | __{l--__ R
A [ D l ¥
-

We show that the M-, N- and P- components in both are equal.
Suppose S is given by z = f(z,y) for (x,y) € D. Orient 9D positively, i.e., counter-clock-wise.
Choose a parameterization for this. Suppose 0D is given by
7(t)=x(t)i+y(t)j for a<t<b.
Then 0S5 has the parameterization as
T(t) =a(t)i+y(t)j+ f(a(t),y(t))j for a<t<b.

Thus
dx

fgs M(z,y, z)dz :/a M(f(t),y(t),f(x(t),y(t))gdt_

Or that

M(z,y,z)dr = M(z,y, z)d.
as oD

Next, we apply Green’s theorem on the integral on the right to obtain:

M dr = — M. dA.
b M(zp.2)da //D S, f(@,9)
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Apply Chain rule on the right side integrand to obtain

M (.1' Y,z // x ya )) +Mz($7y:f<x7y))fy dA

oS

We now compute [ curl (M i)do. For this, notice that S has the parameterization:
F(t) =a(t)i+y(t) ]+ fe,9)k

_fx%_fyj‘i_ k
C

So, n = ,Wherec:|—fx%—fyj'+12:|.Then

curl (M 1) - = (0i+ M, j — Myk) - = [-M.f, — M,)/c.

J w1y ivdo == [[ [t Fad + Mo )] (cdA),

since ¢ = |V(z — f(z,y))|/|V(z — f(z,y)) - k|. Therefore,

// curl (M3)- = ¢ M(z,y,z)dz.
S oS

Similarly, other components become respectively equal.
Example 3.39. Consider S as the hemisphere 22 + 3% + 22 =9, z > 0. Let F (P)=yi—x].

The bounding curve for S in the zy-plane is dS given by 2> + 3> = 9, z = 0.

Parameterization of 9S is 7 (f) = 3cosfi + 3sinfj for 0 < § < 27. Then
= 2m A A~ A A
]{ F-d7 = / [(3sinf)i — (3cosf)j] - [(—3sinb)z + (3cosb) 5] do
a3 0
2m
= / [—9sin?0 — 9cos® §] df = —18T.
0

This is the line integral in Stokes’ theorem. For the surface integral, we have

~

Curlﬁ:(Py_Nz)i—i_(Mz_Pz).}—i_(N:c—My)]%:_Zk

Since on the surface g := 2% + y? + 2% — 9, we have

. grad g 1, . N -
n= erad g] :§(xz+yj+zk;).
. d 2
g do—lEadal g 2X3 0344
lgrad g - D] 2z z

where dA is the differential in the projected area D : z% + y? < 9. Then

[ Friio = [[ ZFar= [[ 22201 [[ (201 - -1sm
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Example 3.40. Evaluate §,,((z*—y)i+4zj+a2k)-d7,
where C'is the intersection of the plane z = 2 and the cone

2 =\/x? + 2

Parameterize the cone as

7(r,0) =rcosfi+rsinbj+rk

for0 <r <2,0<6<2r. Then

S:r(¢) = (rcos )i+ (rsinf)j + rk

¥

R 77~X?9 1 A . ~ N
n = ————= =—(—cosfi—sinfj+ k).
|77 X T \/§( J )
curl B = (Py— N.)i+ (M. — P)j+ (N, — M) e = —4i — 2rcos6j + k.
- 1
curl FF-n = —(4cosf +rsin(20) + 1
oL (26)+ 1)

do = rv2drdf.

By Stokes’ theorem,

F ar —//curlF nda—/ / (4cos @+ rsin(20) + 1)rdrdf = 4r.

Example 3.41. Evaluate fC(—yzi + 2]+ 22 k:) -d7, where C'is the curve of intersection of the

plane y + z = 2 and the cylinder 22 + y* = 1, oriented counter-clock-wise when looked from
above.

F=Mi+Nj+ Pk where M = —y? N =z, P=:2
cwrl B = (P, — N,)i+ (M, — P,) j+ (N, — M) ke = (14 2y) k.

Here, there are many surfaces with boundary C. We choose a convenient one: the surface .S on the
plane y+2z = 2 with boundary as C. Its projection on the zy-plane is the disc D : x*+y* < 1. Then
7 = k. With g(z,y) =y + 2z — 2, we have 1 = (grad ¢)/|grad g| = (j + k) /V2,grad g - T =1,
and do = /2 dA. Stokes’ theorem gives

F dr //CurlF nda// 1+2y\/_dA
2m ' 2 1 2 '
/0 /0(1+2T81n9)rdrd9—/0 (§+§Sln6) df = .
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Example 3.42. Compute [ [ curl F - ivdo, where F = 22 + yz ] + zyk and S is the part of the
sphere 22 + 3% + 2% = 4 that lies inside the cylinder 2 + y? = 1 and above the xy-plane.

The boundary curve C' is obtained by solving the two equations to get z? = 3. Since z > 0, we
have the curve C' as > + ¢ = 1, z = /3. In vector parametric form,

C: ?(9):cosﬁ%+sin95+\/§l% for0 < 0 < 2.

Then

—

F(7(0)) = V3cos i+ v3sinj + cosfsin b k.

By Stokes’ theorem,

2
//CurlF-ﬁda = j{F-d?:/ F-7'(0)do
s c 0

2
- / (—\/gcosesiHQ—i- \/gsinecose)dﬁ = 0.
0

Stokes’ theorem can be generalized to piecewise smooth surfaces like union of sides of a polyhedra.
Here, we take the integral over the sides as the sum of integrals over each individual side.

Similarly, Stokes’ theorem can be generalized to surfaces with holes. The line integrals are to be
taken over all the curves which form the boundaries of the holes.

-

The surface integral over S of the normal component of curl F' is equal to the sum of the line
-

integrals around all the boundary curves of the tangential component of F'. Here, the curves are

traced in the direction induced by the orientation of S.

Recall that a conservative field is one which can be expressed as a gradient of another scalar field.
In such a case, curl /' = 0. Then from Stokes’ theorem, it follows that fﬁc F-d7 =0.

Theorem 3.11. [f curl F = 0 at each point of an open simply connected region D in space, then
on any piecewise smooth closed path C lying in D, fC F.d7 =0.

