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Comparison of BV Norms in Weighted Euclidean Spaces
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Abstract. In this paper, we will examine proposed generalizations of the no-
tion of bounded variation by Baldi to weighted Euclidean spaces and Miranda
to metric measure spaces. Since weighted Euclidean spaces are metric mea-
sure spaces, it is natural to ask whether these two definitions are equivalent
or comparable. We will give conditions that ensure equivalency and provide
examples of weights for which they are not even comparable.
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1. Introduction

Functions of bounded variation (BV functions) have played an important role
in the study of calculus. They have classically been used to study minimal
surfaces and more recently to study discontinuity hypersurfaces with applications
in image segmentation and fracture mechanics, see for example [10] and [13].
Until recently, the theory of functions of bounded variation has been limited to
Euclidean domains. In the past ten years, attempts have been made to generalize
this theory to more general spaces such as weighted Euclidean domains and
metric measure spaces. Since classical BV theory is built on definitions dependent
on Euclidean structure, new definitions must be used to generalize BV theory
to abstract spaces. Finding equivalent definitions in Euclidean settings that can
be extended to abstract metric measure spaces can also contribute to classical
theory by helping to identify the most important features of BV functions.

We first give a brief introduction to BV functions in Euclidean domains (com-
plete discussions can be found in [1] and [4], among other places). For Ω ⊂ Rn,
f ∈ L1(Ω) belongs to BV (Ω) if there exists an n-dimensional Radon measure
Df with finite total variation ‖Df‖ (Ω) such that for all ϕ ∈ C∞

c (Ω: Rn),
∫

Ω

f divϕdx = −

∫

Ω

ϕ · dDf.
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The idea here is the integration by parts formula. We can think of BV functions
as those having a vector-valued Radon measure acting like its derivative. For dif-
ferentiable functions f , this measure would be given by ∇f dx. BV functions are
traditionally defined using the equivalent criteria that f ∈ L1(Ω) is of bounded
variation if

sup

{
∫

Ω

f divϕ dx
∣

∣

∣
ϕ ∈ C∞

c (Ω: Rn), |ϕ| ≤ 1

}

<∞.

It has been shown that BV functions can be approximated in a variational sense
by smooth functions (see Section 5.2 of [4]). That is, for any f ∈ BV (Ω), there
exists a sequence of smooth functions {fk}k∈N satisfying

lim
k→∞

‖fk − f‖L1(Ω) = 0 and lim
k→∞

‖Dfk‖ (Ω) = ‖Df‖ (Ω).

Note that we do not claim limk→∞ ‖D(fk − f)‖ (Ω) = 0.

An area of interest is the study of weighted Euclidean spaces, that is an open
Euclidean set equipped with a measure obtained by integrating a density function
ω against the Lebesgue measure. The Sobolev space H1,p(Ω, ω) is the closure of
all C∞ functions ϕ under the norm

‖ϕ‖1,p =

(
∫

Ω

|ϕ|p ω dx

)1/p

+

(
∫

Ω

|∇ϕ|p ω dx

)1/p

Given u ∈ H1,p(Ω, ω), there exists a sequence {ϕk}
∞
k=1 from C∞ and a vector-

valued function v, called the weak gradient of u such that
∫

Ω

|ϕk − u|ω dx→ 0 and

∫

Ω

|∇ϕk − v|ω dx→ 0.

By construction, H1,p(Ω, ω) is a Banach space. Note that it is not necessary for
the gradient defined above to be a distributional derivative for u. However it has
been shown by Kilpeläinen that if ω ∈ Ap(Ω), that is ω1/(1−p) ∈ L1

loc(Ω), then
the gradient is a distributional derivative, see [6]. Weighted Sobolev spaces have
been studied predominantly for weights ω such that the measure ωdx is doubling
and admits a (1, p)-Poincaré Inequality. These weights are called p-admissible
weights. A more thorough discussion of weighted Sobolev spaces can be found
in Chapter 1 of [5].

Weighted Euclidean spaces become particularly interesting when two open
sets are quasiconformally equivalent. If f : Ω → Ω′ is a quasiconformal map and
u is a nonnegative measurable function on Ω, then Lemma 14.25 of [5] says

∫

Ω

u(f(x))Jf(x)dx =

∫

Ω′

u(x)dx.
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It follows that Lp(Ω′) = {u | u ◦ f ∈ Lp(Ω, Jf )}. It is then natural to study
weighted spaces when doing analysis on quasiconformally equivalent open sets.

