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Abstract. We study the symmetric products of the real line from the point of
view of geometric function theory. We investigate geodesics, elementary trans-
formations as well as quasiconvexity properties of the symmetric products. We
also investigate their biLipschitz embeddability into Euclidean spaces.
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1. Introduction

The notion of symmetric products of topological spaces was introduced by
K. Borsuk and S. Ulam ([4]). The nth symmetric product X(n) of a topological
space X is the quotient spaceXn/ ∼, whereXn =

∏n
1 X is the product space and

(x1, x2, . . . , xn) ∼ (y1, y2, . . . , yn) if and only if {x1, x2, . . . , xn} = {y1, y2, . . . , yn}
as subsets of X . We warn the reader that the usage of the term nth symmetric
product is not standard; many authors use it for the quotient space Xn/Sn,
where Sn is the symmetric group on n symbols. For n ≥ 3 the spaces X(n)

and Xn/Sn are different. As a set the space X(n) can be identified with the
set of all nonempty subsets of X of cardinality less than or equal to n. When
the topology on X is induced by a metric d, the topology on X(n) is induced
by the Hausdorff metric dH . Recall that for x = {x1, x2, . . . , xn} ∈ X(n) and
y = {y1, y2, . . . , yn} ∈ X(n) the Hausdorff distance between x and y is defined by

dH(x, y) = max
{
max

i
min
j

d(xi, yj), max
i

min
j

d(xj , yi)
}
.

The notion of symmetric product has been extensively studied in topology
(see, for instance, [1],[5],[9]). In contrast, there have been few studies of this
notion in geometric function theory, where one can pose the following types of
questions in the context of symmetric products of metric spaces. Given that the
spaceX satisfies certain properties such as, Ahlfors regularity, doubling condition,
Poincaré Inequality, quasiconvexity, does the space X(n) also satisfy the same
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properties? What is the relation between the Hausdorff dimensions of X and
X(n)? Does the space X(n) support a biLipschitz embedding into some standard
space? Finally, is the projection π : Xn → X(n), given by π(x1, x2, . . . , xn) =
{x1, x2, . . . , xn}, regular in the sense of S. Semmes? (See ([6, 10]) for more on
these concepts).

In ([3]) M. Borovikova and Z. Ibragimov studied the third symmetric product
R(3) of the real line R and showed that the space R(3) is biLipschitz equivalent
to R3 ([3, Theorem 6]). Consequently, it possesses all the properties mentioned
above. Also, each isometry of (R(3), dH) is induced by an isometry of R ([3, The-
orem 9]). More precisely, for each isometry F : R(3) → R(3) there is an isometry
f : R → R such that F (x) = {f(x1), f(x2), f(x3)} for each x = {x1, x2, x3}. We
believe that such a result holds in R(n) for all n ≥ 4. Observe that the converse of
this statement is true. Namely, if f is an isometry of R, then the map f̂ , defined

by f̂({x1, x2, . . . , xn}) = {f(x1), f(x2), . . . , f(xn)}, is an isometry of R(n).

The notion of symmetric products of metric spaces has also been used by
the second author in his study of hyperbolic fillings of metric spaces ([7, 8]).
For example, in ([7]) the natural identification of R(2) and the upper-half plane
H2 = {(x, y) ∈ R2 : y > 0} was used to give a positive answer to a weaker version
of a problem posed by D. Sullivan. In ([8]) the symmetric products of a metric
space were hyperbolized (in the sense of Gromov) to turn them into hyperbolic
fillings of the underlying space. More precisely, given a metric space (X, d), the
space X (n) = {x ∈ X(n) : card(x) ≥ 2}, endowed with the metric

dH(x, y) = 2 log
dH(x, y) + max{diam(x), diam(y)}√

diam(x) diam(y)
,

is Gromov δ-hyperbolic with δ = log 4 and that the identity map between
(X (n), dH) and (X (n), dH) is a homeomorphism ( [8, Theorem 4.7]). Moreover, if

f : X → Y is a power quasisymmetry, then the map f̂ : (X (n), dH) → (Y (n), dH),

given by f̂({x1, x2, . . . , xn}) = {f(x1), f(x2), . . . , f(xn)}, is a quasiisometry. ([8,
Theorem 6.6]). Recall that a homeomorphism f between metric spaces (X, dX)
and (Y, dY ) is called a power quasisymmetry if there exist λ ≥ 1 and α ≥ 1 such
that

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(dX(x, y)
dX(x, z)

)
for all x, y, z ∈ X,

where η(t) = λmax{t1/α, tα}. A map g : X → Y is called a quasiisometry if there
exist constants λ ≥ 1 and k ≥ 0 such that dist(y, g(X)) ≤ k for each y ∈ Y and

1

λ
dX(x, y)− k ≤ dY (g(x), g(y)) ≤ λdX(x, y) + k for all x, y ∈ X.
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One of the useful features of using the symmetric products as hyperbolic

fillings is the fact that the associated extension operator f 7→ f̂ is compatible

with composition. That is, f̂ ◦ g = f̂ ◦ ĝ. This paves the way for a study
of groups acting on a metric space (X, d) by extending them to groups acting
on (X (n), dH) and studying the latter within the theory of Gromov hyperbolic
spaces. For example, if X is compact and if G is a group that acts on X by
homeomorphisms, then G is hyperbolic provided the induced action on the triple
space Tri(X) = {(x, y, z) : x 6= y 6= z 6= x} is both properly discontinuous and
cocompact. It would be interesting to obtain a similar result with Tri(X) replaced
by (X (n), dH) (or even by (X (3), dH)). Also, finding a sufficient condition on (X, d)
so that the space (X(n), dH) is locally compact, rectifiably connected and uniform
is important in light of the open problem of characterizing metric spaces that
can be identified with the boundary at infinity of a CAT(−1) space (see ([7, 8])
for more discussions).