3.11 Gauss’ Divergence Theorem

We have seen how to relate an integral of a function over a region with the integral of possibly
some other related function over the boundary of the region.

For definite integrals on intervals: fj f(@)dt = f(b) — f(a).
For a path from a point P to a point Q in R?, [ grad f - ds = f(Q) — f(P).
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For a domain D inR?, [[,(N, — M,)dA = [, F.d7.
For a surface S in R?, [ curl F-ido = fcﬁ-d?.

It suggests a generalization to three dimensions; and we use the divergence of a vector field for
this purpose.

Recall that div F = grad .F = V.-F. Thatis, the divergence of a vector field F=M (z,y,2) 1+
N(z,y,2)j + P(x,y, 2) k is the scalar function div F' = M, + N, + P..

Our generalization is [ [, div Fadv = I/ F - ivdo.

Theorem 3.12. (Gauss’ Divergence Theorem) Let S be a piecewise smooth simple closed bounded
surface that encloses a solid region D in R3. Suppose S has been oriented positively by its outward

S
normals. Let F' be a vector field whose component functions have continuous partial derivatives
on an open region that contains D. Then

//F.ﬁda:///divfdv.
S D

Proof: We prove this in the special case that D is a box in R? given by D = [a,b] x [c,d] X [e, f].
Let]_T):Mi—i-Nj—i-Pl%.Then

1 k

-
B

///Ddivmvz///DdiVMdV+///DdivNdv+///Ddivde.
//Sf.ﬁdg://sM.ﬁda+/AN.ﬁda+//SP,MO_.

We prove that the respective components are equal. We thus consider only the i-component. That
— ~
is, we take ' = M ¢ and prove the divergence theorem in this case.

Back face §, —

f ;
: (x=a)

\
& 4

Front face §, 7~

(x=b) .

X bt SR

So, let F = M. The solid has six faces. The surface integral over S is the sum of integrals over
these faces. A simplification occurs. F' = M ¢ we have F' - j = F'-k = 0. That is, F is orthogonal
to the normals of the top, bottom, and the two side faces.
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Writing the remaining faces as Sy and S, we have

//ﬁﬁda:// F-ﬁda+// F - fdo.
S Sf Sp

Parameterization of these faces give
Si: P=bit+yj+zk Sy: T=ai+yj+zk

forc <y <d, e <z < f. The outward normal to S is %, and to Sy, is — i. Then

— ford f pd
//F~fzda = / / M(b,y, 2) dydz—/ / M/(a,y, z) dydz
S e c e c

= ! d[M(b, y,z) — M(a,y, z)] dydz
/]

f opd b
= ///Mx(x,y,z)d:cdydz
- ///divfdv,

D

since F' = Mi = div F = div M = M,. 0
Example 3.43. Consider the field F = xi + v j + 2 k over the sphere S : 22 + y? + 22 = a2,

The outer unit normal to .S computed from grad f, with f = 22 + % + 22 — a2, is

VA2 +y2+22)  a

n =

Hence on the given surface,

1
= —(2*+y*+2*)do = ado.
a

//]_7)-ﬁda—//ada—axAreaofS—47ra3.
s s

Now, for the triple integral,

F-fdo

Therefore,

- Jor Oy 0z
divF=M,+N,+P,=—+ —=+—=3.
v T 8x+8y+8z

Therefore, with D as the ball bounded by S,

/// divF’dV:///3dV:3><VolumeofD:4m3.
D D

Example 3.44. Find the outward flux of the vector field zy i + yz j + zx k through the surface cut
from the first octant by the planes z = 1, y = 1 and z = 1.
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The solid D is a cube having six faces. Call the surface of the cube as .S. Instead of computing the
surface integral, we use Divergence theorem.

With ' = xyz + yz}' + zx l%, we have
. = Ory Oyz Ozx
div F' =
v ox * oy + 0z

=y+z+ux

Therefore the required flux is

11 p
//F-ﬁda—/// diVFdV—/ / /(y—I—z—i—x)dxdydz-i
s D o Jo Jo 2

Example 3.45. Evaluate [/ F - ivdo, where F = ayi + 2 + e j + sin(zy) k and S is the
surface of the solid D bounded by the parabolic cylinder z = 1 — 22, and the planes y = 0, z = 0,
andy +z = 2.

[[],(},I:-l g

(1,0,0) § A 02,073
z=1=x*
S has four sides. Instead of computing the surface integrals, we use Divergence theorem. We have
div F = (zy)e + (v + e“Q)y + (sin(xy)). = 3y.
And Disgivenby -1 <2 <1, 0<2<1-220<y<2—2z.

Therefore,

//Sﬁﬁda ~ ///divﬁdvz///gydv
= //1$/2Z3ydydzdx184/ /1z

- —5/_1[(33 PP - gdr=

Example 3.46. Fmd the outward flux of the vector field F across the boundary of the solid D
- Ti+y)+ 2 k
where F' = (T o2 + 2P

dz dx

and D : 0 <a? <a?+y?+ 22 <V




d - . N .
Write p = \/x2+y2—|—z2.Thend—p:ZWithF:MijLNj—i—Pk,wehave
x

p
O(zp~3) dp 1 3a?
M, = —p P —Bp il =
ox P R p>pd

3y2 1 322

Similarly, N, = — — 2 and P, = — — .

P P
— 2 2 2
Thendiv F — 5 _ 32 T3 7327

P p°
Thus the required flux is [, div Fdv =0.

In fact, flux through the inner surface and flux through the outer surface are in opposite directions.
Are their magnitudes equal?

- 1 A N N
Example 3.47. Consider the vector field F' = —(zi+yj + 2 k) on the sphere S of radius a
a

centered at the origin. Show that the flux through S is a constant.

We compute the flux directly. Let S be the sphere 2% + y? + 22 = a? for any a > 0. The gradient
computed from f = 2% + y* + 2% — a? gives the outward unit normal to S as

2x%+2y5+221§: _x%+yj+zl%

n = —
\/4:102 + 4y? + 422 a

Therefore, on the sphere S with ' = (27 +y j + 2 k)/(a? + y? + 22)3/2,

2 2 2
- T4+ Yyt + z 1
a a

. 1 1
//F-ﬁda://—2da:—2><AreaofS:47r.
S SCL a

3.12 Review Problems

Then

Problem 3.1: Compute the line integral of the vector function 237 + 32y2 j — z2y k along the
straight line segment L from the point (3,2,1) to (0,0, 0).

