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Problems and Conjectures in Planar Harmonic Mappings

D. Bshouty and A. Lyzzaik

Abstract. Planar harmonic mappings underly the theory of minimal surfaces
in three space. The seminal paper [13] introduced a complex analytic approach
for their studies. Ever since this approach has become an extensive field of
research. These problems and conjectures were proposed by many colleagues
throughout the past quarter of a century.
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1. Introduction

A harmonic mapping f of a complex region G is a complex-valued function
that satisfies Laplace’s equation

∆f ≡ fxx + fyy = 0.

This function can be written as

f(z) = u(x, y) + iv(x, y), z = x+ iy,

where u and v are real-valued harmonic functions, and

(1.1) f(z) = h(z) + g(z),

where h and g are analytic functions which are single-valued if G is simply-
connected and possibly multiple-valued if G is otherwise. In the former case, the
second complex dilatation is the meromorphic function a = g′/h′ or a ≡ ∞. It
is known that |a| < 1 in G if and only if f is open and sense-preserving, and
|a| > 1 in G if and only if f is open and sense-reversing.
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In the sequel, let C, D, and T denote the complex plane, the open unit disk,
and the unit circle respectively.

Let f : D → C be a harmonic mapping. The aforementioned representation
(1.1) is unique if it is assumed that g(0) = 0. Such functions admit the power
series representation

f(z) =

−1
∑

n=−∞

cn(f)z
n +

∞
∑

0

cn(f)z
n.

The mapping f is said to belong to the class SH if it is univalent, sense-
preserving on D and normalized by c0(f) = c1(f)−1 = 0. If in addition, c−1(f) =
0, then f belongs to the class S0

H .

2. Harmonic mappings on Simply connected domains

Two approaches for the study of harmonic mappings on D are available. Let
f ∗(eiθ) be a Lebesgue integrable function on T. Then the Poisson integral

(2.1) f(z) = P [f ∗] =
1

2π

∫ π

−π

P (r, ϕ− θ)f ∗(eiϕ) dϕ, z = reiθ ∈ D,

where P (r, t) is the Poisson kernel of D, is a harmonic mapping of D whose
unrestricted limit at every continuity point eiθ0 of f ∗ is f ∗(eiθ0).

Open sense-preserving harmonic mappings of D also arise as solutions of linear
elliptic partial differential equations of the form

(2.2) fz (z) = a(z)fz(z), z ∈ D,

where a is an analytic function from D into itself; note that a is indeed the
dilatation of f.

In the first approach, if f ∗ is a homeomorphism between T = ∂D and the
boundary of a bounded simply connected domain Ω and if f(D) ⊂ Ω, then the
Rado-Kneser-Choquet Theorem [17, pp. 29-30 ] asserts that f is a univalent
sense-preserving harmonic mapping of D onto Ω.

In the second approach, if |a| < k < 1 in D, then it is classical that the
existence of the Riemann Mapping (RM) of equation (2.2) holds; namely, for
a given bounded simply connected domain Ω containing a point w0 having a
locally connected boundary, there exists a univalent solution f of (2.2) that sat-
isfies f(0) = w0 and fz(0) > 0 and maps D onto Ω. If in addition Ω is a Jordan
domain, then f extends to a homeomorphism from D onto Ω. Some satisfactory
generalizations of the above theorems do exist when f ∗ need not be continuous,
one-to-one, or satisfies ‖a(z)‖∞ = 1.
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Theorem A. [22] Let Ω be a bounded simply connected domain whose bound-
ary ∂Ω is locally connected. Suppose that a(D) ⊂ D and w0 is a fixed point of Ω.
Then there exists a univalent solution f of (1.1) having the following properties:

(a) f(0) = w0, fz(0) > 0 and f(D) ⊂ Ω.
(b) There is a countable set E ⊂ T such that the unrestricted limits f ∗(eit) =

limz→eit f(z) exist on T \ E and they are on ∂Ω.
(c) The functions

f ∗
−(e

it) = ess lim
s↑t

f ∗(eis) and f ∗
+(e

it) = ess lim
s↓t

f ∗(eis)

exist on T, belong to ∂Ω and are equal on T \E.
(d) The cluster set of f at eit ∈ E is the straight line segment joining f ∗

−(e
it)

to f ∗
+(e

it).