In this paper we study the nth symmetric product R(n) of R. Section 2 contains
basic concepts and some technical results needed in the rest of the paper. Most
of these results are direct generalizations of the corresponding results for R(3)

obtained in ([3]), but proofs are provided for completeness. In Section 3 we obtain
two sufficient conditions for biLipschitz embeddability of R(n) into Euclidean
spaces (Theorem 3.1 and Corollary 3.3). Even though we could not obtain our
desired result that R(n) can be embedded into some Rm by a biLipschitz map, as
a byproduct of our embedding results, we provide a partial answer to a question
posed by K. Borsuk and S. Ulam. The latter asks if the space [0, 1](n) (n ≥ 4) can
be topologically embedded into Rn+1 ([4, p. 882]). We show that the space R(4)

and hence the space [0, 1](4) can be topologically embedded into R5. It was shown
by K. Borsuk and S. Ulam that the space [0, 1](n) is not homeomorphic to any
subset of Rn for n ≥ 4 ([4, Theorem 7]). Finally, in Section 4 we show that the
space R(n) is quasiconvex and that the projection map is regular (Theorem 4.1
and Theorem 4.2, respectively).

2. Preliminary results

We begin by discussing some basic properties of R(n), n ≥ 3. The Euclidean
distance in R as well as in Rn is denoted by | − |. For p, q ∈ R we set p ∧ q =
min{p, q} and p∨q = max{p, q}. A simple observation shows that (p∧q)∨(q∧r) =
q ∧ (p ∨ r) for all p, q, r ∈ R. The points in R(n) can be viewed as subsets of R.
For example, when we refer to the cardinality card(a) of a ∈ R(n) we mean the
cardinality of a as a subset of R. Similarly, for r ∈ R and a ∈ R(n), we define
dist(r, a) = min{|r − s| : s ∈ a}. In particular, the Hausdorff distance between
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a, b ∈ R(n) can be expressed as

dH(a, b) = max
s∈a

dist(s, b) ∨max
r∈b

dist(r, a).

The point 0 ∈ R belongs to each R(n) and is referred to as the the origin and
denoted by o.

The space R(n) can also be represented as a set of n ordered real numbers
(a1, a2, . . . , an), −∞ < a1 ≤ a2 ≤ · · · ≤ an < +∞, modulo some identifications,
which for n = 4 reduce to (a, a, a, b) ∼ (a, a, b, b) ∼ (a, b, b, b) and (a, a, b, c) ∼
(a, b, b, c) ∼ (a, b, c, c). For n = 3 the identification is (a, a, b) ∼ (a, b, b) (see

also [5]). In general, there are
(n−1

k−1

)
different ways of expressing each point of

cardinality k ≤ n as n-tuples. In what follows we use this representation of R(n).
The numbers ai are called the coordinates of the point (a1, a2, . . . , an). If we
want to emphasize the coordinates of a point we denote it by (ai)

n
1 or just by (ai)

if there is no danger of confusion. If card(a) = 1, we say that a is a singleton.
In general, we say that a is a k-tuple (1 ≤ k ≤ n) if card(a) = k. By a norm of
a point a ∈ R(n) we mean dH(o, a) and denote it by |a|. It is easy to see that if
a = (ai)

n
1 then |a| = |a1| ∨ |an|.

For each λ ∈ R, µ ≥ 0 and a = (a1, a2, . . . , an) ∈ R(n), we define

λ+ a = (λ+ ai)
n
1 = (λ+ a1, λ+ a2, . . . , λ+ an),

µa = (µai)
n
1 = (µa1, µa2, . . . , µan)

and

a = (−an+1−i)
n
1 = (−an,−an−1, . . . ,−a2,−a1).

The point a is called the conjugate of a. There is a natural lift of each linear
transformation h of R to a transformation h̃ of R(n) given by h̃((a1, a2, . . . , an)) =

(h(a1), h(a2), . . . , h(an)) if h is orientation-preserving, and h̃((a1, a2, . . . , an)) =
(h(an), h(an−1), . . . , h(a2), h(a1)) if h is orientation-reversing. In particular, the
following elementary transformations of R, namely translations x 7→ x + λ, di-
lations x 7→ µx, µ ∈ (0,+∞) and reflections x 7→ 2λ − x, λ ∈ R, induce the
corresponding transformations of R(n): vertical translations: Tλ(a) = λ + a, di-
lations: Dµ(a) = µa and reflections: Rλ(a) = 2λ + a. Observe that the vertical
translations and reflections of R(n) are easily seen to be isometries as they are
induced from the isometries of R. (By an isometry we mean a distance preserv-
ing transformation of a space). Clearly, the dilations x 7→ µx act on R(n) as
dilatations, namely dH(µa, µb) = µdH(a, b) for all a, b ∈ R(n).

