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Abstract. We examine a conjecture of Fournier, Ma, and Ruscheweyh on
the maximal value for |a4| in terms of |a2| for bounded convex functions.
Using the Julia variation, we show that we need only consider maps onto
regions with 3 proper sides, and we examine the remaining possibilities to see
what geometric conclusions can be made. In particular, we show that the
triangle maps conjectured by Fournier, Ma, and Ruscheweyh to be extremal
are indeed bounded by their conjectured bound, but the bound is not obtained.
It appears only in the limit as the triangles degenerate. We also introduce
another candidate for the extremal which also produces the conjectured bound
in the limit.
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1. Introduction

From the introduction of the Bieberbach conjecture in 1916, until its proof by
Louis de Branges (1984) a great deal of development has been made in the field
of geometric function theory. Although the Bieberbach Conjecture was initially
the principal driving force behind the field, the field itself grew beyond the ini-
tial constraints of the conjecture and, even after the solution to the Bieberbach
conjecture, many problems and unanswered questions remain. Some examples
of these include finding extremal values for certain functionals restricted to var-
ious classes of univalent functions. Ideally, given desired geometric properties
that the image of a function might have, we would like to be able to identify
precisely what values the coefficients of a series expansion for that function may
have, perhaps dependent on the domain or range space for the function, and vice
versa.
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We will consider the fourth coefficient for bounded convex functions. His-
torically, while upper bounds for the fourth coefficient within various classes of
functions have been computed, these bounds are notoriously misleading, as they
are only realized, generally, for large values of the second coefficient. In addition,
the fact that we will be dealing with only bounded convex functions makes this
question more difficult still. Among other reasons, this is due to the fact that
while the class of convex functions C is compact, as is the class of unbounded
convex functions Cu, the class of bounded convex functions Cb is not. Hence Cb
may not contain extreme points for some functionals. In addition, the functional
we are examining is either upper-semicontinuous, and need not achieve extreme
values, even over some compact spaces, or the necessary restrictions upon the
domain prevent the domain from being compact.

In 1998, Richard Fournier, Jing Ma and Stephan Ruscheweyh [10] improved
upon the results of Martin Chuaqui and Brad Osgood [8] concerning omitted
values within the Nehari class. Fournier, Ma, and Ruscheweyh were able to
show that a bound exists over the class Cb for the functional |a4| in terms of
the functional |a2| and M , the radius of the smallest disk centered at the origin
which contains f(D), where D = {z : |z| < 1}. In particular, they proved

(1) |a4| ≤
7

3
|a2|+

2

3M
over Cb,

where the coefficient 2
3
in (1) is sharp, while 7

3
most likely was not. However,

considering this same functional, over the class of unbounded functions, they
were able show that

(2) |a4| ≤ 2|a2| over Cu.

Based on separate results by Ma[13], the three stated that any configuration
for a function at which this coefficient of |a2| in (1) achieves a maximal value
must have at most 4 proper sides. They also saw good numerical reasons to
believe that the maximal configuration should have fewer sides than this.

The combination of these observations led them to try to reconcile the dif-
ference in the appropriate coefficient of |a2| between (1) and (2) by stating the
following conjecture:

Fournier-Ma-Ruscheweyh Conjecture. For f ∈ Cb, with f normalized as
above,

|a4| ≤ 2|a2|+
2

3M
,

where 2 is sharp for a function of the form

f0(z) =

∫ z

0

dt

(1− t)2λ(1 + 2ct+ t2)1−λ
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which maps the disk to a triangular region symmetric with respect to R.

After providing the necessary background on the Julia Variation in section 2,
we will improve on Fournier, Ma, and Ruscheweyh’s results in section 3 to reduce
the number of proper sides we must consider from 4 to only 3. In section 4, we will
describe the geometry of the remaining possibilities and suggest other candidates
for the extremal besides Fournier, Ma, and Ruscheweyh’s triangle map.

2. The Julia Variation Technique

This method of variational analysis of a function was introduced in a rudimen-
tary form by Jan Krzyz in 1963 [12], by approximating bounded convex functions
with polygons and then using the variational technique on the sides of polygons.
Later circa 1975, papers by Roger Barnard and John Lewis [1, 2] presented mod-
ifications of the variational techniques which could be used on figures of a much
more general type, by showing that their variational formulas worked on corners
and sides which curve along the boundary of figures. That is, that any resulting
error from utilizing these techniques in this way is absorbed into the o(ǫ) term
and does not affect the procedure of using these techniques significantly.

Excellent formulations of the proofs of these formulas can be found in [1, 2, 3,
4, 5, 6, 7], but briefly, if we have a function f : D → Ω we can outline a distortion
in the range, Ω, by defining a new boundary ∂Ωǫ and then expressing the change
from ∂Ω to the new boundary by functions p(w)n(w) where w = f

(

eiφ
)

, n(w)
represents the normal direction to the curve ∂Ω at w, and p(w) is a real valued,
piecewise continuous function defining a scaled translation necessary along the
normal direction to go from w ∈ ∂Ω to w + p(w)n(w) ∈ ∂Ωǫ.

In practice, this method is applied to figures whose boundaries can be par-
titioned into “sides” and it may be necessary to only adjust a few sides of the
figure, so p(w) can be set to 0 along all remaining sides.

Then, for any z ∈ D, the varied function fǫ : D → Ωǫ becomes, by the Julia
Variational Formula as extended by Barnard and Lewis [1, 2]:

fǫ(z) = f(z) + ǫzf ′(z)

∫

∂Ω

1 + ζz

1− ζz
dΨ + o(ǫ)

where ζ = eiφ, o(ǫ) is uniform for z in compact subsets of D and for w = f(ζ),

dΨ =
p(w)n(w)

2πi [ζf ′(ζ)]2
dw.
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Figure 1. Illustration of some common variations.