The parametric equation of the line segment joining these points is
r=-=3t y=-2t z=—tfor —1 <t <0.
The derivatives of these with respect to ¢ are
Ty =—3, Yy = —2, 2y = —1.
Then the required line integral is

/L$3 dr+3zy* dy—a*y dz = /1[(—3t)3(—3)+3(—t)(—2t)2(—2)—(—3t)2(—2t)(—1)] dt = _T87
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Problem 3.2: Let C' be the portion of the curve y = x? from (1, 1) to (2,8). Compute

/ (62°%y dr + 10y dy).
C

C'is parametrized asx = t, y = t3, 1 <t < 2. Then z; = 1, y, = 3t>. The line integral is
2
/(6:1:2y dx + 10xy* dy) = / (6t° - 14 10t" - 3t%) dt = 3132.
c 1

Problem 3.3: Evaluate fc(—y% — xyj) - d7, where C is the circular arc joining (1,0) to (0,1) of
a circle centered at the origin.

Prameterize C' by 7(#) = cosfi + sinfj, for 0 < # < 7/2. Thus z(f) = cosf, y(f) = sin .
Then

— ﬂ/2—>
/F-d? :/ F(R(0)) - 7(0) do
c 0
/2 R R R R
:/ (—sinfi —cosfsinf j) - (—sinf i+ cosfyj)df
0

w/2
= / (sin® @ — cos® sin 0) df =
0

AN
W =

Problem 3.4: Let ' = 527 + zyj + 222 k. Is fc F - d7 the same if C'is a curve joining (0,0, 0)
to (1,1,1), given by
(@ T@t)=ti+tj+thfor0<t<1, (b)7{t)=ti+t]+t2kfor0<t<1?

@) F(7(t) =5ti+12) + k. d7(t) = i + j + k. Thus

- ! 37
/F~d?:/ (5t +t* + 3)dt = —.
o 0 12

) F(T(t)) =5ti+2j +t3k. d7(t) = i + j + 2t k. Thus

g2 ! 2, 42 28
/F-dr :/ (512 + % 4 2t°)dt = —.
c 0 12

As we see the line integral is not path-independent.

Problem 3.5: Let D be a simply connected domain containing a smooth curve C' from (0, 0, 0) to
(1,1,1). Evaluate [, (2zdz + 2ydy + 4zdz).

F = 220+ 207 + dzk = grad f, where f = 2% + y? + 222 Therefore, the line integral is
independent of path C. Hence its value is f(1,1,1) — f(0,0,0) = 4.

Problem 3.6: Evaluate [[,(7zi — z k) - i do over the surface S : 2% + y? + 2% = 4.

div F = div (Txi— zk) =7 — 1 = 6. So, the integral = 6 x volume of S = 4.

Problem 3.7: Evaluate I = [,(32®dz + 2yzdy + y*dz), where C is a smooth curve joining
(0,1,2) to (1, —1,7) by showing that F' has a potential.
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In order that F' = grad f, we should have
f:c:M:3m2a fy:NZQyZ, fz:P:y2
To obtain such a possible f, we use integration and differentiation:

f=a"+g(y,2), f,=9,=2yz, g=y"2+h(2),
f.=y*+h ()= N()=0, h(z)=0, say.
Then f = 23 + y*2. We verify that F= grad f. Therefore, I = F)(l, —1,7) — f(0,1,2) = 6.

Problem 3.8: Determine whether I = [, (2zy2* do+(2*2*+2 cos(yz)) dy+(22°yz+y cos(yz) dz)
is independent of path. Evaluate /, where C'is the line segment joining (0,0, 1) to (1, 7/4, 2).

Here, M = 2xyz?, N = x°2® + zcos(yz), P = 22%yz + y cos(yz). Then
M, =2x2* = N,, N, =222+ cos(yz) — yzsin(yz) = P,, P, = dxyz = M..

Hence the line integral is independent of path. We find f such that F= grad f. Now,
f= /Ndy = 2?22y +sin(yz) + g(x, 2), fo = 222%y + g, = M = 2wy2°.

G: =0, g = h(2), f. = 22%yz +ycos(yz) + W (z) = P = 22%yz + ycos(yz), h'(z) = 0.
Taking h(z) = 0, we get f(z,y,2) = 2%yz? + sin(yz) as a possible potential. Then

I=f(1,7/4,2) — f(0,0,1) = 7 + 1.

Problem 3.9: Use Green’s theorem to compute the area of the region
(a) bounded by the ellipse 22 /a® + y?/b* = 1.
(b) bounded by the cardioid r = a(1 — cos ) for 0 < 0 < 2.

(a) Recall: Green’s theorem gave Area of D = 3 §, (x dy —y dx). The ellipse 22 /a* +y?/b* = 1
has the parameterization z(¢) = acost, y = bsint for 0 < ¢ < 2. Then its area is

1 1

2w 2w
—/ (xy) —ya')dt = = / (abcos®t — (—absin®t)) dt = wab.
2 Jo 2 Jo

(b) In polar form, x = rcos#, y = rsinf. Then dr = cos@dr — sinfdf and dy = sin @ dr +
r cos 6 df. Consequently the area is equal to

1 1 2 rom
—]{ (fdy—ydﬁ)z—% T2d9:a—/ (1—0039)2d9:3—wa2.
2 Jop 2 Jop 2 Jo 2

Problem 3.10: Compute the flux of the water through the parabolic cylinder S : y = 22, 0 < x <
2,0 < z < 3 if the velocity vector F' = 3221 + 6 j + 6zx k, speed being measured in m/sec.

Write x = u, z = v. We have y = 22 = 2. The surface is
S : ?:ufi—u%’—i—vl%, for0 <u<2 0<v<3.
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Then

—

R=TuxTy=(1+2])x k=2ui— .

On S,
F(7(u,v)) = 3v%14 67 + 6uv k.