Next, for each a ∈ R(n), we define

Γ(a) = {Tλ(a) : λ ∈ R} and ∆(a) = {Dµ(a) : µ ∈ (0,+∞)}.
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Also, for each λ ∈ R, we define Πλ = Tλ(Π), where

Π =
{
(−r, a2, a3, . . . , an−1, r) ∈ R(n) : r ∈ [0,+∞) and − r ≤ ai ≤ r

}
.

We shall refer to the sets Γ(a), ∆(a) and Πλ as vertical lines, rays and horizontal

planes, respectively. Clearly, for each a, b ∈ R(n), the sets Γ(a) and Γ(b) are
either disjoint or the same. Similarly, the sets ∆(a) and ∆(b) as well as the sets
Πλ1 and Πλ2 are either disjoint or the same. Moreover,

R(n) =
⋃

a∈R(n)

Γ(a), R(n) =
⋃

a∈R(n)

∆(a) and R(n) =
⋃

λ∈R

Πλ.

Finally, for each µ > 0, we define Sµ = Dµ(S), where

S =
{
(−1, a2, a3, . . . , an−1, 1) ∈ R(n) : − 1 ≤ a2 ≤ a3 ≤ · · · ≤ an−1 ≤ 1

}
.

The next four lemmas are direct generalizations of corresponding results for
n = 3 obtained in ([3]). They give estimates for distances between two sets
of type Πλ, Γ(a), Sr and ∆(a), respectively. For completeness, we provide the
proofs.

Lemma 2.1. Given a ∈ Πλ1, we have

dH(a, b) ≥ |λ1 − λ2| for all b ∈ Πλ2 .

The equality holds if b ∈ Γ(a).

Proof. Without loss of generality we can assume that λ1 ≤ λ2. Let a = (λ1 −
r1, a2, . . . , an−1, λ1+ r1) and b = (λ2−r2, b2, . . . , bn−1, λ2+ r2). If r2 ≥ r1 we have

dH(a, b) ≥ dist(λ2 + r2, a) = λ2 + r2 − λ1 − r1 ≥ λ2 − λ1.

If r2 ≤ r1 then λ1 − r1 ≤ λ2 − r2 and hence

dH(a, b) ≥ dist(λ1 − r1, b) = λ2 − r2 − λ1 + r1 ≥ λ2 − λ1.

Hence dH(a, b) ≥ λ2−λ1. Now if b ∈ Πλ2∩Γ(a) then b = (λ2−r1, b2, . . . , bn−1, λ2+
r1), where bk = ak + λ2 − λ1 for each k ∈ {2, 3, . . . , n− 1}. For each k we have

dist(ak, b) ∨ dist(bk, a) ≤ |ak − bk| = λ2 − λ1.

Also,
dist(λ2 − r1, a) ≤ (λ2 − r1)− (λ1 − r1) = λ2 − λ1

and
dist(λ1 + r1, b) ≤ (λ2 + r1)− (λ1 + r1) = λ2 − λ1.

Finally, since
dist(λ1 − r1, b) = dist(λ2 + r1, a) = λ2 − λ1,

we obtain dH(a, b) = λ2 − λ1, as required.
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Lemma 2.2. Let a = (−r, a2, . . . , an−1, r) ∈ Π and b = (−s, b2, . . . , bn−1, s) ∈ Π
be arbitrary points. Then for all a′ ∈ Γ(a) and b′ ∈ Γ(b) we have

2dH(a
′, b′) ≥ dH(a, b).

Equality holds for a′ = (−r, r, r, . . . , r) and b′ = (−r/2, r/2, 3r/2, . . . , 3r/2).

Proof. Using a vertical translation, if necessary, we may assume that a′ = a.
Let b′ = Tλ(b) for some λ ∈ R. By Lemma 2.1, dH(b

′, b) = |λ| and dH(a, b
′) ≥ |λ|.

By the triangle inequality,

dH(a, b) ≤ dH(a, b
′) + dH(b

′, b) = dH(a, b
′) + |λ| ≤ 2dH(a, b

′),

as claimed.

Lemma 2.3. Given a = (−r, a2, . . . , an−1, r) ∈ Sr, we have

dH(a, b) ≥ |r − t| for all b = (−t, b2, . . . , bn−1, t) ∈ St.

Equality holds if dist(ak, b) ∨ dist(bk, a) ≤ |r − t| for each k = {2, 3, . . . , n− 1}.

Proof. We have

dH(a, b) = dist(−r, b)∨dist(r, b)∨dist(ak, b)∨dist(bk, a)∨dist(−t, a)∨dist(t, a).

Hence
dH(a, b) ≥ dist(r, b) ∨ dist(t, a) = |r − t|.