However, this differential can be expressed through a change in coordinates
as

dΨ(φ) =
p(w)

2π|f ′(ζ)|dφ

adjusting the form of the map to

(1) fǫ(z) = f(z) + ǫzf ′(z)

∫

∂D

1 + ζz

1− ζz
dΨ(φ) + o(ǫ).

It is important to note here that dΨ(φ) is real valued, and its sign is determined
entirely by the sign of p(w).

The new mapping radius resulting from this variation is given by

(2) 1 + ǫ

∫

∂D

dΨ(φ) + o(ǫ).

Ordinarily, if one were attempting to stay within a particular family of functions
with a specified mapping radius one would divide the formula (1) by (2) and
incorporate the result into a single integral equation to maintain the mapping
radius, |f ′(0)| which, as in S is specified in the definition of the class [4]. This
is especially important when only changing one side of a figure at a time, as this
will almost invariably adjust the mapping radius without it. For our purposes,
however, we will be working carefully on more than one side (and sometimes by
breaking a side apart) to ensure that

∫

∂D
dΨ(φ) = 0 so that all change to the

mapping radius is o(ǫ) and need not be considered.
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3. Narrowing the Field

To begin, we would like to reduce the scope of the types of functions we
should consider for extremal cases for this functional. To do this, we apply the
Julia Variational techniques and make some observations based on the resultant
kernel.

Initially, for any general function from C, we will write f as

f(z) = z +

∞
∑

k=2

akz
k.

Define

M(f) = max
ζ∈∂D

{|f(ζ)|}
. Under these assignments, we are looking for the best bound for the functional
A given in

(3) |a4| ≤ A|a2|+
2

3M
.

In order to analyze this, assume equality and rewrite the above inequality to
find

A(f) =
|a4| − 2

3M

|a2|
.

The result of applying the Julia variation given in (1) upon the key functionals
a4 and a2, as it depends on ǫ is

a4ǫ = a4 + ǫ

∫

Γ

(

2ζ3 + 4a2ζ
2 + 6a3ζ + 3a4

)

dΨ + o(ǫ)

and

a2ǫ = a2 + ǫ

∫

Γ

(2ζ + a2) dΨ + o(ǫ).

It will be necessary, since we are dealing with a noncompact space, to localize
our search for extremal configurations for f by restricting ourselves to a compact
exhaustion of Cb. In particular, we would like to deal with the class CM =
{

f ∈ Cb
∣

∣ maxξ∈∂D f(ξ) ≤ M
}

for some fixed M ≥ 1. In general, we will assume
that M(f) is held constant during our variations, except in one specific instance
which will be treated separately.

We will actually focus on a dense family KM within CM whose images are
bounded solely by either straight edges or arcs of ∂MD. In order to determine
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Figure 2. The graph of K(ζ) for fc,λ(z) with c = −1
2

and λ = 1
4
.

the types of functions for which A will take on maximal values, we will look at
the compact exhaustion of KM by the classes

(4) KM,n =

{

f ∈ KM

∣

∣

∣

∣

f(∂D) has at most n proper sides

}

Since we have restricted our search to functions in KM , for most of the varia-
tions we will perform, the bound M in our functional will be held constant, which
will restrict some of the variational movements we will make. There will be only
one type of configuration for which we must allow the bound M to decrease, and
this will be handled separately, as stated earlier.

For the following discussion, we will refer to the straight edges of the images
of functions from KM as its proper sides, while any arcs of ∂MD we will refer to
as boundary arcs.

Observe, then, that by (1) we have

Aε(f) =
|a4ǫ| − 2

3Mǫ

|a2ǫ|

=

∣

∣a4 + ǫ
∫

Γ
(2ζ3 + 4a2ζ

2 + 6a3ζ + 3a4) dΨ + o(ǫ)
∣

∣− 2
3Mǫ

∣

∣a2 + ǫ
∫

Γ
(2ζ + a2) dΨ + o(ǫ)

∣

∣

.
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We will now use the fact that a necessary condition for f to be a maximal
configuration for A is that

Re

(

d

dǫ
Aε(f)

∣

∣

∣

∣

ǫ=0

)

=
d

dǫ
Re(Aε(f))

∣

∣

∣

∣

ǫ=0

= 0.

Additionally, we will use the fact that this functional is rotationally invariant,
that is, if

f(z) = z +

∞
∑

k=2

akz
k

achieves a particular value under A, then so does

e−iθf(zeiθ) = z + eiθa2z
2 +

∞
∑

k=3

e(k−1)iθakz
k

For this reason, we may assume, without loss of generality, that an appropriate
rotation of f has been chosen so that a2 ≥ 0. However, since the value a2 = 0
will eliminate our functional from the inequality |a4| ≤ Aa2 +

2
3M

, we will need
to look only among functions for which a2 > 0, as the case a2 = 0 has a bound
which is already fully understood. For this reason, either our function space is
no longer compact, or the functional is now only upper semi-continuous.