Hence F( ,v)) - 1 = 6uv? — 6. Consequently the flux is

//F nda—/ / (6uv® — 6) dudv—/ (12v* — 12) dv = 72 m? /sec.

Problem 3.11: Find the area of the portion of the surface of the cylinder 22 + y? = a? which is cut

out by the cylinder 22 + 22 = a.

One-eighth of the required surface area is in the first octant. This portion of the surface has the
equation y = v/a? — x2. This gives

W_ W gL JTrEe L
8x_ vV a —xz 8 ym yz aQ—SL’2_ a2—x2.

The domain of integration is a quarter of a disk given by

x2+x2§a2§a2, x>0, z>0.

Therefore, the required area is

a VaZ—22 a a
SX/[/ —dz]dx—&z/ dx = 8a>.
o LJo a? — a2 0

Problem 3.12: A torus is generated by rotating a circle C' about a straight line L in space so that
C does not intersect or touch L. If L is the z-axis and C has radius b and its centre has distance
a (> b) from L, then compute the surface area of the torus.

The surface S of the torus is represented by
7(u,v) = (a+ bcosv) cosui + (a+ beosv) sinu j + bsinv k.

Here, v is the angle in describing the circle and u is the angle of rotation. Thus 0 < w,v < 27.
Projection onto the uwv-plane shows that

7(u) = —(a+bcosv)sinui+ (a+ bcosv)cosu j
7(v) = —bsinvcosui—bsinvsinu j+bcosv k
7(u) x T(v) = bla+bcosv)(cosucosvi+sinucosv j + sinv k)

Hence |7 (u) x 7 (v)] = b(a + bcosv) and the area is

2 2T
/ |7 (u) x 7(v)| dudv = / / b(a + bcosv) dudv = 4m*ab.
c o Jo

Problem 3.13: Let S be the closed surface consisting of the cylinder 22 + 42 = a?, 0 < 2 < b
and the circular disks 22 + y? < a? one with z = 0 and the other with z = b. By transforming to a
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triple integral evaluate I = [, (2® dy dz + 2%y dz dx + 2*z dx dy).

F = Mi+ Nj+ Pk, where M = 23, N = 2%y, P = 2%z Then div F = 522. Let D be the
solid bounded by S. In cylindrical coordinates, using Gauss’ divergence theorem,

b a 21
1= /// 522dV = 5/ / / r2cos?Ordrdfdz = §7ra4b.
D o Jo Jo 4

Problem 3.14: Compute the flux of the vector field F' = (22 +2y2) i +cos(z +2) j+ (™% — zy2) k
through the boundary of the surface given in the following figure:

0 0 o
div (F) = %(22 +ay?) + oy cos(z + z) + g(e’y —2y*) = 0.

Let D be the region enclosed by S. By the Divergence theorem,

Flux through S = /// div F dV = 0.
D

Problem 3.15: Let a closed smooth surface S be such that any straight line parallel to the z-axis
cuts it in no more than two points. Let n3 denote the z-component of the unit outward normal 7 to
the surface S. Then what is [, zng do?

In this case, S has an upper part and a lower part. Suppose they are given, respectively, by the
equations

Z:fu<x7y)7 Z:fb(l’,y).
Let D be the projection of S on the xy-plane. Then

//Szngdaz//Dfu(x,y)dA—//be(x’y)dA‘

This is equal to the volume of the solid B bounded by S.

Alternatively, take F = 2k Thendiv F = 1. By the Divergence theorem,

//zngda://F-ﬁda:///din_T)dV:VOIumeofB.
s S B

Problem 3.16: Prove that the integral of the Laplacian over a planar region is the same as the
integral, over the boundary curve, of the directional derivative in the direction of the unit normal
to the boundary curve.

We rephrase: Let f(z,y) be a function defined over a simply connected region D in the xy-plane.
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Let C' be the boundary curve of D. Denote by D, f(x,y) the directional derivative of f in the
direction of the unit outer normal 7 to C. Show that [, (foz + fyy)dA = [, Dy f ds.

Let 0 be the angle between 7 and ¢, the z-axis. Then 7 = cos@i + sinf j. If « is the angle
between the tangent line to C' and the z-axis, then cos & = — sin § and sin a = cos 6. Then

dr = cosads = —sinfds and dy = sinads = cosf ds.
Consequently, the directional derivative D,, f is given by
Duf(x,y) = (foi+ fyJ) 7= focosf + f,sind.

—> A A
For the vector function ' = f, ¢ + f, j, by Green’s theorem, we obtain

//D(fasm + fyy)dA = /Cf:vdy — fydx = /C(fx cosf + f,sinf)ds = /chde'

Problem 3.17: Let f and g be functions with continuous partial derivatives up to second order on
a domain D in space, which has a smooth boundary 0D. Denote by A f and Ag their Laplacians.
Prove the Green’s formula:

s o= [ (5

Let F = Mi +Nj+P k. Gauss’ divergence theorem says that

///\ﬁvfdvzik/ F - #do.
D oD

Suppose the unit normal 7 has the components a, b, c in the x, y, z-directions, respectively. Then

/[é@ﬁ+A@+Pﬁm/:/K;mw+bN+cmda

Substitute M = gf, — f9., N =g9f, — fgy, P =gf. — fg.. Then

Mx+Ny+Pz :g(fxx+fyy+fzz) _f(gxx+gyy+gzz) =gAf — fAg.

_of
~ 994

dg

aM +bN + cP = g(afs +bf, + cf.) — f(ags + bg, + cg.) ErS

Now Green’s formula follows from Gauss’ divergence theorem.
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Appendix A

One Variable Summary

This appendix is devoted to summarizing some results and formulas from calculus of functions
of one real variable that we may use in the class. For details, see Functions of One Variable - A
Survival Guide.