It was shown by Gehring that for any quasiconformal map f , the weight J
1−p/n
f

is a p-admissible weight for every p > 1. This then gives us some tools to work
with when comparing Sobolev spaces of quasiconformally equivalent open sets.
For more information about quasiconformal maps and the weights obtained from
their Jacobians, we refer the reader to Chapters 14 and 15 of [5].

The structure of this paper is as follows: In Section 2, we give two candidate
definitions for weighted BV functions and show that the BV norms are lower
semicontinuous. In Section 3, we give a discussion on lower semicontinous en-
velopes and their importance related to the norm studied in [2]. This section
culminates with Theorem 3.4, giving a formula to compute this weighted BV
norm using the classical BV norm. In Section 4, we discuss what happens on the
set where the weight equals zero and prove the coarea formula for the norm in
[2]. Section 5 features conditions on the weight which ensure that the candidate
weighted BV norms are equivalent, see Theorem 5.6.

2. Definitions and Preliminary Results

Let Ω ⊂ Rn be an open set and ω : Ω → [0,∞) be a locally integrable weight
function. Spaces of Lipschitz functions, weighted Lp, and Sobolev spaces will be
defined as follows:

Lp(Ω, ω) = {f : Ω → R measurable | |f |p ω ∈ L1(Ω)},

W1,p(Ω, ω) = {f ∈ Lp(Ω, ω) | ∇f exists weakly and |∇f | ∈ Lp(Ω, ω)},

Lipc(Ω: Rn) = {f : Ω → Rn | f is Lipschitz and supt(f) ⊂⊂ Ω},

Liploc(Ω) = {f : Ω → R | Ω is covered by open sets on which f is Lipschitz}.

When we say that ∇f exists weakly, we refer to the usual weak derivative
in the unweighted Euclidean space: for all ϕ ∈ Cc(Ω: Rn),

∫

Ω
ϕ · ∇f dx =

−
∫

Ω
f divϕ dx. In the special case where ω ≥ c > 0, for all measurable f : Ω → R

and all 1 ≤ p ≤ ∞, Lp(Ω, ω) ⊆ Lp(Ω) and W1,p(Ω, ω) ⊆ W1,p(Ω). Similiarly,
if ω ≤ C < ∞, then for all 1 ≤ p ≤ ∞, Lp(Ω) ⊆ Lp(Ω, ω) and W1,p(Ω) ⊆
W1,p(Ω, ω).

We will study the two norms listed below and use them to define functions
of bounded variation. The norm ‖Dωf‖B has been studied in [2] and has the
advantage of providing a vector-valued measure which can be used to study the
structure of sets of finite perimeter. The norm ‖Dωf‖M has been studied in
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[7] for the more general metric space setting and has the advantage of being
applicable in the more general metric space setting where the norm of [2] is
unavailable. It also provides a norm-approximation of BV functions by locally
Lipschitz functions, again a property not in general available with respect to the
norm of [2] (see Example 5.4). In this case, the metric space is a Euclidean set
with the measure ωdx. We are interested in comparing these norms to see when
they are equal and can thus be used interchangeably. For f ∈ L1

loc(Ω, ω), define

‖Dωf‖B (Ω) = sup

{
∫

Ω

f divϕ dx
∣

∣

∣
ϕ ∈ Lipc(Ω: Rn), |ϕ| ≤ ω

}

,

‖Dωf‖M (Ω)

= inf

{

lim inf
k→∞

∫

Ω

|∇fk|ω dx
∣

∣

∣
(fk − f) → 0 in L1(Ω, ω), fk ∈ Liploc(Ω)

}

.

Since ω ∈ L1
loc(Ω), we see that Liploc(Ω) ⊂ L1

loc(Ω, ω). It should be noted that
in the language of calculus of variations, ‖Dωf‖M (Ω) is the relaxation of the
functional I(f) =

∫

Ω
|∇f |ω dx.

Under certain conditions, these norms are lower semicontinuous. Such a prop-
erty will be useful in proving the results outlined in the abstract. We will at
times assume that ω is Lipschitz and strictly positive. Sometimes, in prelim-
inary stages, we will need to assume that there exists a constant c such that
ω ≥ c > 0. When necessary, we may also assume that Ω is bounded. In such
instances, we will explicitly state these assumptions.