If dist(ak, b) ∨ dist(bk, a) ≤ |r − t| for each k, then

dH(a, b) ≤ |r − t| ∨ dist(r, b) ∨ dist(t, a) = |r − t|, i.e., dH(a, b) = |r − t|.

Lemma 2.4. Let a = (−r, a2, . . . , an−1, r) and b = (−s, b2, . . . , bn−1, s) be arbi-

trary points with s > 0 and r ≤ s. Put c = (r/s)b. Then

dH(a, c) ≤ 2dH(a, b).

Proof. When b is re-scaled by the factor r/s, none of its points move by more
than s − r from their original positions. Hence dH(b, c) ≤ s − r. On the other
hand, s−r = dist(s, a) ≤ dH(a, b). By the triangle inequality, we have dH(a, c) ≤
dH(a, b) + dH(b, c) ≤ 2dH(a, b).

We end this section with a discussion of geodesics and isometries in R(n). By
an open arc γ in R(n) we mean a homeomorphic embedding γ : (s, t) → R(n),
where (s, t) is an open interval (s, t) ⊂ R. We also identify γ with the image
set γ((s, t)) ⊂ R(n). We say that an open arc γ ⊂ R(n) is geodesic if dH(a, b) =
dH(a, c)+ dH(c, b) for each ordered triple of points a, c, b ∈ γ. Observe that both
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rays and vertical lines can be regarded as isometric embeddings of (0,+∞) and R

into R(n), respectively. Indeed, if ∆ is a ray, then ∆ = ∆(a) for some a with |a| =
1. Hence ∆ = h

(
(0,+∞)

)
, where h(µ) = µa and dH(h(µ1), h(µ2)) = |µ1 − µ2|.

Similarly, if Γ(a) is a vertical line, then Γ(a) = g(R), where g(λ) = λ + a and
dH(g(λ1), g(λ2)) = |λ1 − λ2|. Thus, both rays and vertical lines are geodesics.

Our immediate goal is to show that the vertical line Γ(o) has a property not
shared by other vertical lines. This property played a crucial role in proving the
isometry result for n = 3 ([3, Theorem 9]). For simplicity we denote Γ(o) by Γ0.

First, we discuss special types of geodesics. Let a′ = (a1, a2, . . . , an) /∈ Γ0 be
any point with a1 + an ≥ 0. Let γ1 = ∆(a′) and γ2 = {(u, u, . . . , u) : u ≤ 0}.
Then γ = γ1∪γ2 is a geodesic. Indeed, since γ1 and γ2 are geodesics, it is enough
to show that

dH(a, b) = dH(a, o) + dH(o, b) for all a ∈ γ1 and b ∈ γ2.

Let a = µa′ ∈ γ1 and b = (u, u, . . . , u) ∈ γ2 be arbitrary points. Since a1+an ≥ 0
and u ≤ 0, we have

dH(a, b) = µan − u = µan + (−u) = dH(a, o) + dH(o, b), as required.

Due to invariance under vertical translations, these types of geodesics can be
constructed starting with an arbitrary singleton. Next lemma shows that all
geodesics containing a singleton are of this type.

Lemma 2.5. Let γ be a geodesic and let c ∈ γ be a singleton. Put γ = γ1∪{c}∪
γ2. Then either γ1 ⊂ Γ0 or γ2 ⊂ Γ0.

Proof. We will prove the following stronger result which, in particular, contains
the lemma. Let a, b ∈ R(n) be arbitrary points. If there exists a singleton c such
that dH(a, b) = dH(a, c) + dH(c, b), then either a or b is a singleton.

There is nothing to prove if either c = a or c = b, so we assume that c 6= a, b.
Due to invariance under vertical translations we can further assume that c = o.
Let a = (r, a2, a3, . . . , an−1, t) and b = (u, b2, b3, . . . bn−1, w). Then

dH(a, o) = |r| ∨ |t| and dH(b, o) = |u| ∨ |w|.

Using a conjugation, if necessary, we can assume that |r| ∨ |t| ∨ |u| ≤ w. Assume
that neither a nor b is a singleton, or equivalently, r 6= t and u 6= w.

Case 1: |r| ≤ |t|. Since r < t, we have t > 0. Then dH(a, o) + dH(o, b) =
w+ t. A simple observation shows that for each i = 2, 3, . . . , n− 1 the quantities
dist(u, a), dist(bi, a), dist(v, a), dist(r, b), dist(ai, b) and dist(t, b) are strictly less
than w + t. Hence dH(a, b) < w + t, a contradiction.

Case 2: |r| ≥ |t|. Since r < t, we have r < 0. Then dH(a, o)+dH(o, b) = w−r.
Then for each i = 2, 3, . . . , n − 1 the quantities dist(u, a), dist(bi, a), dist(v, a),
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dist(r, b), dist(ai, b) and dist(t, b) are strictly less than w − r. Hence d(a, b) <
w − r, a contradiction.