Utilizing this, we find

d

dǫ
Re(Aε(f))

∣

∣

∣

∣

ǫ=0

=
d

dǫ

(

|a4|+ ǫ
∫

Γ
Re(2ζ3 + 4a2ζ

2 + 6a3ζ + 3a4)dΨ(φ) + o(ǫ)− 2
3Mǫ

a2 + ǫ
∫

Γ
Re(2ζ + a2)dΨ(φ)

)

∣

∣

∣

∣

ǫ=0

=
1

a22

(

a2

∫

Γ

Re(2ζ3 + 4a2ζ
2 + 6a3ζ + 3a4)dΨ(φ)

−
(

|a4| −
2

3M

)
∫

Γ

Re(2ζ + a2)dΨ(φ) +
2a2
3M2

d

dǫ
Mǫ

∣

∣

∣

∣

ǫ=0

)

=

∫

Γ
Re [A3ζ

3 + A2ζ
2 + A1ζ + A0] dΨ(φ) + 2a2

3M2
d
dǫ
Mǫ

∣

∣

∣

∣

ǫ=0

a22
(5)
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=

∫

Γ
Re(K(ζ))dΨ(φ) + 2a2

3M2
d
dǫ
Mǫ

∣

∣

∣

∣

ǫ=0

a22
,

where

A3 = 2a2

A2 = 4a22

A1 = 6a2a3 − 2|a4|+
4

3M

A0 = 3a2a4 − a2|a4|+
2a2
3M

.

are the coefficients of the kernel of the principal integral in this variation, which
we shall call K(ζ). We notice, first of all, that K(ζ) is a cubic in ζ . Since, as
we stated earlier, we are only interested in functions for which |a2| 6= 0, we may
disregard the denominator in the above expression (5), since a22 > 0 and thus
determines neither the sign nor the root of the derivative. Notice that since, in
most of the variations we will deal with, M is being held constant, the portion
of the numerator not accounted for by the integral of K(ζ) vanishes.

We can also express ζ = eiφ and then, recalling that for general complex z
and w,

Re(zw) = Re(z)Re(w)− Im(z)Im(w),

we rewrite the above expression from (5) in terms of trigonometric functions as

∫

Γ

[

2a2 cos(3φ) + 4a22 cos(2φ) +

(

6a2Re(a3)− 2|a4|+
4

3M

)

cosφ

−6a2Im(a3) sinφ+ 3a2Re(a4)− a2|a4|+
2a2
3M

]

dΨ = 0(6)

There are three key facts to notice about the expressions (5) and (6). First,
the kernel in (6), being a third order trigonometric polynomial, has at most six
roots. Second, the image of D under the kernel of (5) will take ∂D to a closed
loop crossing the imaginary axis, and in fact any vertical line, the same number
of times as the kernel in (6) has roots, which, as we noted, is at most six (see
figures 3 and 2 for examples). Finally, notice that the derivative of Re(K(ζ))
will also be a third order trigonometric polynomial, indicating that this loop can
change directions (with respect to the real axis) at most 6 times as well, at most
3 of which are either minima or maxima with respect to the real axis.

We should also note the allowable movements for our variations on this prob-
lem. On the straight edges we are allowed to push these in or out using a constant
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Figure 3. A selection of possible K(∂D) graphs.

p(w), or we can pivot the side on a fixed point in the side by using a linear p(w)
which is equal to 0 at a predetermined fixed point. In some cases, if necessary,
we will be able to push in on a subarc of a boundary arc in order to create a
new proper side. We may also create piecewise linear variations, but we must
be careful to maintain convexity; so while one part of a straight edge may be
pivoted inwards from an interior point (provided this segment extends to one of
the endpoints), we cannot pivot such a segment outward as this would violate
convexity. In addition, there is one possible scenario in which we cannot move
certain sides inward without altering the bound M . The only situation in which
this can happen is if the image Ω has exactly one vertex f(ξ) which lies on the
bounding circle MD and Re(K(ξ)) < 0. In this situation the allowed movements
will not change, but we must be careful to observe that moving either of the sides
connecting to f(ξ) inward will result in a decrease in Mǫ, whose effect on d

dǫ
Aε

must be checked in a different manner than the rest.

With these observations in mind, we can state and prove our main theorem.
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Theorem 3.1. For the functional

A =
|a4| − 2

3M

|a2|
,

where ak are the normalized coefficients from above, considered over the class KM ,
an extremal value for the functional, if it exists, will be obtained by a function
that takes D = {z : |z| < 1} onto a region with at most 3 proper sides.

Proof. First, we shall assume a function f ∈ KM,n is a local extremum for A

at which A achieves a maximal value, and we shall assume that the boundary
of f(D) = Ω has some finite number of proper sides 0 < s ≤ n and some finite
number of bounding arcs r ≥ 0 which lie along ∂MD. We will not be considering
“false” sides, that is if any two sides, as have been explained, meet in such a way
that f ′(ζ) is continuous at that point, then either these two sides are collinear, or
they are connected arcs along ∂MD. In either case, we will simply consider the
combination of these as a single side. For this reason, we can state that r ≤ s, if
s 6= 0. Note that the case s = 0 would force f to be the identity map, and need
not be considered here.

We will label these sides Γ1,Γ2, . . . , Γs,Γs+1, . . . ,Γs+r in such a way that j ≤ s
implies that Γj is a proper side and j > s implies that Γj is a bounding arc. For
each Γj, there is an arc along ∂D, call it γj for which f(γj) = Γj . Furthermore,
when considering the kernel K(ζ) given in (6), K(γj) = σj is an arc along the
closed loop K(∂D) (see Figure 4).

Now, by the pigeon hole principle, at most 6 of {σj} may cross any vertical
line, because (6) has at most 6 roots, as discussed earlier. This fact will be
utilized in the following Lemma.