Proposition 2.1. If ω is locally bounded away from zero, then ‖Dω·‖B (Ω) is
lower semicontinuous with respect to convergence in L1

loc
(Ω, ω). By this we mean

that if fk → f in L1
loc
(Ω, ω), then ‖Dωf‖B (Ω) ≤ lim infk→∞ ‖Dωf‖B (Ω).

See Proposition 1.3.1 of [3] for a proof.

Remark 2.2. Positive lower semicontinuous weights are locally bounded away
from zero. Later sections of this paper deal with lower semicontinuous weights, so
Proposition 2.1 will apply. It will also come up later that for ω ≥ 0, ‖Dωf‖B (Ω) =
‖Dωf‖B (Ω0) where Ω0 = {x ∈ Ω | ω(x) > 0}. Thus Proposition 2.1 will then
apply to any nonnegative lower semicontinuous weight.

Lower semicontinuity of norm ‖Dω·‖M (Ω) can be proven in greater generality.
In the following proposition (found in Proposition 3.6 of [7]), we only assume ω
to be nonnegative and measurable.

Proposition 2.3. The norm ‖Dω·‖M (Ω) is lower semicontinuous with respect
to convergence in L1(Ω, ω).
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Note that for a given f , both norms define a Borel regular outer measure
on Ω. It is not difficult to prove that ‖Dωf‖B satisfies the axioms of an outer
measure on the collection of open subsets of Ω. The proof that ‖Dωf‖M is an
outer measure is not trivial and is provided in the more general metric measure
space setting in [7].

Remark 2.4. We extend both BV norms to the collection of all subsets of Ω
using the Carathéodory construction described in Section 12.2, Theorem 8 of
[11]. For general sets E ⊂ Ω,

‖Dωf‖B (E) = inf{‖Dωf‖B (V ) | E ⊂ V, V open},

‖Dωf‖M (E) = inf{‖Dωf‖M (V ) | E ⊂ V, V open}.

This construction ensures a Borel regular outer measure as long as countable
subadditivity is satisfied by open sets, which is the case here.

3. The Lower Semicontinuous Envelope

The focus of this section is on lower semicontinuous weights. We will show that
in studying the norm ‖Dωf‖B, we can always assume that the weight ω is lower
semicontinuous. We will also show how to approximate lower semicontinuous
functions with Lipschitz functions. Thus in many cases we will be able to work
with Lipschitz weights. Finally, this section concludes with Theorem 3.4 which
provides a formula for ‖Dωf‖B (Ω) using the weight ω and the classical total
variation measure ‖Df‖ of f .

For any function g : Ω → (−∞,∞], define g∗ : Ω → [−∞,∞] by

g∗(x) = sup{ϕ(x) | ϕ ∈ Lip(Ω), ϕ ≤ g}.

The function g∗ is lower semicontinuous, g∗ ≤ g, and will be referred to as
the lower semicontinuous envelope of g. Note that g∗ will be identically negative
infinity if there are no Lipschitz functions ϕ ≤ g. (g(x) = −x2 is an easy example
since its derivative is not bounded below). This will not be an issue for us since
we will be looking at lower semicontinuous envelopes of weight functions, which
are nonnegative.

Proposition 3.1. For any measurable f : Ω → R and any weight ω ≥ 0,

‖Dωf‖B (Ω) = ‖Dω∗f‖B (Ω).
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Proof. Since each test function ϕ ∈ Lipc(Ω: Rn) is Lipschitz, then |ϕ| ≤ ω if
and only if |ϕ| ≤ ω∗. So ‖Dωf‖B (Ω) and ‖Dω∗f‖B (Ω) are the supremums of
the same set of numbers and hence are equal.

Thus when working with the norm ‖Dωf‖B, we can always replace ω with its
lower semicontinuous envelope ω∗. Theorem 3.2 shows that a lower semicontin-
uous function is its own lower semicontinuous envelope. Therefore when dealing
with these norms, it is natural to assume that the weight is lower semicontin-
uous. Note that a function and its lower semicontinuous envelope can be quite
different. Consider g = χR\Q. Notice that g = 1 almost everywhere, but since
g ≡ 0 on the dense subset Q, g∗ ≡ 0. This will be very important to remember
when comparing this norm to ‖Dωf‖M .

It is useful to approximate lower semicontinuous functions from below with
Lipschitz functions. Theorem 3.2 will show us a way to do this. The method
employed to approximate Lipschitz functions is inspired by the Lipschitz exten-
sions developed in Theorem 1 of [9]. The following theorem is from Example
9.11 in [12]. Below, when we say fk ր f , we mean that {fk}

∞
k=1 is a pointwise

monotone increasing sequence of functions converging to f .