The mapping f is termed a Generalized Riemann Mapping (GRM) from D onto
Ω.

A natural generalization of the classical class S of normalized univalent func-
tions on D is the class SH of sense-preserving univalent harmonic mappings on
D normalized by h(0) = g(0) = h′(0)− 1 = 0. However this class is not compact
and the subclass S0

H where g′(0) = 0 is compact and often more appropriate for
our purposes.

3. Open Problems

Problem 3.1. (W. Hengartner) Characterize unbounded domains f(D) where f
is a univalent harmonic mapping on D and the dilatation a(z) is a finite Blaschke
product.

Reference: [4].

Problem 3.2. a) (J. Clunie and T. Sheil-Small) For f ∈ S0
H , find the best

bound for |c2(f)|. It is conjectured to be 5/2.
b) (R. S. Laugesen) One may ask the more general question: If for f ∈ S0

H the
inequality |c2(f)| ≤ 2+||a||∞/2 holds, then are the extremal functions f the
rotations of the Koebe-type harmonic function k(z) defined by h(z)−g(z) =
z/(1− z)2 and a(z) = ||a||∞z.

c) (J. Clunie and T. Sheil-Small) For f ∈ S0
H , it is conjectured that

∣

∣|cn| − |c−n|
∣

∣ ≤ n.

d) (J. Clunie and T. Sheil-Small) For f ∈ S0
H , it is conjectured that the disk

{w : |w| < 1/6} ⊂ f(D).
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e) (J. Clunie and T. Sheil-Small) For f ∈ S0
H , it is proposed that the lower

bound for the inner mapping radius of f(D) is 2/3.
f) (J. Clunie and T. Sheil-Small) For f ∈ SH , it is proposed that the upper

bound for the inner radius is of f(D) is π/2.
g) (J. Clunie and T. Sheil-Small) For f ∈ SH , it is proposed that the sharp

coefficient bounds for f are |cn(f)| ≤ (2n2 + 1)/3.

Remark: Partial results for subclasses exist as well as estimates for e) and f).

References: [13], [16].

Problem 3.3. a) (T. Sheil-Small) For f ∈ SH , the proposed radius of con-
vexity is 3−

√
8.

b) (P. L. Duren) Find the radius of starlikeness for starlike mappings in SH .
c) (P. L. Duren) Find the radius of convexity for harmonic isomorphisms of

D.
d) (T. Sheil-Small) For f = h+ g ∈ SH , the proposed radius of univalence for

h is 1/
√
3.

Remarks:

1) The radius of convexity for close-to-convex mappings in SH is 3−
√
8.

2) The radius of convexity for convex mappings in SH is
√
2− 1.

3) The suggested extremal function for d) is the Koebe-type mapping for
which h(z) = (z + z3/3)/(1− z)2.

References: [13], [38], [39].

Problem 3.4. (W. Hengartner) Let Ω be a simply connected Jordan domain
convex in the horizontal direction. We further assume that ∂Ω is the union of two
connected arcs, one that is convex and another that is concave with respect to Ω.
Determine the maximum valency of the harmonic extension of a homeomorphism
from T onto ∂Ω.

Problem 3.5. Let f : D
onto−−→ D denote a univalent harmonic mapping whose

complex dilatation function is a(z).

a) (A.Weitsman) Is there an f whose dilatation a is an infinite Blaschke product?

b) (R. S. Laugesen) Find conditions on the boundary values of f such that its
dilatation a is an infinite Blaschke product.

c) (R. S. Laugesen) Find conditions on the boundary values of a harmonic map-
ping f such that its dilatation a is a singular inner function.

Remarks:
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1) If the image domain in a) is some bounded convex domain then the answer
is yes.

2) For b) to hold, the accumulation points of the set of zeros of a(z) should
be T. On the other hand, Laugesen gave an example of an inner function a(z)
for which b) holds.

3) Let E be a closed countable subset of D. Suppose that f jumps at each
point of E and is constant on each component of D \ E, then a is a Blaschke
product.