Lemma 3.2. For the functional A considered over the class KM , if f is assumed
to be a function at which A attains a maximal value,

1. f(∂D) must be made up of at most 6 proper sides, i.e. f ∈ KM,6, and either
2. all proper sides of f(∂D) must be associated to arcs whose mean points

(under the measure dΨ(φ) with a piecewise constant p(w)) lie on the same
vertical line, or

3. all proper sides of f(∂D) except two must be associated to arcs whose mean
points under the measure dΨ(φ) with a piecewise constant p(w) lie on the
same vertical line along with the mean points of the remaining two arcs
considered under a pivoting definition for p(w).

Proof of Lemma 3.2. Assume that f ∈ KM is a maximal configuration for the
functional A. Let us assume that f(∂D) has more than 6 proper sides (s > 6),
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Figure 4. An illustration of the notation to be used.

Γ1, Γ2, · · · ,Γs and we label by ξj ∈ γj those points which satisfy the mean value
theorem for the respective integrals

(7) Re(K(ξj))

∫

γj

1

2π|f ′(ζ)|dφ =

∫

γj

Re(K(ζ))
1

2π|f ′(ζ)|dφ,

for j = 1, 2, . . . , s. Then by the pigeon hole principle, at least one of the points
K(ξj) must fail to lie on the vertical line given by Re(z) = Re(K(ξ1)). If
n ≤ 6 denotes the number of ξj for which K(ξj) do lie on the vertical line
Re(z) = Re(K(ξ1)), let us renumber these remaining points so that only the
lines Γ1, Γ2, · · ·Γn have the property that Re(K(ξj)) = Re(K(ξj)) for j = 1..n.
Now, assume that Re(K(ξ1)) < Re(K(ξs)), and for some α > 0 assign to p(w)
the values

(8)
−α

∫

γ1
1

2π|f ′(ζ)|
dφ

, for w ∈ Γ1,
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the value

(9)
α

∫

γs
1

2π|f ′(ζ)|
dφ

, for w ∈ Γs,

and 0 otherwise. Notice that using these values,

(10)

∫

∂D

dΨ(φ) = α− α = 0.

Thus, since our variation has not adjusted M , and neither has our renormaliza-
tion, we know that fǫ ∈ KM .

Now notice
∫

∂D

Re(K(ζ))
p(w)

2π|f ′(ζ)|dφ

=

∫

γ1

Re(K(ζ))
p(w)

2π|f ′(ζ)|dφ+

∫

γs

Re(K(ζ))
p(w)

2π|f ′(ζ)|dφ(11)

=

∫

γ1

−αRe(K(ζ))
∫

γ1
1

|f ′(ζ)|
dφ|f ′(ζ)|dφ+

∫

γs

αRe(K(ζ))
∫

γs
1

|f ′(ζ)|
dφ|f ′(ζ)|dφ

=
−α

∫

γ1
1

|f ′(ζ)|
dφ

∫

γ1

Re(K(ζ))

|f ′(ζ)| dφ+
α

∫

γs
1

|f ′(ζ)|
dφ

∫

γs

Re(K(ζ))

|f ′(ζ)| dφ

=
−αRe(K(ξ1))
∫

γ1
1

|f ′(ζ)|
dφ

∫

γ1

1

|f ′(ζ)|dφ+
αRe(K(ξs))
∫

γs
1

|f ′(ζ)|
dφ

∫

γs

1

|f ′(ζ)|dφ

= α

(

Re(K(ξs))−Re(K(ξ1)

)

,(12)

which by construction is positive.

IfRe(K(ξs)) < Re(K(ξ1)), this entire procedure can be completed using α < 0
instead, and will yield the same results. Thus, we have increased the value of A,
contradicting the maximality of f . Since this procedure can be implemented for
any f ∈ KM \ KM,6, we see that maximal configurations for A must lie in KM,6.

Furthermore, we can show that there is only one possible configuration for f
under which more than one arc of K(∂D) which associates to a proper side may
lie entirely on one side of any vertical line. Suppose we have some vertical line
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Re(z) = ρ such that at least two proper sides, Γ1 and Γ2 which associate to arcs
σ1 and σ2 which have no interior intersection points with the vertical line. Then
we have two possible situations, either these two arcs lie on the same side of the
vertical line, or they lie on opposite sides.

If they lie on opposite sides of the the vertical line, then, without loss of
generality, assume Re(µ) < ρ for all µ ∈ σ1 and Re(µ) > ρ for all µ ∈ σ2. Then,
for some real number α we may assign to p(w) the values given in (8) and (9)
substituting s = 2.

Under this assignment (10) holds, and by constructionRe(K(ξ1)) < Re(K(ξ2))
so (12) also holds and is positive. Notice that if Re(µ) > ρ for µ ∈ σ1 and
Re(µ) < ρ for µ ∈ σ2, then choose α < 0 and both of these results still hold.
Thus, in this situation, we have found a manipulation of these sides which will
increase the value of A, which contradicts the assumed maximality of f .

Notice that (10) still holds so fǫ ∈ KM , and the integral in (6) will take on
the same value,

α

(

Re
(

K(ξ2)
)

−Re
(

K(ξ1)
)

)

> 0

again contradicting the assumed maximality of f .

Thus, in order for more than one side to be associated to arcs of K(∂D) which
lie entirely on the same side of some vertical line, the mean value points for those
arcs must lie on the same vertical line.

SinceK(∂D) is a compact loop, we can take some B > 0 such thatRe(K(ζ)) <
B for all ζ ∈ ∂D. In this way, we can show that all the mean value points ξj for
arcs associated to proper sides must lie on the same vertical line.