Theorem 3.2. Let (X, d) be a metric space and f : X → (−∞,+∞] be any
function. For each k > 0, define

fk(x) = inf{f(w) + kd(x, w) | w ∈ X}.

(a) Either fk ≡ −∞ or fk is k-Lipschitz.
(b) If f is lower semicontinuous and there exists k0 > 0 such that fk0 6≡ −∞,
then fk(x) ր f(x) for all x ∈ X.

Approximating lower semicontinuous weights with Lipschitz weights in this
way can be used to give us a formula for the norm ‖Dωf‖B. The following
lemma is useful a useful step along the way.

Lemma 3.3. If ω ≥ 0 is lower semicontinuous on Ω and f ∈ L1
loc
(Ω, ω), then

there exist Lipschitz weights {ωk}
∞
k=1 such that ωk ր ω pointwise in Ω and

‖Dωf‖B (Ω) = lim
k→∞

‖Dωk
f‖B (Ω).

Proof. From Theorem 3.2, there exist Lipschitz weights {ω̃k}
∞
k=1 such that ω̃k ր

ω pointwise everywhere in Ω. There also exist test functions ϕk ∈ Lipc(Ω: Rn)
such that |ϕk| ≤ ω and

‖Dωf‖B (Ω) = lim
k→∞

∫

Ω

f divϕkdx.
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For each k ∈ N, let ωk = max{ω̃k, |ϕ1| , . . . , |ϕk|}. Each ωk is Lipschitz and
ωk ր ω pointwise everywhere in Ω. Since {ωk}k∈N is an increasing sequence, it is
clear that {‖Dωk

f‖B (Ω)}k∈N is also increasing and hence limk→∞ ‖Dωk
f‖B (Ω)

exists. We see that

‖Dωf‖B (Ω) = lim
k→∞

∫

Ω

f divϕkdx ≤ lim
k→∞

‖Dωk
f‖B (Ω) ≤ ‖Dωf‖B (Ω).

Therefore ‖Dωf‖B (Ω) = limk→∞ ‖Dωk
f‖B (Ω).

The main result of this section, Theorem 3.4, states that ‖Dωf‖B (Ω) is finite
only if f ∈ BVloc(Ω), that is f is locally of bounded variation in Ω in the classical
sense. Since f ∈ BVloc(Ω), f has a distributional derivative Df which is a
vector-valued Radon measure. The total variation of this measure, also a Radon
measure itself, is denoted by ‖Df‖. The BV measures studied in this paper have
been denoted with the weight as a subscript so as to not confuse them with the
classical BV measure.

Theorem 3.4. Assume ω > 0 is lower semicontinuous. Then ‖Dωf‖B (Ω) <∞
if and only if f ∈ BVloc(Ω) and ω ∈ L1(Ω, ‖Df‖). When these conditions are
true,

‖Dωf‖B (Ω) =

∫

Ω

ω d ‖Df‖ .

In fact for all Borel sets E ⊂ Ω,

‖Dωf‖B (E) =

∫

E

ω d ‖Df‖ .

Proof. If f ∈ BVloc(Ω), the corresponding vector-valued variational measure Df
exists. Hence for any ϕ ∈ Lipc(Ω: Rn) with |ϕ| ≤ ω,

∫

Ω

f divϕdx = −

∫

Ω

ϕ · dDf ≤

∫

Ω

ω d ‖Df‖ .

Thus ‖Dωf‖B (Ω) ≤
∫

Ω
ω d ‖Df‖. If we assume in addition that ω ∈ L1(Ω, ‖Df‖),

then ‖Dωf‖B (Ω) <∞.

For the reverse inequality, the idea for the proof is to approximate the weight
ω from below with a sequence of Lipschitz weights {ωk}

∞
k=1, and then for every

ψ ∈ Lipc(Ω: Rn) with |ψ| ≤ 1,
∫

Ω

ψ · ω dDf = lim
k→∞

∫

Ω

ψ · ωkdDf = lim
k→∞

−

∫

Ω

f div(ψωk)dx ≤ ‖Dωf‖B (Ω).
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Thus
∫

Ω
ω d ‖Df‖ ≤ ‖Dωf‖B (Ω) and hence

(3.5)

∫

Ω

ω d ‖Df‖ = ‖Dωf‖B (Ω).

The rigorous details for this can be found in Theorem2.1.5 of [3].

