Formal Language Theory

Problem Sheet 1

1. Find Regular Grammars for the following languages on $\{a, b\}$
(a) $L=\left\{w: n_{a}(w)\right.$ and $n_{b}(w)$ are both even $\}$.
(b) $L=\left\{w:\left(n_{a}(w)-n_{b}(w)\right) \bmod 3=1\right\}$.
(c) $L=\left\{w:\left(n_{a}(w)-n_{b}(w)\right) \bmod 3 \neq 0\right\}$.
2. Find a regular grammar that generates the set of all Pascal real numbers.
3. Find the minimal $D F A$ for the following languages
(a) $L=\left\{a^{n} b^{m}: n \geq 2, m \geq 1\right\}$.
(b) $L=\left\{a^{n} b: n \geq 0\right\} \cup\left\{b^{n} a: n \geq 1\right\}$.
(c) $L=\left\{a^{n}: n \geq 0, n \neq 3\right\}$.
4. Find regular expression for the set $\left\{a^{n} b^{m}:(n+m)\right.$ is even $\}$.
5. Give a regular expression for the following languages:
(a) $L=\left\{a^{n} b^{m}: n \geq 4, m \leq 3\right\}$.
(b) $L=\left\{a^{n} b^{m}: n \geq 1, m \geq 1, n m \geq 3\right\}$.
(c) $L=\left\{a b^{n} w: n \geq 3, w \in\{a, b\}^{+}\right\}$.
(d) $L=\left\{w \in\{0,1\}^{*}: w\right.$ has exactly one pair of consecutive zeros $\}$.
(e) $L=\left\{w \in\{0,1\}^{+}: w\right.$ ends with 01$\}$.
(f) $L=\left\{w \in\{0,1\}^{+}:|w|_{0}=\right.$ even $\}$.
6. Prove the following:
(a) $\left(r_{1}^{*}\right)^{*} \equiv r_{1}^{*}$.
(b) $r_{1}^{*}\left(r_{1}+r_{2}\right)^{*} \equiv\left(r_{1}+r_{2}\right)^{*}$.
(c) $\left(r_{1}+r_{2}\right)^{*} \equiv\left(r_{1}^{*} r_{2}^{*}\right)^{*}$.
for all regular expression r_{1} and r_{2}. Here \equiv stands for equivalence in the sense of the language generated.
7. Find an $N F A$ that accepts the language $L\left(a a^{*}(a+b)\right)$.
8. Find $D F A$ that accepts the following languages:
(a) $L\left(a a^{*}+a b a^{*} b^{*}\right)$.
(b) $L\left(a b(a+a b)^{*}+(a+a a)\right)$.
(c) $L\left((a b a b)^{*}+\left(a a a^{*}+b\right)^{*}\right)$.
(d) $L\left(\left(\left(a a^{*}\right)^{*} b\right)^{*}\right)$.
9. Construct a $D F A$ that accepts the language generated by the grammar

$$
\begin{aligned}
S & \rightarrow a b A \\
A & \rightarrow b a B \\
B & \rightarrow a A / b b
\end{aligned}
$$

10. Construct right and left linear grammars for the following language:

$$
L=\left\{a^{n} b^{m}: n \geq 2, m \geq 3\right\}
$$

11. Construct a right linear grammar for the following language:

$$
L\left(\left(a a b^{*} a b\right)^{*}\right)
$$