Note now, that we have only to consider the possibility that, as mentioned
before, there is exactly a single point of ∂Ω on the bounding circle MD and
the two sides, say Γ1 and Γ2, connected to that point have associated arcs whose
mean value points, as explained in (7), might lie to the left of all other associated
arcs. In this situation, we cannot simply push in the side, as this would change
M . Instead, let w0 be the single point of ∂Ω on MD, and define by ξj the points
such that

(13) Re(K(ξj))

∫

γj

|w − w0|
2π|f ′(ζ)| dφ =

∫

γj

Re(K(ζ))
|w − w0|
2π|f ′(ζ)| dφ.

for j = 1, 2.

Now, if any of this new collection of mean value points (2 modified, the rest
the same as before) is such that Re(K(ξj)) < Re(K(ξk)) for any k 6= j, we may
again perform a variation to raise the value of the functional, but if one of the
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sides Γ1 or Γ2 must be moved, we define p(w) to be

(14)
−α|w − w0|
∫

γj

|w−w0|
2π|f ′(ζ)|

dφ
, for w ∈ Γj ,

where again, α may be taken to be either positive or negative, depending on
whether Re(K(ξj)) < Re(K(ξk)) or the opposite.

Now in order to formulate a step down lemma which will allow us to further
reduce the number of sides possible, we shall prove several other lemmas which
we will use in its proof.

For each of the following, again suppose f(z) is a local maximum for A over
KM . Then, by Lemma 3.2 there can be at most 6 straight sides belonging to the
image f(∂D).

Lemma 3.3. Provided that we consider only the situations where M may be
held constant, no proper side in this maximal configuration may associate to an
arc which crosses any vertical line exactly once (Note that for a line to cross a
vertical line exactly once, it must have exactly one interior point which lies on
the vertical line, and at at least one interior point must lie on each side of the
same line.)

Lemma 3.4. Provided that we consider only the situations where M may be
held constant, because of Lemma 3.3, each arc σj which associates to a proper
side must contain at least one point µj = K(ζj) within its interior for which
d
dφ
Re(K(ζj)) = 0.

Lemma 3.5. Provided that we consider only the situations where M may be held
constant, each arc which associates to a proper side of ∂Ω which contains only
one direction change point within it’s interior must be situated so that both of its
endpoints have equal real parts.

Lemma 3.6. Provided that we consider only the situations where M may be
held constant, no arc which associates to a proper side can be situated in such
a way that a vertical line can separate the endpoints of that segment from every
interior direction change point of the arc (with respect to the real axis), unless
the endpoints would lie to the right of such a vertical line.

And finally, we state the actual step down lemma.

Lemma 3.7. Provided that we consider only the situations where M may be held
constant, because of Lemmas 3.3-3.6 and because both Re(K(ζ)) and d

dφ
Re(K(ζ))

each have at most 6 roots, the maximum number of proper sides of f(∂D) is 3.
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Figure 5. An arc σ1 which crosses a vertical line exactly once.

Figure 6. Illustration of piecewise p(w) used to prove Lemma 3.3.

Proof of Lemma 3.3. Suppose that one side Γ1 has an arc σ1 which the kernel
K(ζ) associates to it, and σ1 contains exactly one interior point K(f−1(w1))
which lies on some vertical line Re(z) = ρ, and that, furthermore, at least one
point in σ1 lies on both sides of the same vertical line. Label the portion of side
Γ1 which is mapped to the left of the vertical line Γ0 and label the remainder of
the side Γ1∗. Now, for some α > 0 assign to p(w) the values

(15)
−α|w − w1|
∫

γ0

|w−w1|
2π|f ′(ζ)|

dφ
, for w ∈ Γ0,

the value

(16)
α

∫

γ1∗
1

2π|f ′(ζ)|
dφ

, for w ∈ Γ1∗,

and 0 otherwise.
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Notice that the movements indicated by these variations correspond to a piv-
oting inward of one part of the line, upon the fixed point w1, and then the second
part of the line is pushed outward constantly, as shown in Figure 6. The corner
of this variation can be thought of in the same way which Barnard and Lewis
showed that a side may be pushed out against a boundary, which it cannot cross,
and the resulting error is absorbed into the o(ǫ) term shown in (1) and thus has
no appreciable effect on either the change in the mapping radius or the resultant
effect on the kernel given in (6).

Define by ξ1∗ the point guaranteed by the Mean Value Theorem so that (7)
applies to Γ1∗ and by ξ0 the point guaranteed by the Mean Value Theorem so
that

(17) Re(K(ξ0))

∫

γ0

|w − w1|
2π|f ′(ζ)|dφ =

∫

γ0

Re(K(ζ))
|w − w1|
2π|f ′(ζ)|dφ.

Unlike some of our previous variations, this particular procedure cannot be
reversed, since using α < 0 would immediately violate convexity.

Now, since σ0 lies to the left of the chosen vertical line, and σ1∗ lies to the
right, we know that

Re(K(ξ0)) < Re(K(ξ1∗)).