A.1 Graphs of Functions

z ifxz>0

The absolute value of x € R is defined as |z| =
—x ifz <0

Thus |z| = V2. And | — a] = a or a > 0; |x — y| is the distance between real numbers z and y.
Moreover, if a,b € R, then

a al .
= al = lal, Jab = ol . [§] = T ifb 20, a8 <lal-+ . |1l 18] < Ja bl

Let x € R and let a > 0. The following are true:

L. |z| =aiff z = +a.

2. 2| < aiff —a < x < aiffz € (—a,a).
3. |z| <aiff —a <z <aiffx € [—a,al.
4. |z| > aiff —a <z orzx >aiffr € (—o0,—a) U (a,00) iff t € R — [—a,al.
5. |z| > aiff —a <zorx >aiffx € (—o0, —a] U [a,00) iff z € R — (—a,a).

Therefore, fora € R,§ >0, |z —a|<d iff a—0 <z <a+d.
The following statements are useful in proving equalities from inequalities:

Leta,b € R.
1. If for each € > 0, |a| < ¢, then a = 0.

2. If foreache > 0, a < b+ ¢, thena < b.
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Graphs of some known functions including | - |, are as follows:

z ifx>0
Ly=lz|= .
—z ifz <0

—x ifz <0 :
R v = f{x
2.y=¢ 2? ifo<zx<1 \ 2 v
y=1
ifx>1 I o
B — 0] 2 *
r  if0o<z<l1 f
3-y:f($): . (1.1
2—x ifl<ax<2

4. y=|z] =nifn <z <n+1forn € N. Itis the
largest integer less than or equal to z.

The largest integer function or the floor function.

Sometimes we write | | as [ ].

50 y=|x] =n+1lifn<x <n+1forn e N.Itisthe
smallest integer greater than or equal to x. B gl

The smallest integer function or the ceiling function. /=

6. The power function y = 2" forn = 1, 2, 3,4, 5 look like
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7. The power function y = z" forn = —1 and n = —2 look like

Domain: x + ()
Range: v+ 0 0
Domain: x # 0

Range: y =10

: _ a 1 1 3 _ 2
8. The graphs of the power function y = z“ fora = 3, 3, 5 anda = £ are
¥ y
¥ v
1 /
|
x a : =4
Domain: 0 = x < = Domain: —
Range: O0=y<w Range:
.‘l
M2
y =z
\/
x L x
0 1
Domain: (0 = x << = Domain: —o0 << x < o=
Range: 0=y Range: O=y==

9. Polynomial functions are y = f(x) = ag + a;z + agz® + - - - a,z"™ for some n € NU{0}. Here,
the coefficients of powers of x are some given real numbers ay, . . ., a, and a,, # 0. The highest
power n in the polynomial is called the degree of the polynomial. Graphs of some polynomial
functions are as follows:

\=%—%—2.(+—
v
4 >
¥ - ooy 4 1V e
r y= 8 = 1453 — 922 4 1w — | it St e e Ealt
B 16—
2t 2t
- \ 1 x
-1 1 2
1 | S 15y -I
-4 =] 2 4 s | ;,—_._ x

1
2
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10. A rational function is a ratio of two polynomials; f(z) = Iq%, where p(z) and ¢(x) are

polynomials, may or may not be of the same degree. Graphs of some rational functions are as
follows:

=
T
\ \
!
P £
+1i
=l
/
&L
ey
£
=
2
I
Laitn

ull 2 4 0 ] 2
1 -IF
-4 &
B NOTTO SCALE
4

11. Algebraic functions are obtained by adding subtracting, multiplying, dividing or taking roots
of polynomial functions. Rational functions are special cases of algebraic functions. Some graphs
of alhebraic functions:

13 y y = x(l — )"
\ _\'=.\'|' {x—4) .

ey

12. Trigonometric functions come from the ratios of sides of a right angled triangle. The angles
are measured in radian. The trigonometric functions have a period. That is, f(z + p) = f(x)
happens for some p > 0. The period of f(x) is the minimum of such p. The period for sin x is 2.

The functions cos z and sec x are even functions and all others are odd functions. Recall that
f(z)is even if f(—z) = f(x) and it is odd if f(—z) = — f(x) for each z in the domain of the
function. Some of the useful inequalities are

—lz| <sinz < |z| forall z € R.

—1 <sinz, cosx <1 forall x € R.
0<1—cosz < |z| forall z € R.
sinz <z <tanz forall xz € (0,7/2).
In fact, if z # 0, then sinz < |z|.

Graphs of the trigonomaetric functions are as follows:
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¥y=CcO5x

y=lanx

|
|
; ! . wfw & /|0 & fr 3
L : :
-7 Mo X & Az 2a - 7 P I I
1 2 & | 2 2 2 2
| | | |
Domain: —= =< x < = Domain: —= < x < = Domain: x I_TZ—'_, =+ '%T'n—
Range: -1=y=1 Range: -1=y=1] g R =
Period: 2w Period: 2w P.mg:} PSR
(a) (b) eriod: o {©)
Y b ¥
y=sccx ¥ =CSCXx ¥y = colx
J 1 U ‘ 1
1 x 1 | I 5 | |
Ik ™ 3m - 7w 0| 37 Xm - _aYP| T\F
m m_ 2 m T\[ 2

Domain: x #1%, * jm—. i Domain: x # 0, *a, *2m, ... Domain: x # (0, *a, *27, . . .

= < Range: yv=-landy =1 Range: —o0 << y <<
Range: y=-landy=1 e - ' jod:

; Period: 2w Period: o

Period: 2w

(dy (e) (f)

13. Exponential functions are in the form y = a” for some a > 0 and a # 1. All exponential
functions have domain (—o00, 00) and co-domain (0, c0). They never assume the value 0. Graphs
of some exponential functions:

¥ ¥
v = 10¢ y =10
12 12
10+ 10+
8 8
] y=37 6
4
,L oS st
d y==2"
e : : . ] ? ——— 5
-1 =05 0 0.5 1 =1 =05 0 0.5 1

14. Logarithmic functions are inverse of exponential functions. That is,
al°%a® = log,(a®) = z. Some examples:

¥ y = log,x
y=log.x

OB

I -
x
0 1 I In-
v = logsx
“1H ) _
v =log;x
|

120



15. Trigonometric inverse functions:

Domain: -1=x=1 Domain: -1 = = 1
T oo, T I
Range: —— =y =2 Range: l=y=mw
¥ y
i T
2
¥y = 8in g y = cos'x
T
| | _‘- =
-1 1 2
[] = . |
—t+-= L X
5 -1 1
(a) (b)
Domain; —ee << x << s Domain: x=-lorx=1
Range: -2 < v < E Range: O0=y=myv+ =
A &~
¥ ¥
________ L e S M I
] ﬂll J X S
L ! ! ! G Cmmeea i ol
-2 -1 1 2 —
_m /
=
_______ el e il e | | | %
2 =1 1 2
ic) (d)
Domain: r=-lorx =1 Domain: —se < xr < oo
Range: —— =y=—,v# 10 Range: 0<y<w
E -. A el £ A
2 2
¥ 3
3 T
2

(e) (f)

Functions that are not algebraic are called transcendental functions. Trigonometric functions, ex-
ponential functions, logarithmic functions and inverse trigonometric functions are examples of
transcendental functions.