Since ‖Dωf‖B and E 7→
∫

E
ω d ‖Df‖ are Borel measures that agree on all

open sets, then for all Borel sets E ⊂ Ω, ‖Dωf‖B (E) =
∫

E
ω d ‖Df‖.

It is crucial to draw the reader’s attention to one consequence of Theorem 3.4.

Remark 3.6. The value of ‖Dωf‖B (Ω) is sensitive to changes in the weight ω on
sets of positive ‖Df‖ measure. If ‖Df‖ has a nonzero singular component with
respect to Lebesgue measure, then changes in the weight on sets of Lebesgue
measure zero can change the value of ‖Dωf‖B (Ω) even though the measure
induced by the weight remains unchanged. It is therefore important for the
weight to be clearly defined at all points in Ω because the BV norm depends on
the weight and not the measure induced by the weight.

4. Removal of the Zero Set of the Weight and the Coarea

Formula

In some of the preceding results (such as Theorem 3.4), it has been helpful to
assume that the weight is positive. In this section we will give conditions under
which we can shrink the space to the set where the weight is positive. In other
words, when do the BV norms as outer measures live on the set Ω0 defined below?
Along the way, we will also give the coarea formula for the norm ‖Dωf‖B (Ω)
(The coarea formula for ‖Dωf‖M (Ω) is proven in Proposition 4.2 of [7]). Given
a weight ω : Ω → [0,∞) in L1

loc(Ω), set

Ω0 = {x ∈ Ω | ω(x) > 0}.

Recall from Remark 2.4 that our BV norms have been defined on all sets
using the Carathéodory Construction. We will frequently work with the set Ω0.
If ω is not lower semi-continuous, then Ω0 may not be open. We will mostly
focus on lower semi-continuous weights, so this is not a major issue. If the proof
can easily be adapted to any weight, then we will do so. So in this section, the
only assumptions on ω are that it is a Borel measurable non-negative function
in L1

loc(Ω).
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Proposition 4.1. If f : Ω → R is measurable, then

‖Dωf‖M (Ω) = ‖Dωf‖M
(

Ω ∩ Ω0

)

.

Proof. Since ‖Dωf‖M is a Borel measure,

‖Dωf‖M (Ω) = ‖Dωf‖M
(

Ω ∩ Ω0

)

+ ‖Dωf‖M
(

Ω \ Ω0

)

.

Since Ω \Ω0 is open and ω ≡ 0 on Ω \Ω0, it is clear that ‖Dωf‖M
(

Ω \ Ω0

)

= 0.

In some cases, we can do a little better and show that the relation ‖Dωf‖M (Ω) =
‖Dωf‖M (Ω0) holds. See Example 5.4 for a case when this is not true. Section 5
will give some conditions under which ‖Dωf‖M (Ω) = ‖Dωf‖B (Ω). Under such
conditions, Theorem 4.6 and Proposition 5.1 will ensure that ‖Dωf‖M (Ω) =
‖Dωf‖M (Ω0). We will state here two other conditions that will ensure the zero
set of the weight can be removed.

Theorem 4.2. Let ω ≥ 0 be a lower semicontinuous weight on Ω. For each
ε > 0, let Ωε = {x ∈ Ω | dist(x,Rn \ Ω0) < ε}. If there exists a sequence εk ց 0
such that

lim
k→∞

1

εk

∫

Ωεk

ωdx = 0,

then ‖Dωf‖M (Ω) = ‖Dωf‖M (Ω0).

Remark 4.3. The condition on the weight can interpreted to say that the
weighted codimension 1 lower Minkowski content of ∂Ω0 ∩ Ω is zero (see Sec-
tion 5.5 of [8]).

Theorem 4.4. If ω ≥ 0 is upper semicontinuous and f ∈ BVloc(Ω), then

‖Dωf‖M (Ω) = ‖Dωf‖M (Ω0).

Proofs of the above two theorems can be found in Theorems 3.1.3 and 3.1.5
of [3].

For any measurable weight ω, we can remove the entire zero set of the weight
for norm ‖Dωf‖B. The proof is not trivial, and requires a little classical BV
theory along with the coarea formula. The classical coarea formula is stated
below (see Section 5.5, Theorem 1 of [4] for a proof) and is used along with
Theorem 3.4 to prove the coarea formula for ‖Dω·‖B.