Lemma 2.5 implies that every geodesic containing a singleton shares a common
arc with Γ0. In particular, given a singleton c and any three geodesics γ1, γ2, γ3
containing c, at least one of the intersections γ1 ∩ γ2 ∩ Γ0, γ1 ∩ γ3 ∩ Γ0 and
γ2 ∩ γ3 ∩ Γ0 contains an open arc. In contrast, next lemma shows that each
k-tuple with k > 1 is contained in at least k+2 geodesics having only this point
in common. Recall that by a k-tuple, 1 ≤ k ≤ n, we mean a point a ∈ R(n) of
cardinality k when a is viewed as a subset of R.

Lemma 2.6. Given k ≥ 2, for each k-tuple a = (a1, a2, . . . , ak) ∈ R(n) there

exist k + 2 geodesics γ1, γ2, . . . , γk such that γm ∩ γl = {a} for each m 6= l.

Proof. Put

ǫ =
1

4

[
(a2 − a1) ∧ (a3 − a2) ∧ · · · ∧ (ak − ak−1)

]

and for each m = 1, 2, . . . , k define γm : (−ǫ, ǫ) → R(n) by

γm(x) = (a1, a2, . . . , am−1, am + x, am+1, . . . , ak).

Also, define γk+1(a) = Γ(a) and γk+2(a) = ∆(a). Then the arcs γ1, γ2, . . . , γk+2

are the required geodesics.

As we pointed out at the beginning, the vertical translations and reflections are
isometries of R(n). These isometries are induced from isometries of R. Observe
that each vertical translation is a composition of two reflections. For example, the
vertical translation a 7→ λ+ a is a composition of a 7→ a followed by a 7→ λ+ a.
Recall that each Euclidean isometry of Rn is a composition of at most n + 1
reflections in planes (see, for example, [2, Theorem 3.1.3]). We believe that
isometries of R(n) are more rigid.

Conjecture 2.1. Each isometry of R(n) is a composition of at most three reflec-
tions.

We will give the following arguments towards the validity of the conjecture.
Let F : R(n) → R(n) be an isometry. First, Lemma 2.5 and Lemma 2.6 imply
that singletons are mapped to singletons. By means of a preliminary vertical
translation we can assume that F (o) = o. Since |c| = d(o, c) = d(o, F (c)) =
|F (c)| for each singleton c, we have either F (c) = c or F (c) = c. Using a
conjugation, if necessary, we can assume that F (c) = c for all singletons c. Since
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we have already used up to three reflections, we must now show that F is the
identity map.

Next, we show that all 2-tuples are fixed. For r > 0, we put C(r) = {a ∈
R(n) : |a| = r}. Observe that given any k-tuple a = (a1, a2, . . . , ak−1, ak) ∈ R(n)

with 2 < k ≤ n, all the geodesics γ2, γ3, . . . , γk−1 given in Lemma 2.6 contain a
and lie in Πs∩C(|a|), where s = (a1+ak)/2. Note that |a| = dH(o, a) = |a1|∨|ak|.
On the other hand, there are no geodesics containing a 2-tuple b = (r, t) and lying
in Π(r+t)/2∩C(|b|). Indeed, if γ is any arc containing b and lying in Π(r+t)/2∩C(|b|)
then there exists ǫ > 0 such that the points b′ = (r, t− ǫ/2, t), b′′ = (r, t− ǫ/3, t)
and b′′′ = (r, r+ ǫ, t) lie on γ in this order. Since dH(b

′, b′′) = ǫ/6, dH(b
′′, b′′′) = ǫ

and dH(b
′, b′′) = ǫ, γ can not be a geodesic. We conclude that all 2-tuples are

fixed by F .

Finally, let a = (r, a2, . . . , ak−1, t) be arbitrary k-tuple with k ≥ 3. Then
F (a) = (r′, b2, . . . , bm−1, t

′) for some m ≥ 3. Choose arbitrary λ1 ∈ R and
λ2 ∈ R with λ1 < r ∧ r′ and λ2 > t ∨ t′. Let c′ = (λ1)

n
1 and c′′ = (λ2)

n
1 be

singletons. Then

t− λ1 = dH(c
′, a) = dH(c

′, F (a)) = t′ − λ1

and

λ2 − r = dH(c
′′, a) = dH(c

′′, F (a)) = λ2 − r′

Hence r′ = r and t′ = t and we conclude that F preserves each horizontal plane
Πλ as well as the sets C(ρ) ∩Πλ for each ρ > 0.

3. Embeddings of R(n) into Euclidean spaces

Suppose that (X, dX) and (Y, dY ) are metric spaces. A map φ : X → Y is
an embedding if it is a homeomorphism onto its image. An embedding φ is
biLipschitz if there exists L ≥ 1 such that

1

L
dX(a, b) ≤ dY (φ(a), φ(b)) ≤ LdX(a, b)

whenever a, b ∈ X . Let S be the unit circle in the complex plane. Let Sn and S(n)

denote the unit n-dimensional sphere in Rn+1 and the nth symmetric product of
S, respectively.

Theorem 3.1. Let n ≥ 4 and m ≥ n. Suppose that there is a biLipschitz

embedding of S(n−1) into Sm−1 in Rm. Then there is a biLipschitz embedding of

R(n) into Rm+1.
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Proof. We begin by showing that the set S can be embedded into S(n−1) by a
biLipschitz map. Recall that

S =
{
(−1, a2, a3, . . . , an−1, 1) ∈ R(n) : − 1 ≤ a2 ≤ a3 ≤ · · · ≤ an−1 ≤ 1

}
.