Now, as before, we see that
∫

∂D

Re(K(ζ))
p(w)

2π|f ′(ζ)|dφ

=

∫

γ0

Re(K(ζ))
p(w)

2π|f ′(ζ)|dφ+

∫

γ1∗

Re(K(ζ))
p(w)

2π|f ′(ζ)|dφ(18)

=

∫

γ0

−αRe(K(ζ))|w − w1|
∫

γ0

|w−w1|
|f ′(ζ)|

dφ|f ′(ζ)|
dφ+

∫

γ1∗

αRe(K(ζ))
∫

γ1∗
1

|f ′(ζ)|
dφ|f ′(ζ)|dφ

=
−α

∫

γ0

|w−w1|
|f ′(ζ)|

dφ

∫

γ0

Re(K(ζ))|w − w1|
|f ′(ζ)| dφ+

α
∫

γ1∗
1

|f ′(ζ)|
dφ

∫

γ1∗

Re(K(ζ))

|f ′(ζ)| dφ

=
−αRe(K(ξ0))
∫

γ0

|w−w1|
|f ′(ζ)|

dφ

∫

γ0

|w − w1|
|f ′(ζ)| dφ+

αRe(K(ξ1∗))
∫

γ1∗
1

|f ′(ζ)|
dφ

∫

γ1∗

1

|f ′(ζ)|dφ
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= α

(

Re(K(ξ1∗))−Re(K(ξ0)

)

,(19)

which is once again positive.

So, applying this variation yields a larger value for the functional, and in
addition it increases the number of straight sides, since we’ve just bent part
of a side inward and pushed the remaining portion outward. Furthermore, of
the arcs associated to these two new sides, one is located entirely to the right
of the other one, and thus, the newly created figure also cannot be a maximal
configuration. Since A evaluated on f(z) is less than A evaluated on fǫ(z),
and the new configuration is also not maximal, f(z) also could not have been
maximal.

Proof of Lemma 3.4. Assume that some proper side, which we can renumber
to call Γ1, does not contain a point within its interior at which the direction of
the loop K(∂D) changes direction (with respect to the real axis). Then it can
cross any vertical line at most once, and hence, by Lemma 3.3 f cannot be a
maximal configuration. Thus, by contradiction, we may assume that every arc
of K(∂D) which associates to a proper side of f(D) changes direction at least
once within its interior.

Proof of Lemma 3.5. Suppose that Γ1 associates to an arc σ1 which changes
direction exactly once. Now, suppose that the two endpoints of σ1, µ0 and µ1

are situated so that Re(µ0) 6= Re(µ1).

Then, since the curve σ1 changes direction only once on its interior, σ1 can
cross any vertical line at most twice. Furthermore, it crosses only one of Re(z) =
Re(µ1) or Re(z) = Re(µ0) exactly twice, and the other it only touches once.
Without loss of generality, assume that the line Re(z) = Re(µ0) lies to the left
of the line Re(z) = Re(µ1).

Then, let ρ be any real number between Re(µ0) and Re(µ1), then the vertical
line Re(z) = ρ crosses the line σ1 only once, and σ1 properly crosses the line,
thus by Lemma 3.3, this contradicts the maximality of f .

Proof of Lemma 3.6. If we assume that there is some proper side Γ1 which
associates to an arc σ1 which is configured in such a way that its two endpoints
can be separated from all interior points of σ1 at which σ1 changes direction with
respect to the real axis in such a way that σ1 crosses the vertical line exactly
twice, and if the two endpoints of σ1 lie on the left of this vertical line, then we
may move the vertical line to the left as far as liked, provided that the endpoints
of σ1 remain to the left of the new vertical line.
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Figure 7. An illustration of the types of curves being ruled out
under Lemma 3.6.

Figure 8. Illustration of piecewise p(w) used in the proof of
Lemma 3.6.

In this way, we may prevent the map p(w), which we will formulate, from
causing the two pivoted boundaries for the central side to meet in such a way as
to eliminate the remaining side all together. Once such a vertical line has been
chosen and we have relabeled the points of intersection between σ1 and this new
line to be w1 and w2, we can label the portion of Γ1 which lies entirely on the
left of the line, and which connects to w1 Γ0, label by Γ1∗ the portion of the side
entirely on the right side of the line between w1 and w2, and by Γ0∗ the remaining
portion of the side, which also lies on the left side of the chosen vertical line and
which is bordered by w2. Now, assign to p(w) the values

(20)
−α|w − w1|
∫

γ0

|w−w1|
2π|f ′(ζ)|

dφ
, for w ∈ Γ0,

the value

(21)
α + β

∫

γ1∗
1

2π|f ′(ζ)|
dφ

, for w ∈ Γ1∗,
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the value

(22)
−β|w − w2|
∫

γ0∗

|w−w2|
2π|f ′(ζ)|

dφ
, for w ∈ Γ0∗,

and 0 otherwise. Here we must require that both α and β be positive in order
to maintain convexity.

Of some concern here, is whether or not the constant motion on side Γ1∗ would
need to move the side further than the two pivoting maps would allow in order
to prevent the change to the mapping radius. It can be seen, however, that
provided we have chosen α and β large enough so that the inequality

αβ|w1 − w2|
α + β

>
α
∫

γ0∗

|w−w2|
2π|f ′(ζ)|

dφ+ β
∫

γ0

|w−w1|
2π|f ′(ζ)|

dφ
∫

γ1∗
1

|f ′(ζ)|
dφ

holds, then the angle at which the variation pushes in the corners will make
any possible intersection between the created diagonal lines further out than the
middle side is moved. Notice that because we had some control initially over the

size of all three arcs, we can reduce the value of the two integrals
∫

γ0∗

|w−w2|
2π|f ′(ζ)|

dφ

and
∫

γ0

|w−w1|
2π|f ′(ζ)|

dφ by choosing a line closer to the two endpoints, which at the

same time will increase the values of |w1 − w2| and
∫

γ1∗
1

2π|f ′(ζ)|
dφ.