Theorem 4.5 (Classical Coarea Formula). If f ∈ L1
loc
(Ω), and for each t ∈ R

we set Et = {x ∈ Ω | f(x) > t} and ‖∂Et‖ = ‖DχEt
‖, then

‖Df‖ (Ω) =

∫ ∞

−∞

‖∂Et‖ (Ω)dt.
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This result can be generalized to weighted Euclidean spaces using the norm
‖Dωf‖B.

Theorem 4.6. For any weight ω ≥ 0 and f ∈ L1
loc
(Ω, ω), set

Et = {x ∈ Ω | f(x) > t} and ‖∂ωEt‖B = ‖DωχEt
‖B. Then

‖Dωf‖B (Ω0) = ‖Dωf‖B (Ω) =

∫ +∞

−∞

‖∂ωEt‖B (Ω)dt

In particular, if ‖Dωf‖B (Ω) is finite, then for almost every t ∈ R the set Et has
finite weighted perimeter. Furthermore, for every Borel set A ⊂ Ω,

‖Dωf‖B (A) =

∫ +∞

−∞

‖∂ωEt‖B (A)dt

Proof. Let ϕ ∈ Lipc(Ω: Rn) with |ϕ| ≤ ω. Suppose f ≥ 0. Then
∫

Ω

f divϕ dx =

∫

Ω

∫ ∞

0

χEt
(x)dt divϕ dx

=

∫ ∞

0

∫

Et

divϕ dxdt

≤

∫ ∞

0

‖∂ωEt‖B (Ω)dt.

A similar result holds for f ≤ 0, and then for general f ,

(4.7) ‖Dωf‖B (Ω) ≤

∫ ∞

−∞

‖∂ωEt‖B (Ω)dt.

Therefore the theorem is proven for the case when ‖Dωf‖B (Ω) = ∞.

Now assume ‖Dωf‖B (Ω) < ∞. Furthermore, assume for now that ω > 0
in Ω and ω is lower semicontinuous. For each s ≥ 0, define Ωs = {x ∈ Ω |
ω(x) > s}. Since ω is lower semicontinuous, each Ωs is open. Using Theorem
3.4, the Cavalieri Principle, Tonelli’s Theorem, and the classical coarea formula
(Theorem 4.5), we show that

‖Dωf‖B (Ω) =

∫

Ω

ω d ‖Df‖ =

∫ ∞

0

‖Df‖ (Ωs)ds =

∫ ∞

0

∫ ∞

−∞

‖∂Et‖ (Ωs)dtds

=

∫ ∞

−∞

∫ ∞

0

‖∂Et‖ (Ωs)dsdt =

∫ ∞

−∞

∫

Ω

ω d ‖∂Et‖ dt =

∫ ∞

−∞

‖∂ωEt‖B (Ω)dt.

Using Proposition 3.1 and Lemma 3.1.8 of [3], we can remove the assumptions
that ω is lower semicontinuous and positive. This gives us the desired result of

‖Dωf‖B (Ω0) = ‖Dωf‖B (Ω) =

∫ ∞

−∞

‖∂ωEt‖B (Ω)dt.
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This proof works for all open subsets of Ω as well. To show the coarea formula
holds for all Borel subsets of Ω, use Carathéodory’s criterion (Theorem 1.7 of
[8]) to show that

µ(A) =

∫ ∞

−∞

‖∂ωEt‖B (A)dt

is a Borel measure that agrees with ‖Dωf‖B on all open subsets of Ω.

Complete details can be found in Theorem 3.1.13 of [3].

Since the zero set of the weight can be removed without changing ‖Dωf‖B (Ω),
some of the previous results in which the weight was assumed to be positive can
be extended to nonnegative weights. An example is the lower semicontinuity
result in Proposition 2.1. A useful corollary of the coarea formula is that any
f ∈ L1

loc(Ω, ω) can be approximated in a variational sense by truncations.

Corollary 4.8. For any f ∈ L1
loc
(Ω, ω), let fk be the truncation of f at k and

−k.

fk = max{−k,min{f, k}}.

Then ‖Dωfk‖B (Ω) → ‖Dωf‖B (Ω) and ‖Dωfk‖M (Ω) → ‖Dωf‖M (Ω).

5. Conditions that Ensure Equality of the BV Norms

In this section we will explore conditions under which ‖Dωf‖B and ‖Dωf‖M
are equal. We will also give examples of weights that do not satisfy this condition
and for which the two norms in question are not even comparable.