Define a map h : S → S(n−1) by

h
(
(−1, a2, a3, . . . , an−1, 1)

)
=

{
− 1, eiπa2 , eiπa3 , . . . , eiπan−1

}
.

We will show that

2dH(a, b) ≤ dH
(
h(a), h(b)

)
≤ πdH(a, b)

for all a, b ∈ S. Indeed, let a, b ∈ S be arbitrary distinct points. Without loss of
generality we can assume that dH(a, b) = dist(s, b) = |s− t| for some s ∈ a and
t ∈ b. Note that s /∈ {−1, 1}. Then dist(eiπs, h(b)) = |eiπs − eiπt|. Hence

dH
(
h(a), h(b)

)
≥ dist(eiπs, h(b)) = 2 sin

π|s− t|

2
≥ 2|s− t| = 2dH(a, b).

On the other hand, we have either dH
(
h(a), h(b)

)
= dist(eiπs, h(b)) for some s ∈ a

or dH
(
h(a), h(b)

)
= dist(eiπt, h(a)) for some t ∈ b. Let us assume that the latter

is the case. Then dH
(
h(a), h(b)

)
= dist(eiπt, h(a)) = |eiπt − eiπu| for some u ∈ a.

Note that t /∈ {−1, 1} and, in particular, dist(t, a) = |t− u|. Hence

dH
(
h(a), h(b)

)
= |eiπt−eiπu| = 2 sin

π|t− u|

2
≤ π|t−u| = π dist(t, a) ≤ πdH(a, b),

as required.

Suppose now that there is a biLipschitz embedding of S(n−1) into Sm−1. Using
the map h we see that there is a biLipschitz embedding of S into Sm−1, say f .
Let M = f(S) ⊂ Sm−1. Define a map g : Π → Rm by g(a) = |a|f

(
(1/|a|)a

)
if

a 6= o, and g(o) = (0, 0, . . . , 0). Observe that if a ∈ S, then g(a) = f(a).

Assume now that f is L-biLipschitz, i.e., (1/L)dH(a, b) ≤ |f(a) − f(b)| ≤
LdH(a, b) for all a, b ∈ S. We will show that g is (2L+1)-biLipschitz. Note that

|g(µa)− g(µb)| = µ|g(a)− g(b)| and |g(µa)− g(a)| = dH(µa, a)

for all a, b ∈ Π and µ ∈ [0,∞). Let a, b ∈ Π be arbitrary points. Without loss of
generality we can assume that |a| ≥ |b|. Let c = (|b|/|a|)a. Then a, c ∈ ∆(a) and

b, c ∈ S|b|. In particular, |g(a)−g(c)| = dH(a, c) and |g(b)−g(c)| = |b||f(b̃)−f(c̃)|,

where b̃ = (1/|b|)b and c̃ = (1/|c|)c. Hence (1/L)dH(b, c) ≤ |g(b) − g(c)| ≤
LdH(b, c). Thus,

dH(a, b) ≤ dH(a, c)+dH(b, c) ≤ |g(a)−g(c)|+L|g(b)−g(c)| ≤ (L+1)|g(a)−g(b)|

and using Lemma 2.3 and Lemma 2.4 we obtain

|g(a)−g(b)| ≤ |g(a)−g(c)|+|g(b)−g(c)| ≤ dH(a, c)+LdH(b, c) ≤ (2L+1)dH(a, b),
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as required.

Next, we define a map F : R(n) → Rm+1 by

(3.2) F
(
(x1, x2, . . . , xn)

)
=

(
g
(
(x1 − t, x2 − t, . . . , xn − t)

)
, t
)
,

where t = (x1 + xn)/2. Note that F (a) = (g(a), 0) for all a ∈ Π. It remains to
show that F is biLipschitz. Let now a, b ∈ R(n) be arbitrary points. Since

dH(λ+ a, λ+ b) = dH(a, b) and |F (λ+ a)− F (λ+ b)| = |F (a)− F (b)|

for all λ ∈ R, we may assume that b ∈ Π. Denote the intersection point of Γ(a)
with Π by c. Hence a, c ∈ Γ(a) and b, c ∈ Π. Note that

|F (a)− F (b)|2 = |F (a)− F (c)|2 + |F (c)− F (b)|2.

It is easy to check that |F (a) − F (c)| = d(a, c). Since F (b) = (g(b), 0) and
F (c) = (g(c), 0), using our assumption we obtain

1

2L+ 1
dH(b, c) ≤ |F (b)− F (c)| ≤ (2L+ 1)dH(b, c).

On the other hand, Lemma 2.1 and Lemma 2.2 imply that dH(a, c) ≤ dH(a, b)
and dH(b, c) ≤ 2dH(a, b). Hence

dH(a, b) ≤ dH(a, c) + dH(c, b)

≤ |F (a)− F (c)|+ (2L+ 1)|F (c)− F (b)| ≤ (2L+ 2)|F (a)− F (b)|

and

|F (a)− F (b)| ≤ |F (a)− F (c)|+ |F (c)− F (b)|

≤ dH(a, c) + (2L+ 1)dH(c, b) ≤ (4L+ 3)dH(a, b).