References: [10] , [32].

Problem 3.6. (T. Sheil-Small) Does there exist a circle mapping f(eit) = eiφ(t)

where φ(t) is a non decreasing function such that φ(2π) − φ(0) = 4π whose
harmonic extension f is beyond an arbitrary large valency.

Remark: There exist circle mappings of the designated type whose harmonic
extensions f are 6− and 8−valent. It seems that this result is true for any finite
valency.

Reference: [7].

Problem 3.7. (A. Wilmshurst) It is conjectured that if f = p+ q is a harmonic
polynomial where the degree of p is n and the degree of q is m, where 1 ≤ m <
n− 1, then f has at most m(m− 1) + 3n− 2 zeros.

Remark: True for m=1.

References: [40], [28].

Problem 3.8. (P. L. Duren) Let f be a RM or GRM associated with a dilatation
function a.

a) Let ||a(z)||∞ ≤ k < 1 and Ω be a Jordan domain. Is the RM unique ?

b) Let ||a(z)||∞ < 1. The existence proof of the GRM is nonconstructive and
difficult. Find a constructive proof.

c) Let ||a(z)||∞ < 1 and Ω a Jordan domain. Is the GRM unique?

Remark: If Ω is a symmetric domain then a) is true, and if it is a strictly
starlike domain then c) holds true even when ||a||∞ ≤ 1.

References: [2], [8], [6], [22], [19].

Problem 3.9. (P. L. Duren) Let f be a univalent harmonic self-mapping of D
whose dilatation a is a square of an analytic function. It is conjectured that the
minimum of |c1(f)| + |c−1(f)| is attained for the mapping that maps D onto a
circumscribed square.
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Problem 3.10. (W. Hengartner) ) Let f1, f2, ..., fn be n complex-valued pluri-
harmonic functions defined on the unit ball B of Cn.

a) Is it true that f = (f1, f2, ..., fn) is locally univalent if and only if its Jacobian
does not vanish ?

b) If f = (f1, f2, ..., fn) is a homeomorphism from ∂B onto ∂B. Then is it true
that f is a homeomorphism from B onto B ?

Remarks:

1) For n = 1 the answer to a) and b) is yes.

2) If f1, f2, ..., fn are a complex-valued harmonic functions on B then the
answer to a) and b) is no.

3) If f1, f2, ..., fn are analytic on B then the answer to a) is yes.

References: [29], [31], [33], [37].

Problem 3.11. (W. Hengartner) Let f = pq, where p is an analytic polynomial
of degree n and q is an the analytic polynomial of degree m, and let q(z) 6=
const p(z). Find a sharp upper bound for the valency of f .

References: [5], [1]

Problem 3.12. (D. Bshouty) Let ΣH be the class of normalized univalent har-
monic mappings f(z) defined on the exterior of the unit disk, ∆, and normalized
at infinity by f(z) = z +O(1). Find Grunsky type inequalities for the class ΣH .

Remark: There exists an area theorem for the class.

Reference: [35].

Problem 3.13. (A. Weitsman) Let
(

X1(z), X2(z), X3(z)
)

, z ∈ D, be a Wier-
strass representation of a minimal surface which may have self-intersections. Ge-
ometers call this a conformal minimal immersion of D. Then f(z) = X1(z) +
iX2(z) is a harmonic mapping where a(z) is the square of a meromorphic func-
tion in D. It is an open problem weather a conformal minimal immersion of D
can be proper. This would mean that

X2
1 (z) +X2

2 (z) +X2
3 (z) → ∞ as |z| → 1.

It is not hard to construct a harmonic mapping f(z) which is proper, i.e. |f(z)| →
∞ as |z| → 1 but to do this and make a(z) the square of a meromorphic function
is another matter.
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Problem 3.14. (A. Lyzzaik) If

ℜ
{

1 + z
h′′

h′

}

> −1

2

and g′ = zh′, then f = h+λg, |λ| = 1 is close to convex. What is the maximum
valency of f if g′ = z2h′?

Reference: [9].