Recall from our discussion of lower semicontinuous weights in Section 3 that
‖Dωf‖B = ‖Dω∗f‖B, while in general we do not have ‖Dωf‖M = ‖Dω∗f‖M .
Therefore when comparing ‖Dωf‖B and ‖Dωf‖M , we can only hope for equality
when the weight is lower semicontinuous. Even this may not ensure equality,
and we will give examples (Examples 5.4 and 5.5) of when the two norms are not
even equivalent in this case. We will see that equality is indeed obtained when
the weight is continuous and positive. This first inequality holds for all weights.

Proposition 5.1. Assume that ω ≥ 0 is measurable. For f ∈ L1
loc
(Ω, ω),

‖Dωf‖B (Ω) ≤ ‖Dωf‖M (Ω).
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Proof. We will first assume that ω is lower semicontinuous and positive. Let
{fk}k∈N be a sequence in Liploc(Ω) with (fk − f) → 0 in L1(Ω, ω). Choose any
ϕ ∈ Lipc(Ω: Rn) with |ϕ| ≤ ω. Since ϕ has compact support, divϕ also has
compact support. Since ω > 0 is lower semicontinuous, there exists c > 0 such
that ω ≥ c on supt(divϕ). It follows that (fk − f) → 0 in L1(supt(divϕ)). Since
ϕ is Lipschitz, divϕ is bounded. Hence we see that

∫

Ω

f divϕ dx = lim
k→∞

∫

Ω

fk divϕ dx = − lim
k→∞

∫

Ω

(∇fk · ϕ)dx

≤ lim inf
k→∞

∫

Ω

|∇fk| |ϕ| dx ≤ lim inf
k→∞

∫

Ω

|∇fk|ω dx.

Then by taking a supremum over all such ϕ, we get that

‖Dωf‖B (Ω) ≤ lim inf
k→∞

∫

Ω

|∇fk|ω dx.

Since this holds for all such sequences {fk}k∈N, it follows that

‖Dωf‖B (Ω) ≤ ‖Dωf‖M (Ω).

For general ω, let Ω∗ = {x ∈ Ω | ω∗(x) > 0} where ω∗ is the lower semicontinuous
envelope of ω. Note that as ω∗ ≤ ω, ‖Dω∗f‖M (Ω) ≤ ‖Dωf‖M (Ω). Theorem 4.6
and the above result give us that

‖Dωf‖B (Ω) = ‖Dω∗f‖B (Ω∗) ≤ ‖Dω∗f‖M (Ω∗) ≤ ‖Dω∗f‖M (Ω) ≤ ‖Dωf‖M (Ω).

We are nearly ready to prove one of our main results, that the two norms are
equal when the weight is continuous and positive. To do so, we will need the
following lemma.

Lemma 5.2. Let ω > 0 be continuous and bounded in Ω. If f ∈ BV (Ω), then

‖Dωf‖B (Ω) = ‖Dωf‖M (Ω) =

∫

Ω

ω d ‖Df‖ .

Proof. Since f ∈ BV (Ω), the measure ‖Df‖ exists and is finite. There also exist
smooth functions {fk}

∞
k=1 such that fk → f in L1(Ω), ‖Dfk‖ (Ω) → ‖Df‖ (Ω)

and ‖Dfk‖⇀ ‖Df‖ (i.e. for compactly supported continuous functions ϕ on Ω,
limk→∞

∫

Ω
ϕd ‖Dfk‖ =

∫

Ω
ϕd ‖Df‖).
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Let V be any open set with V ⊂⊂ Ω, and for all t ≥ 0, At = {x ∈ V | ω(x) >
t}. A proof can then be written to show that

‖Dωf‖M (V ) ≤ lim
k→∞

∫

V

|∇fk|ω dx = lim
k→∞

∫

V

ω d ‖Dfk‖ = lim
k→∞

∫ ∞

0

‖Dfk‖ (At)dt

=

∫ ∞

0

lim
k→∞

‖Dfk‖ (At)dt =

∫ ∞

0

‖Df‖ (At)dt =

∫

V

ω d ‖Df‖

= ‖Dωf‖B (V ) ≤ ‖Dωf‖M (V ).

Details of this proof can be found in Lemma 3.2.2 of [3]. Since Ω can be ap-
proximated from within by open sets with compact closure, we conclude that
‖Dωf‖B (Ω) = ‖Dωf‖M (Ω).

Theorem 5.3. If ω > 0 is continuous and f ∈ L1
loc
(Ω, ω), then

‖Dωf‖B (Ω) = ‖Dωf‖M (Ω) =

∫

Ω

ωd ‖Df‖ .