Thus, F is (4L+ 3)-biLipschitz, completing the proof.

The following corollary is an immediate consequence of the proof of Theo-
rem 3.1.

Corollary 3.3. If there is a biLipschitz embedding of Π into Rm for some m,

then there is a biLipschitz embedding of the space R(n) into R(m+1).

Observe that if the map f in the proof of Theorem 3.1 is a homeomorphism,
then so are the maps g and F . Hence if there is a topological embedding of S(n−1)

into an (m−1) - dimensional sphere Sm−1 in Rm, then there is also a topological
embedding of R(n) into Rm+1. Since S(3) is homeomorphic to a three-dimensional
sphere S3 in R4 ([5]), we conclude that there is a topological embedding of R(4)

into R5. In particular, the space I(4), where I = [0, 1], can be topologically
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embedded into R5, giving a positive answer to the question of Borsuk and Ulam
for n = 4.

That I(4) can be topologically embedded into R5 also follows from the works of
R. M. Schori ([9]) and R. N. Andersen, M. M. Marjanovic and R. M. Schori ([1]).
More precisely, the space I(4) is homeomorphic to cone(I10) × I (Theorem 6 and
Theorem 4 in ([9])), where I10 = {A ∈ I(4) : 0, 1 ∈ A}. In ([1]) it was shown that
I10 is the ”Dunce Hat”. The latter can be constructed in R3 and hence cone(I10)
can be embedded into R4. Therefore cone(I10)×I and hence I(4) can be embedded
into R5. The authors thank Alejandro Illanes for these observations.

4. Metric properties of R(n)

Suppose that (X, dX) is a metric space. By a curve in X we mean a continuous
mapping γ : [a, b] → X , where [a, b] ⊂ R is an interval. We also identify γ with
the image set γ([a, b]). The length of a curve γ is defined by

L(γ) = sup
n∑

i=0

dX(γ(ti+1), γ(ti)),

where the supremum is taken over all sequences a = t0 ≤ t1 ≤ · · · ≤ tn+1 = b.
A curve γ is said to be rectifiable if L(γ) < ∞. The space X is said to be
C-quasiconvex if there exists a constant C ≥ 1 with the property that every
pair of points x, y ∈ X can be joined by a curve whose length is no more than
C · dX(x, y).

Our immediate goal is to show that the space R(n) is quaisconvex. For n = 3
the quasiconvexity of R(3) follows since R(3) is biLipschitz equivalent to R3. More
precisely, the map F : R(3) → R3, defined by

F
(
(r, s, t)

)
=

(r − t

2
cos

2π(s− r)

t− r
,
r − t

2
sin

2π(s− r)

t− r
,
t+ r

2

)
,

satisfies
dH(a, b)/2 ≤ |F (a)− F (b)| ≤ (3 + 4π)dH(a, b)

for all a, b ∈ R(n) (see [3, (9) and (10)]). It follows that the space R(3) is 2(3+4π)-
quasiconvex.

Theorem 4.1. For n ≥ 3 the space R(n) is 4n-quasiconvex.

Proof. We will show that for every two points a and b in R(n) there exists a curve
joining a and b whose length is less than 4ndH(a, b). We prove it by induction
on n. The claim is true for n = 3 as mentioned above. We assume now that it
is true for n − 1 ≥ 3 and we will prove it for n. Suppose a = (a1, ..., an) and
b = (b1, ..., bn) are two given points in R(n) and let D = dH(a, b). If both a and b
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are in R(n−1), then there is nothing to prove. Otherwise, we can assume without
loss of generality that b1 < b2 < · · · < bn and a1 ≤ a2 ≤ · · · ≤ an. We break the
proof into the following two cases.

Case 1: bi+1− bi > 2D or ai+1−ai > 2D for every i = 1, 2 . . . , n−1. Without
loss of generality we can assume that bi+1 − bi > 2D for every i = 1, 2 . . . , n− 1.
Note that dH(a, b) = D implies that every ai is in a D neighborhood of some bj
and each bi is in a D neighborhood of some aj. Since bi’s are at least 2D units
apart, then each ai has to be within D neighborhood of bi, and thus |ai−bi| ≤ D
for each i = 1, 2, . . . , n. Therefore

D = dH(a, b) = max{|ak − bk| : 1 ≤ k ≤ n}.

We define a map γ : [0, 1] → R(n) by γ(t) = {a1+ t(b1 − a1), . . . , an+ t(bn − an)}.
We will show that the length of this curve is equal to D. Recall that the length
of γ is defined by

L(γ) = sup
0=t1<t2···<tm=1

m∑

i=1

dH(γ(ti), γ(ti−1))

where the supremum is taken over all finite partitions of the interval [0, 1] .
Suppose that P1 = {0 = s0, s1, . . . , sl = 1} is arbitrary partition of [0, 1]. We
can choose a partition P2 = {0 = t0, t1, . . . , tm = 1} so that P1 ⊆ P2 and that
(ti − ti−1) < min{|aj+1 − aj | : 1 ≤ j ≤ n− 1}. Then for each i = 0, 1, . . . , m and
for each k = 1, 2, . . . , n we have

dist(γ(ti), ak+ti−1(bk−ak)) = (ti−ti−1)|bk−ak| = dist(ak+ti−1(bk−ak), γ(ti−1)).