Problem 3.15. (J. C. C. Nitsche, D. Kalaj) Let f(z) be a univalent mapping
of D onto itself satisfying f(0) = 0. Find the sharp bound for

inf
z∈D

(|fz|2 + |fz|2).

Remarks:

1) The sharp bound at the origin is known.

2) The bound 1/π2 is known.

3) The conjecture is 2/π2.

4)The result was generalized for mappings onto convex domains.

References: [21], [20], [26], [27].

Problem 3.16. (A. Lyzzaik) Set Tρ = {z : |z| = ρ} and Aρ = {z : ρ < |z| < 1}
for 0 < ρ < 1. Let Ω be a bounded convex domain, w0 ∈ Ω and f is a univalent
harmonic mapping from Aρ onto Ω \ w0 that extends across Tρ continuously. It
is known that

f(z) = h(z)− h(ρ2/z) + w0 + c log(|z|/ρ),
where h is an analytic function in Aρ2 . It was also shown that h is close-to-
convex function of Aρ2 in the sense that h = H ◦φ, where H is a close-to-convex
function of D and φ : Aρ2 → A0 is a homeomorphism. The conjecture now is: h
is a convex function in the same sense.

References: [3], [34].

Problem 3.17. (A. Lyzzaik) Let Λ be a multiply connected domain bounded by
the Jordan curves α1, α2, ..., αn with α1 forming the outer boundary, and let Ω be
a Jordan domain. Suppose that f ∗ is a sense-preserving weak homeomorphism
between α1 and ∂Ω. Find sufficient conditions (on Ω and /or f) that yield a
harmonic extension f of f ∗ which maps Λ homeomorphically onto Ω minus n−1
points.
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Remark:

1) If Ω is convex then such an extension always exists.

2) If Λ is an annulus then such an extension exists.

References: [18], [3], [34].

Problem 3.18. (S. Ponnusamy) For M ≥ 1 we set DM = {z : |z| < M}. For a
normalized harmonic mapping f : D → DM such that f(0) = Jf(0)− 1 = 0, it is
conjectured that

a) |cn|+ |c−n| ≤ M − 1/M, n > 2.

b) |fz|+ |fz| ≤ 4
π
(M − 1/M)/(1− |z|2).

References: [12], [14].

Problem 3.19. (A. Lyzzaik, D. Bshouty and A. Weitsman) Let a(z) be a
Blaschke product and f the GRM from D onto D associated with a. Let f ∗(eit)
denote the radial boundary values of f. If df∗

dt
(eiθ) exists, is it true that a has

finitely many zeros in any Stolz angle at eiθ?

Remark: If |df∗

dt
(eiθ)| ≤ c, where c is a specific constant, then the result is true.

Reference: [11].

Problem 3.20. (T. Iwaniec, L.V. Kovalev and J. Onninen) (Generalized Nitsche
bound) Let A = A(r, R) = {z : r < |z| < R} and A∗ = A(r∗, R∗) be a pair of
circular annuli. Suppose that f : A → A∗ is a harmonic mapping not homotopic
to a constant within the class of continuous mappings from A to A∗. Then

(3.1)
R∗

r∗
≥ 1

2

(

√

R

r
+

√

r

R

)

.

If f is in addition injective, then

(3.2)
R∗

r∗
≥ 1

2

(

R

r
+

r

R

)

.

Remark: The mapping f(z) = z + 1/z̄ and the domain A = A(1/R,R)
turn (3.1) into an equality. The mapping f also shows the sharpness of (3.2)
when restricted to the annulus A(1, R).

Reference: [23].

Problem 3.21. (T. Iwaniec, L.V. Kovalev and J. Onninen) The affine Modulus
of a doubly connected domain Ω ⊂ C is defined by

Mod@Ω = sup{Mod φ(Ω) : φ : C → C affine}.
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Let Ω and Ω∗ be doubly connected domains in C such that

(3.3) Mod@Ω
∗ > ModΩ.

Then there exists a harmonic homeomorphism f : Ω → Ω∗ unless C \ Ω∗ is
bounded. In the latter case there is no such f . Does equality in (3.3) (with both
sides finite) suffice for the existence of f?

Reference: [25].