Now, having performed this variance as described we see that we achieve a
resulting positive variance in the functional value in a manner similar to (19),
and at the same time we have introduced more sides whose associated arcs lie
such that one of them lies entirely to the right of the the other two. Thus, this
new mapping which yields a larger functional value also cannot be a maximal
configuration, and neither could the original configuration.

Proof of Lemma 3.7. Suppose that f is a maximal configuration for the func-
tional A. We know already by Lemma 3.2 that the maximum number of proper
sides must be 6 and by the second part of Lemma 3.2, the lineRe(z) = Re(K(ξ1))
contains at least one interior point of each arc which associates to a proper side.
These interior points must either be places at which the arc σj crosses this verti-
cal line, or they must be points of tangency to the line, and hence be an interior
point at which the arc changes direction (with respect to the real axis).

If the arc σj crosses the line, then by Lemma 3.3, there must also exist a second
interior point at which the arc σj crosses this vertical line. Assume these are the
only two points at which this arc crosses the vertical line. Also, by Lemma 3.4
and by noting that K(ζ) is continuous and continuously differentiable, we see
that at least one interior point which falls strictly between these two crossings
must be a point of direction change. Now by Lemma 3.6, if these are the only
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Figure 9. Illustration of three maximal tangencies.

direction changes along σj , then the endpoints of σj must point to the right, and
the subarc between the two crossing points must lie to the left or be tangent to
the vertical line.

Similarly, if the arc σj is tangent to the line at an interior point at which the
direction changes, then if that is the only interior point of the arc where the
direction changes, then since we could choose a vertical line far enough towards
the endpoints that it would separate this point from the endpoints, according to
Lemma 3.6, σj must be situated so that it lies entirely to the right of the vertical
line, except for the point of tangency.

If every arc which associates to a proper side crosses the vertical line, then
as shown, they must each cross at least twice, hence by counting the number of
crossings possible, s ≤ 3.

If every arc which associates to a proper side does not cross the vertical line,
but rather is tangent to it, then each of these tangencies must also be points of
direction change. If these are the only interior changes of direction for these arcs,
then because a vertical line can be found which separates this point from the two
endpoints, by Lemma 3.6, the remainder of the arc must lie to the right of the
vertical line Re(z) = Re(K(ξ1)) except for the point at which it is tangent. In
this case, we have a situation similar to figure 9 in which three direction changes
are tangent to the vertical line, and the endpoints of those sides point to the
right of the line.

Notice that in this case, we must have only three additional points at which
the curve K(ζ) can change direction, and each of these must occur within the
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connections between the six endpoints associated to the arcs which are currently
accounted for. Further, any arc which touches the vertical line containing the
averaging value points would create a seventh solution of Re(K(ζ)) = ρ for some
real number ρ, which is impossible, as has been noted.

Furthermore, in the event that either some arc σj crosses the vertical line
Re(z) = Re(K(ξ1)) more than twice, or if the interior of an arc which is tangent
to this line contains additional direction change points, then counting points of
direction change and/or points where K(ζ) crosses this vertical line yields that
there can be at most two additional sides. Thus, our assertion is verified.

Now, suppose that the configuration for f(∂D) is as in Lemma 3.3 except that
the only side which crosses some vertical line exactly once is one of the two lines
which meet at the only point w0 which lies on the bounding circle MD. Suppose
also that both of the arcs σ1 and σ2, whose associated sides connect to w0, contain
one direction change within their interiors (and another one somewhere between
these). Then this leaves only 3 remaining direction change points, and since
Lemmas 3.3-3.6 apply to all other sides of ∂Ω, and since we know that at most
one further direction change can happen to be a minimum (with respect to the
real axis), then there can be only one proper side remaining, and possibly two
bounding arcs which lie entirely to the right of the rest of the figure and the
assertion of Theorem 3.1 is satisfied.

Now, if one of the two arcs does not contain a direction change within its
interior, say this side is Γ1, then any vertical line which crosses σ1 crosses it only
once. Unlike the situation in Lemma 3.3, note that rather than showing that the
integral of the kernel is positive, it must also be larger than the remaining term
in the numerator given in (6), which will be negative.

In order to have
∫

∂D
Re(K(ζ))dΨ(φ) + 2a2

3M2
d
dǫ
Mǫ

∣

∣

∣

∣

ǫ=0

a22
≥ 0

it is sufficient to have

1

a2

∫

∂D

Re(K(ζ))dΨ(φ) ≥ − 2

3M2

d

dǫ
Mǫ

∣

∣

∣

∣

ǫ=0

.

Further, notice that

1

a2

∫

∂D

Re(K(ζ))dΨ(φ) ≥
∫

∂D

Re(K(ζ))dΨ(φ)

and that

− d

dǫ
Mǫ

∣

∣

∣

∣

ǫ=0

≥ −2

3

d

dǫ
Mǫ

∣

∣

∣

∣

ǫ=0

≥ − 2

3M2

d

dǫ
Mǫ

∣

∣

∣

∣

ǫ=0

,
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since a2 ≤ 1 and M ≥ 1.

Since any vertical line crosses Γ1 only once, we may choose a vertical line l
far enough to the left that the distance between the point w0 and wl, the point
associated to the intersection between l and σ1, is as small as necessary. Further,
note that geometrically we may state that

∣

∣

d
dǫ
Mǫ

∣

∣ ≤ |w0 − wl|. Then, we apply
the same variational assignment to p(w) found in (15) and (16), and observe that
we then need to assert the inequality

α

(

Re(K(ξ1))−Re(K(ξ0))

)

≥ |w0 − wl|

in order to verify that the resultant variation, indeed increases the functional.