Then
m∑

i=1

dH(γ(ti), γ(ti−1)) =
m∑

i=1

max{(ti − ti−1)|bk − ak| : 1 ≤ k ≤ n}

=
m∑

i=1

(ti − ti−1)max{|bk − ak| : 1 ≤ k ≤ n} = D.

Since
l∑

i=1

dH(γ(si), γ(si−1)) ≤

m∑

i=1

dH(γ(ti), γ(ti−1)) = D,

we conclude that L(γ) = D.

Case 2: There exist an i and a j such that bi+1− bi ≤ 2D and aj+1−aj ≤ 2D.
We construct a point a′ in R(n−1) which is obtained from the point a by replacing
aj+1 with aj . In the same way we construct a point b′ from b by replacing bi+1 with
bi. Then for every k = 1, 2, · · · , n there exists tk such that dist(ak, b) = |ak−btk |.
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If for a given k we have tk 6= i + 1, then dist(ak, b) = dist(a, b′) ≤ D. On the
other hand if for some k we have tk = i+ 1, then

|ak − bi| ≤ |ak − bi+1|+ |bi+1 − bi| ≤ dist(ak, b) + 2D ≤ 3D.

So in this case we have dist(ak, b
′) ≤ |ak − bi| ≤ 3D. Therefore for every k =

1, 2, · · · , n we have dist(ak, b
′) ≤ 3D. Similarly, for every k = 1, 2, · · · , n we have

dist(bk, a
′) ≤ 3D. Thus, dH(a

′, b′) ≤ 3D.

As the points a′ and b′ lie in R(n−1) and since dH(a
′, b′) ≤ 3D, by the induction

hypothesis there exists a curve γ1 that connects a′ to b′ and such that L(γ1) ≤
4n−1dH(a

′, b′) ≤ 3·4n−1D. Note also that dH(a, a
′) = dist(aj+1, a

′) ≤ |aj+1−aj | ≤
2D and dH(b, b

′) = dist(bi+1, b
′) ≤ |bi+1 − bi| ≤ 2D. Let

γ2(t) = {a1, . . . , aj , aj+1 + t(aj − aj+1), aj+2, . . . , an}

γ3(t) = {b1, . . . , bi, bi+1 + t(bi − bi+1), bi+2, . . . , bi}.

be two curves connecting a to a′ and b to b′, respectively. Then we can easily see
that L(γ2) ≤ (aj+1 − aj) ≤ 2D and L(γ3) ≤ bi+1 − bi ≤ 2D. Therefore the curve
γ = γ1 ∪ γ2 ∪ γ3 is of length at most (2 + 2 + 3 · 4n−1)D 6 4nD.

A mapping φ : X → Y between metric spaces (X, dX) and (Y, dY ) is said to
be regular if it is Lipschitz and if there is a constant C > 0 such that for each
ball B in Y the set φ−1(B) is covered by at most C balls in X of the same radius
as B (see, [10, Defilition 8.1]). Recall that the map φ is Lipschitz if there exists
L ≥ 1 such that dY (φ(x), φ(y)) ≤ LdX(x, y) for all x, y ∈ X .

Theorem 4.2. The projection π : Rn → R(n) is regular.

Proof. Clearly, for all x, y ∈ Rn we have dH(π(x), π(y)) ≤ |x − y|. Hence π
is Lipschitz. To avoid confusion, we represent elements of R(n) as subsets of R
of cardinality less than or equal to n and denote them using the set-theoretical
braces. Let a = {a1, . . . , an} ∈ R(n) be arbitrary point and let B = π−1(B(a, r)).
Put C = {(c1, . . . , cn) ∈ Rn : ci ∈ {a1, . . . , an}}. Then the cardinality of C is
at most nn and hence C is the collection of p points in Rn, where p = card(C).
Let b = (b1, b2, . . . , bn) ∈ B be arbitrary point. Since dH(π(b), a) < r, for each
i we have dist(bi, a) < r and hence there exists ki such that |bi − aki | < r.
Let E(b) = (ak1 , ak2, . . . , akn). Then E(b) ∈ C. Hence b is contained in a cube
centered at E(b) of side-length 2r. Hence B is contained in the union of the
cubes centered at points of C and of side-length 2r. It is a well-known fact that
each one of these cubes (in Rn) can be covered by at most K balls of radius r,
where K depends only on n. Thus, the set π−1(B(a, r)) can be covered by at
most Knn balls of radius r and hence the map π is C-regular with C = Knn.
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We end the paper with the following open problem.

Problem 4.1. Given n ≥ 4, find the smallest m > n such that there is a
biLipschitz embedding of R(n) into Rm. Also, show that R(n) is doubling and
that its Hausdorff dimension is equal to n.
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