Problem 3.22. (T. Iwaniec, L.V. Kovalev and J. Onninen) Let f be a harmonic
K-quasiconformal homeomorphism of A(1, R) onto A(1, R∗). It is conjectured
that

R∗ ≤
k + 1

2
R− K − 1

2

1

R
.

Equality is attained, uniquely modulo conformal automorphisms, for

f(z) =
k + 1

2
z − K − 1

2

1

z
.

Remark: The corresponding lower bound is known.

Reference: [24].

Problem 3.23. (T. Iwaniec, L.V. Kovalev and J. Onninen) It is conjectured
that if f is a harmonic homeomorphism from a doubly connected domain Ω onto
Ω∗ then

Mod@Ω
∗ ≥ log coshMod(Ω).

Remark: If true then it is sharp for Ω∗ a circular ring.

Reference: [25].

Problem 3.24. (T. Iwaniec, L.V. Kovalev and J. Onninen) We write Ω1 ˜→֒Ω2

when Ω1 is a domain contained in a doubly connected domain Ω2 in such a way
that Ω1 separates the boundary components of Ω2. The monotonicity of the
modulus can be expressed by saying that Ω1 ˜→֒Ω2 implies Mod Ω1 ≤ Mod Ω2

and Mod@ Ω1 ≤ Mod@ Ω2.

a) (Domain Comparison Principle) Let Ω and Ω∗ be doubly connected domains

such that Mod Ω < ∞ and there exists a harmonic homeomorphism f : Ω
onto−−→

Ω∗. If Ω0 ˜→֒Ω, does there exist a harmonic homeomorphism f0 : Ω0
onto−−→ Ω∗.

b) (Target Comparison Principle) Let Ω and Ω∗ be doubly connected domains

such that there exists a harmonic homeomorphism f : Ω
onto−−→ Ω∗. If Mod Ω∗

0 < ∞
and Ω∗ ˜→֒Ω∗

0, does there exist a harmonic homeomorphism h0 : Ω
onto−−→ Ω∗

0.

Reference: [25].
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Problem 3.25. (N. T. Koh and L.V. Kovalev) Let the Lebesgue area of a set
E be denoted by |E|.
a) Let f : D

into−−→ D be a univalent harmonic mapping and let Dr = {z : |z| < r},
then

|f(Dr)| ≤ |Dr|.
b) Is the above true for any harmonic mappings of that type?

Remark: True for univalent harmonic mappings of D onto D.

Reference: [KK].

Problem 3.26. (M. Dorff, M. Nowak and Woloszkiewicz)

a) Let

f0(z) =
z − z2/2

(1− z)2
+

z2/2

(1− z)2

and f = h+g be inK0
H , the subclass of convex mappings in S0

H , with h(z)+g(z) =
z/(1−z) and dilatation a(z) = (z+α)/(1+αz) with α ∈ (−1, 1). Then f0∗f ∈ S0

H

and is convex in the direction of the real axis. Determine other values of α ∈ D

for which the previous result holds.

b) Consider other right half-plane mappings fn formed by shearing hn(z)−gn(z) =
z/(1 − z) with dilatations an(z) = eiθzn. Determine the values of n for which
fn ∗ f are univalent.

Reference: [15]

Problem 3.27. (M. Dorff, M. Nowak and Woloszkiewicz)

a) Determine what and how many fundamentally different (i.e., not rotations or
not scalings) images can be constructed when taking the convex combination
of two harmonic n-gon maps. Extend this to convex combinations of minimal
graphs.

b) Determine which combinations are possible and what images can be con-
structed when taking the convex combination of a harmonic m-gon and n-gon,
where m < n. Extend this to convex combinations of minimal graphs.

Problem 3.28. (M.Vuorinen) Find the best constant c(K) such that for every
quasiconformal harmonic map f from D onto D and f(0) = 0 we have

|f(x)| ≥ |x|
c(K)

.

Remark: Estimates for c(K) exist with the property that c(K) → 1 when
K → 1.

References: [27], [36].
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[27] D. Kalaj and M. Pavlović, On quasiconformal self-mappings of the unit disk satisfying
Poisson’s equation, Trans. Amer. Math. Soc., 363(2011), 4043–4061.
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