Since the term on the right is independent of α, however, we simply must
choose α sufficiently large to make this inequality true.

Thus, this contradicts the assumed maximality of f also, just as in Lemma
3.3. Now, adding this new information to the remaining Lemmas 3.4-3.7 proves
the Theorem for this remaining exception.

Moreover, this gives us a list of the possible configurations for which a maximal
function could take D onto a figure with 3 proper sides.

In Figure 10 we see a listing of the possibilities for figures which have at
most three proper sides. Notice the configuration which Fournier, Ma, and
Ruscheweyh initially proposed falls into the category of possible maximal con-
figurations.

In the next section, we will analyze this family of functions proposed by
Fournier, Ma, and Ruscheweyh to show that the best possible bound for the
functional A over the class of symmetric isosceles triangle maps must be at least
2. We have found a great deal of numerical evidence to suggest that 2 is actually
the best bound over Cb; however, there are other extremal candidates for which
this is also true.

4. Analysis of the Extremal Candidates

4.1. Fournier, Ma, and Ruscheweyh’s Candidate. In their paper [10], R.
Fournier, J. Ma and S. Ruscheweyh conjectured that the extremal value for the
functional A would be 2 and that this value would be attained by a function of
the form:

fc,λ(z) =

∫ z

0

dt

(1− t)2λ(1 + 2ct+ t2)1−λ



On a Conjecture of Fournier, Ma, and Ruscheweyh for Bounded Convex Functions 47

Figure 10. The candidates for maximizing A over KM .

Figure 11. The functions fc,λ suggested by Fournier, Ma, and
Ruscheweyh.

which takes the unit disk to a symmetrically aligned isosceles triangle whose
isosceles angles measure λπ and the remaining angle, which is directly on the
real axis, measures (1 − 2λ)π. They were unable, however, to find a function
within this class which would yield the desired value, and they were unable to
verify that the functional could not attain higher values over this family. They
were able to ascertain that the constant 2/3 which appears beside the 1/M in
(1) is the best possible over all bounded convex functions.

With very lengthy computation [11], it is possible to show that the upper
bound for our functional for the candidates suggested by Fournier, Ma, and
Ruscheweyh must be at least 2.
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Figure 12. A shifted symmetric circular sector.

Proposition 4.1. Over the family
{

fc,λ
∣

∣− 1 < c < 1, 0 < λ < 1
2

}

, an upper

bound for the functional A (fc,λ) =
|a4(fc,λ)|−

2
3M(fc,λ)

|a2(fc,λ)|
must be at least 2.

There is actually quite a lot of evidence to suggest that 2 is the best upper
bound, but as some of the sections of the parameter space are difficult to deal
with analytically, this is difficult to show.

4.2. Shifted Symmetric Circular Sector Maps. There is another set of can-
didates whose upper bound is also 2, maps onto symmetric curvilinear triangles
with two proper sides and the third on a circle of radius M . See figure 12.

We can observe a similar behavior to the case of the Euclidean triangles by
observing the behavior of this functional over another family of functions which
are derived from the Euclidean triangles by an outward variation along the side
perpendicular to the real axis.

Such functions can be thought of as compositions of the following elementary
functions:

w1 = 1−z
1+z

w2 = kz

w3 = −z +
√
z2 + 4

w4 = zλ

w5 = z −
(

−k +
√
k2 + 4

)λ

Then define, using a rotation for notational convenience,

wk,λ(z) = −w5(w4(w3(w2(w1(−z)))))
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we can normalize these functions to be in N by simply using

fk,λ(z) =
wk,λ(z)

w′
k,λ(0)

=

√
k2 + 4

(

1 − (−k +
√
k2 + 4)−λ

(

(kz+k)−
√

k2(z+1)2+4(z−1)2

(z−1)

)λ
)

2λk

Using this family of functions, by construction, 0 < k < ∞ and 0 < λ < 1,
where the parameter λ will once more control the interior angle of the sector,
while the parameter k will control how far left or right the origin is shifted. The
larger the value for k, the closer fk,λ(0) shifts towards the curved arc, and the
smaller the value of k the closer it is to the vertex lying on the real axis.

Then, we can calculate, for the range of λ and k corresponding to the situation
with the Euclidean triangles (large k values and very small λ values),

|a2| =
∣

∣

∣

∣

∣

4− λk
√
k2 + 4

k2 + 4

∣

∣

∣

∣

∣

|a4| =
1

3(k2 + 4)

∣

∣

∣

∣

192 + 24k4λ2

− 96k2(1− λ2)− kλ
√
k2 + 4

(

2k4 − 16k2 + k4λ2 + 4k2λ2 + 144
)

∣

∣

∣

∣

M =max





√
k2 + 4

λk
,

√
k2 + 4

(

2λ
(

−k +
√
k2 + 4

)−λ − 1
)

2λk





=

√
k2 + 4

λk
.

So, using these values, we have

Afk,λ =
1

3λk(k2 + 4)3 − 12(k2 + 4)5/2
(k7 + 8k5 + 16k3)λ3

−
√
k2 + 4(24k4 + 96k2)λ2 + (6k7 + 40k5 + 272k3 + 832k)λ

−
√
k2 + 4(24k4 − 96k2 + 192).

As in the case of the triangle map conjectured to be extremal by Fournier,
Ma, and Ruscheweyh, if shrink the central angle toward 0, by letting λ → 0 and
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k → ∞ at the appropriate relative rates, we again achieve the same maximal
limiting value of 2. As is seen in the case of the conjectured triangle, this bound
is not attained within the class of bounded functions, but rather only appears in
a limiting case.
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