A.2 Concepts and Facts

Leta < ¢ < b.Let f : D — R be a function whose domain D contains the union (a, c) U (¢, b).
Let ¢ € R. We say that the limit of f(x) as = approaches c is ¢ and write it as

lim f(z) =¢

r—cC

iff for each € > 0, there exists a 0 > 0 such that for each z € (a,¢) U (¢,b) with 0 < |z — ¢| < 0,
we have | f(x) — (| <e.
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{+ ¢

c—90 c+9

Limit Properties: Let k be a constant; or a constant function.

1. imk =% and limz = c.
xr—c xr—c

2. m(f(x) £ g(x) = lim £(x) & lim g(s).

4. lim[f(z)g(z)] = lim f(x) lim g(z).

5. Jim[f(2)/g(x)] = [ f(x)] / [T g(a)] if Tim g(x) # 0.

6. lim(f(z))" = (lim f(z))" if taking powers are meaningful.
Tr—C Tr—C

7. lim f(x) is a unique real number if it exists.
T—C

8. If lim g(x) =0, and lim[f(z)/g(z)] exists, then lim f(z) = 0.

r—c r—c r—c

9. (Sandwich) Let f, g, h be functions whose domain include (a,c) U (¢,b) for a < ¢ < b.
Suppose that g(z) < f(x) < h(z) for all z € (a,c) U (¢, b). If }cgrrég(x) =/ = ilgi h(z),
then glgl_}ﬂi f(z) =4

10. (Domination) Let f, g be functions whose domains include (a,c) U (¢, b) for a < ¢ < b.

Suppose that both }61_% f(z) and il_rg g(x)exist. If f(x) < g(x) forall z € (a,c)U(c,b), then
lim f(z) < lim g(x).
Tr—C Tr—C

Let [ be (a,00) or [a,00) for some a € R. Let f : [ — R. Let £ € R. We say that lim f(z) =/

if for each ¢ > 0, there exists an m > 0 such that if = is any real number greaterxtTl?n m, then

|f(z) =] <e.

Let f(z) have a domain containing (a, ¢). Then zlggl f(z) = oo iff for each m > 0, there exists a

d > 0 such that for every x with ¢ — § < = < ¢, we have f(z) > m.

Thatis, lim f(z) = oo iff, “as x increases to ¢, f(x) increases without bound”.
Tr—C—

Let f : D — R be a function. Let ¢ be an interior point of D. We say that f(x) is continuous at ¢

itlim /() = f(a).

If D = [a,b) or D = [a, b, then f(z) is called continuous at the left end-point a if 1im+ f(z) = f(a).
T—a
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If D = (a,b] or D = [a, b, then f(z) is called continuous at the right end-point b if lirbn f(z) = f(a).
z—b—

f(z) is called continuous if it is continuous at each point of its domain D.

The sum, multiplication by a constant, and product of continuous functions is continuous. In
addition, the following are some properties of continuous functions:

1. Let f(x) be continuous at x = ¢, where the domain of f(x) includes a neighborhood of c. If
f(c) > 0, then there exists a neighborhood (¢ — §, ¢ + ) such that f(z) > 0 for each point
x € (c—0d,c+9).

2. Let f(x) be a continuous function, whose domain contains [a, b] for a < b. Then there exist
a, € Rsuchthat {f(z) : z € [a,b]} = |o, O]

3. (Extreme Value Theorem) Let f(x) be continuous on a closed bounded interval [a, b]. Then
there exist numbers ¢, d € [a, b] such that f(c) < f(z) < f(d) for each x € [a, b].

4. (Intermediate Value Theorem) Let f(x) be continuous on a closed bounded interval [a, b].
Let d be a number between f(a) and f(b). Then there exists ¢ € [a, b] such that f(c) = d.

Let f(x) be a function whose domain includes an open interval (a, b). Let ¢ € (a,b). If the limit

o et ) = (o)

h—0 h

exists, we say that f(x) is differentiable at x = ¢; and we write the limit as f’(c) and call it the

derivative of f(x) at x = c. If f/(c) exists for each ¢ € (a, b), then we write f'(z) as %.

Also, derivative of f defined on a closed interval [a, b] at the end-point «a is taken as the left hand
derivative, where in the defining limit of the derivative we take h — a — . Similarly, derivative at
b 1s taken as the limit of that ratio for h — 0 + .

Let f(x) be a function defined on an interval I.

We say that f(z) is increasing on [ if forall s <t € I, f(s) < f(¢).

Similarly, we say that f(z) is decreasing on [ if forall s <t € I, f(s) > f(t).
A monotonic function on [ is one which either increases on [ or decreases on /.

The sum, multiplication by a constant, and product of differentiable functions is differentiable. In
addition, the following are some properties of differentiable functions:

1. Each function differentiable at z = ¢ is continuous at z = c.

2. Derivatives of Sum, product etc. are respectives equal to sum, product etc of derivatives.

3. (Chain Rule) #4420 — 410 . ),

4. (Rolle’s Theorem) Suppose that f : [a,b] — R is continuous, f(x) is differentiable on (a, b),
and f(a) = f(b). Then f’(c) = 0 for some ¢ € (a,b).

5. (Mean value Theorem) Suppose that f : [a,b] — R is continuous and f(x) is differentiable
on (a,b). Then there exists ¢ € (a,b) such that f(b) — f(a) = f'(c)(b — a).
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6. Let [ be an interval containing at least two points. Let f : [ — R be differentiable. If
f'(x) = 0foreach x € I, iff f(x) is a constant function.