Proof. If ‖Dωf‖B (Ω) = ∞, the result is trivial by Proposition 5.1 and Theo-
rem 3.4. If ‖Dωf‖B (Ω) < ∞, Theorem 3.4 tells us that f ∈ BVloc(Ω). This
along with ω being continuous give us the existence of a sequence of open sets

U1 ⊂ U2 ⊂ · · · ⊂ Uk ⊂ · · ·

such that Ω =
⋃∞

k=1Uk and for each k ∈ N, ω is bounded on Uk and f ∈ BV (Uk).
Lemma 5.2 then gives us

‖Dωf‖B (Ω) = lim
k→∞

‖Dωf‖B (Uk) = lim
k→∞

‖Dωf‖M (Uk) = ‖Dωf‖M (Ω).

We next give examples of lower semicontinuous weights and weighted BV
functions such that ‖Dωf‖B (Ω) < ‖Dωf‖M (Ω). Consequently, these functions
cannot be approximated in the ‖Dω·‖B (Ω) norm in a variational sense by locally
Lipschitz functions.

Example 5.4. Let U ⊂ Rn be any bounded open set with smooth boundary and
nonzero finite unweighted perimeter, that is χU ∈ BV (Rn) with ‖DχU‖ (R

n) > 0.
Let f = χU and ω = 2−χ∂U . Notice that ω is positive and lower semicontinuous,
Ln(∂U) = 0, ω = 1 on ∂U , and ‖Df‖ is supported on ∂U . Theorem 3.4 tells us
that

‖Dωf‖B (Rn) =

∫

Rn

ωd ‖Df‖ =

∫

∂U

ωd ‖Df‖ = ‖Df‖ (Rn) > 0.
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Since ω = 2 almost everywhere,

‖Dωf‖M (Rn) = 2 ‖Df‖ (Rn).

Example 5.5. We now construct a positive lower semicontinuous weight for
which ‖Dωf‖B (Ω) and ‖Dωf‖M (Ω) are not even comparable. Let Ω = Rn and
define the weight by

ω(x) =

{

1/k if |x− 2k| = 1/k, k ∈ N,

1 otherwise.

This weight is indeed lower semicontinuous. For each k ∈ N, let Bk = B(2k, 1/k)
and fk = χBk

. Then

‖Dωfk‖B (Rn) =

∫

Rn

ωd ‖Dfk‖ = (1/k)Hn−1(∂Bk).

Since ω = 1 almost everywhere,

‖Dωfk‖M (Rn) = ‖Dfk‖ (R
n) = Hn−1(∂Bk) = k ‖Dωfk‖B (Rn).

Therefore, these two norms are not comparable.

The proof of Theorem 5.3 showing equality of the norms cannot be used in
general with lower semicontinuous weights. Theorem 5.6 gives two conditions
that allow us to loosen the requirement that ω be continuous on all of Ω by
limiting how big the set of discontinuities can be. One involves the codimension
one Hausdorff measure Hh. This is a Hausdorff-type measure using the gauge
function 1

r

∫

B(x,r)
ω dx. More precisely,

Hh(E) = lim
δ→0+

inf

{

∞
∑

j=1

1

rj

∫

B(xj ,rj)

ω dx

∣

∣

∣

∣

∣

E ⊂
∞
⋃

j=1

B(xj , rj), rj ≤ δ

}

.

Note that in an unweighted space, Hh is a constant multiple of Hn−1.

Theorem 5.6. Let there be a relatively closed set E ⊂ Ω ⊂ Rn such that ω > 0
on Ω \E, and ω is continuous in Ω \E. If either of the following conditions are
satisfied, then for all f ∈ L1

loc
(Ω, ω), ‖Dωf‖B (Ω) = ‖Dωf‖M (Ω).

(i) Hn−1(E) = 0 and ω is locally bounded in a neighborhood of E,

(ii) Hh(E) = 0 and the measure induced by ω is doubling.

The proof of this theorem can be found in Theorem 3.2.6 of [3].
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The conditions above ensuring equality of the two norms all require that the
set where the weight is zero, Ω \ Ω0, be very small. A large zero set will not
be a problem though if ‖Dωf‖M (Ω) = ‖Dωf‖M (Ω0), for example when the
hypothesis of Theorem 4.2 is satisfied. In this case as long as the weight satisfies
one of the criteria outlined above on Ω0, we obtain equality of the two norms on
Ω.
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