7. (Cauchy Mean Value Theorem) Let f(x) and g(x) be continuous on [a, b] and differentiable

on (a,b). If ¢(x) # 0 on (a, b), then there exists ¢ € (a, b) such that J;:Eg = gg;:g((s))

8. (L’Hospital’s Rule) Let f(z) and g(x) be differentiable on a neighborhood of a point z = a.

Suppose f(a) = g(a) = 0but g(x) # 0, ¢’'(x) # 0 in the deleted neighborhood of x = a. If
/ /
f'(=)

s
lim exists, then lim ——= = .
z—a g’(gj) z—a g(x) r—a g’(g;)

9. Let f(x) be continuous on |[a, b] and differentiable on (a, b).

(a) If f'
(b) If #'

(z) > 0 on (a,b), then f(z) is increasing on [a, b].
(z) < 0on (a,b), then f(z) is decreasing on [a, b].

Let a function f(z) have domain D. The function f(z) has a local maximum at a point d € D if
f(z) < f(d) for every z in some neighborhood of d contained in D. in such a case, we also say
that the point x = d is a point of local maximum of the function f(x).

Similarly, f(z) has an local minimum at b € D if f(b) < f(z) for every x in some neighborhood
of b contained in D. In this case, we say that the point z = b is a point of local minimum of the
function f(x).

The points of local maximum and local minimum are commonly referred to as local extremum
points; and the function is said to have local extrema at those points.

Let f(z) have domain D. A point ¢ € D is called a critical point of f(z) if ¢ is not an interior
point of D, or if f(x) is not differentiable at = = ¢, or if f'(c) = 0.

If f(z) has an extremum at = ¢, then c is a critical point of f(z).
Test for Local Extrema:

Let ¢ be an interior point of the domain of f(z) with f'(c) = 0.
f'(z) changes sign from + to — at x = c iff z = c is a point of local maximum of f(z).
If f”(c) < 0, then x = ¢ is a point of local maximum of f(x).
f'(x) changes sign from — to + at x = ciff z = ¢ is a point of local minimum of f(z).
If f”(c) > 0, then z = cis a point of local minimum of f(z).

Let x = ¢ be a left end-point of the domain of f(x).
f'(x) < 0 on the immediate right of z = ¢ iff x = c is a point of local maximum of f(z).
f'(x) > 0 on the immediate right of x = c iff 2 = ¢ is a point of local minimum of f(z).

Let x = ¢ be a right end-point of the domain of f(x).
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f'(x) > 0 on the immediate left of x = ¢ iff # = c is a point of local maximum of f(z).

f'(z) < 0 on the left of x = ciff x = cis a point of local minimum of f(z).

The graph of a function y = f(x) is concave up on an open interval [ if f’(x) is increasing on .
The graph of y = f(z) is concave down on an open interval [ if f’(z) is decreasing on .
A point of inflection is a point where y = f(x) has a tangent and the concavity changes.

Second derivative test for concavity:

Let y = f(x) be twice differentiable on an interval /.
If f”(x) > 0 on I, then the graph of y = f(z) is concave up over /.
If f”(x) < 0on I, then the graph of y = f(x) is concave down over /.

If f”(x) is positive on one side of x = ¢ and negative on the other side, then the point
(¢, f(c)) on the graph of y = f(x) is a point of inflection.

Let f : [a,b] — R. Divide [a, b] into smaller sub-intervals by choosing the break points as
a=xg< 11 <...<xH =0

The set P = {xq, 21, ..., x,} is called a partition of [a, b].

Now P divides [a, b] into n sub-intervals: [z, z1],- -, [Tn_1,2,]. Here, the kth sub-interval is
[z)_1, xx]. The area under the curve y = f(x) raised over the kth sub-interval is approximated by
f(ex)(xr — xp_1) for some choice of the point ¢ € [zy_1, x4

Write the choice points (also called sample points) as a set C' = {c¢y,...,¢,}.

Then the Riemann sum

S(f, P,C) = chk (T, — Tp-1)

is an approximation to the whole area ralsed over [a,b] and lying between the curve y = f(z)
and the x-axis. By taking the norm of the partition as || P|| = ml?x(a:k — x_1), we would say that

when the norm of the partition approaches 0, the Riemann sum would approach the required area.
Thus, we define the area of the region bounded by the lines x = a, z = b, y =0, and y = f(z) as

lim Zf (cx)(zr — Tp—1)

I1P]—0+

provided that this limit exists. We define this limit (which is the mentioned area here) as the definite
integral of f on the interval [a, b]. That is,

b n
/ f(x)de = H]lDiHIgOZf(ck)(xk — Tp_1)-

Let f : [a,b] — R be a continuous function. Then ff f(z) dx exists.

The definite integral has the following properties:
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(Properties of Definite Integral)

1.

Let f(z) have domain [a,b]. Let ¢ € (a,b). Then f(z) is integrable on [a,b] iff f(z) is
integrable on both [a, c| and [c, b]. In this case,

l%mmle@m+lvmm

. Let f(x) and g(z) be integrable on [a, b]. Then (f + g)(z) is integrable on [a, b] and

/a (f + )@ = / (@) + gla)) da — / "y de /abg(x) .

. Let f(z) be integrable on [a, b]. Let ¢ € R. Then (cf)(z) is integrable on [a.b] and

/a (cf)(x) dz = / / e

. Let f(x) and g(z) be integrable on [a, b]. If for each = € [a,b], f(x) < g(x), then

/f m</ o(x) da

. Let f(x) be integrable on [a, b]. If m < f(z) < M for all z € [a, b], then

m@—a)g/qﬂ@dxgﬂﬂb—@.

(Average Value Theorem) Let f(x) be continuous on [a, b]. Then there exists ¢ € [a, b] such

that X ,
10 = 5= [ fordo

b

. Let f(x) be continuous on [a, b]. If f(x) has the same sign on [a, b] and / f(x)dr =0,

a

then f(x) is the zero function, i.e., f(z) = 0 for each = € [a, b].

We extend the integral even when a £ b by the following:

b
If a = b, then we take / f(z)dx = 0.

b a
If a > b, then we take / f(z)de = —/ f(z)dx
a b

Also, for any real number c¢; even when ¢ is outside the interval (a, b) we have

anmzlv@w+lwmm

In all these extensions, we assume that the definite integrals exist.

The main result that shows that differentiation and integration are reverse processes is the follow-
ing:

126



(Fundamental Theorem of Calculus) Let f(x) be continuous on [a, b].
1. If F(z) is an antiderivative of f(z), then f f(z)dz = F(b) — F(a).

2. The function g(z f f t dt is continuous on [a, b] and differentiable on (a, b). Moreover,

:dxfaf )

The chain rule for differentiation is translated to integration as follows:

(Substitution)

1. Let u = g(z) be a differentiable function whose range is an interval I. Let f(z) be continu-

ous on /. Then
[ foang@ e = [ s

2. Letu = g(x) be a continuously differentiable function on [a, b] whose range is an interval /.
Let f(x) be continuous on /. Then

g(b)
/ flg x)dr = f(u) du

g(a)

The rpoduct rule for differntiation gives the integration by parts formula.

/f(sv)h(a:) d:B:f(a:)/h(x) d:v—/ {f’(x)/h(x) da:} dz + C.

We remember it as follows (Read I’ as first and S as second):
Integral of F' x S = F'x integral of S — integral of (derivative of F' x integral of \S).
The natural logarithm In x is defined as follows:

1
lnx:/ Zdt for x > 0.
1

The exponential function is the inverse of the natural logarithm. That is,
exp: R — (0,00); y=exp(x) iff z=Iny.
Since exp(z) exp(y) = exp(x + y) and exp(0) = 1, we write
exp(z) =€, where e = exp(l).
Then hyperbolic functions are defined by

. et —e® et +e” et —e "
simhr = ——, coshz = ——, tanhr=——.
2 2 et + e ®

1 1
sinh™z =In(z 4+ V22 +1), cosh™ 'z =In(z++22—1), tanh 'z = §ln < + w) .

1—=x
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Notice that cosh™! has domain as = > 1 and tanh™* has domain as —1 < x < 1.

Let C be a curve given parametrically by = = f(t),y = g(t), a < t < b. Assdume that both f(t)
and ¢(t) are continuously differentiable.

b
Length of the curve = L = / VIFO)2+ [g(t)2 dt.

If the curve is given as a function y = f(z), a < x < b, then take z = t and y = f(¢) as its
parameterization. We then have the length as

b b
L:/ \/1+[f’(x)}2dx:/ V1+(y)2de.

Notice that this formula is applicable when f’(z) is continuous on [a, b].

We write L = f: ds with limits a and b for the variable of integration, which may be z, y or ¢.

Here,
ds = VI OP + O dt = /(d2)” + (dy)” = m d = m dy.

Suppose that a curve is given in polar coordinates by » = f(#) for a continuous function f(0),
where av < § < 3. Then the area of the sector and the arc length of the curve are

B B
Area :/ r*df, Length :/ V24 (r')2do.

A.3 Formulas

Here are some formulas for the exponential and the logarithm functions:

tP
lim — =0 for pe N and a > 1.

t—oo @

ne=1=¢", " =z In(c") =2z, da* ="M
) b ) )

lim Inx =00, lim Inx = —o00, lim e" = o0, lim e* =0,
T—00 xz—0+ T—00 T——00
!/ ]' x\/ x x\/ x ‘ 1 x T
(Inz) =—, (%) =¢€", (a®) = (Ina)a”, —dt =1, etdr = ¢€”.
x 1t
. In(1+ zh) et —1 . \h _
fl}g{l}T—l for x # 0, }ILILI(I] ; =1, }ILIL%(l%—a:h) =e",

Below are given some integrals, from which you should get the derivatives by following the simple
rule that if [ f(z)dx = g(z) + ¢, then ¢'(x) = f(z).

L[udv:uv—j vdu E.fa"du=a +C, a#l, a=0
. In a

3.fcnsudu:sinu—{? 4.f5inudu=—cnﬁu+(?
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1
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X
2
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. na n
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even function, 119
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bounded subset, 4 Extreme value theorem, 123
Cauchy MVT, 124 floor function, 117

flux, 85, 98
flux density, 85

ceiling function, 117

closed curve, 76

closed subset, 4 fundamental theorem of calculus, 127

closure, 4 gradient, 21

co-domain, 5 gradient field, 73
concave down, 125 graph, 5

concave up, 125 Green’s theorem-1, 85
connected, 4 Green’s theorem-2, 86
conservative, 73

continuous, 10, 122 Hessian, 27

continuous on, 10 . . .
incompressible fluid, 85
contour curves, 6

critical point, 26, 124

curl of F, 84

increasing, 123
independent of path, 76
integrable, 41

decreasing, 123 integration by parts, 127
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differentiable, 17 intermediate value theorem, 123
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differential, 16
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133
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local extrema, 124 Riemann integrable, 41

Riemann sum, 41, 125

local extremum, 26
Rolle’s theorem, 123

local extremum points, 124
local maximum, 26, 124 saddle point, 26

local mjdx.lmum value, 26 sample points, 41, 125
local minimum, 124 sandwich theorem, 122
logarithmic functions, 120 simple curve, 76

simply connected region, 76

mean value theorem, 123 . .
solid of revolution, 36

minimum, 26 o
) substitution theorem, 127
monotonic, 123

surface, 5
norm, 41, 125 surface area, 90
normal-form of Green’s, 86 surface integral, 94
normal line, 23 surface integral over S, 98
odd function, 119 tangent-form of Green’s, 86
open subset, 4 tangent plane, 15, 23
orientable surface, 98 Taylor’s formula one variable, 24
oriented surface, 98 tests for concavity, 125

tests for local extrema, 124
partial derivative, 11 total differential, 16
partition, 41, 125 total increment, 16
period of f(x), 119 trigonometric functions, 119

point of absolute maximum, 26 ' N
point of inflection, 125 uniform partition, 41

point of local maximum, 26, 124 vector field, 73

point of local minimum, 124 volume of solids with holes, 38

polar rectangle, 46
polynomial functions, 118 work, 74
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