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Lipschitz-type Sobolev Spaces in Metric Measure Spaces
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Abstract. We compare different Lipschitz-type spaces defined on a metric
space. In the case of a metric measure space, we will also compare these
spaces with the Newtonian-Sobolev space N1,∞(X). If the space is in addi-
tion complete, endowed with a doubling measure and supports a ∞-Poincaré
inequality, we obtain the equality of all the functional spaces. We also study
some aspects of the ∞-Poincaré inequality including a geometric characteriza-
tion in terms of modulus of curves and an analytic characterization in terms
of the equality of all the Lipschitz-type Sobolev spaces.
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1. Introduction

The study of analysis on metric measure spaces has progressed in recent years
to include concepts from first order differential calculus [1],[12],[13],[22]. This
theory has applications in several areas of analysis, such as potential theory on
Riemannian manifolds, Carnot groups, theory of quasiconformal and quasiregular
mappings, degenerate elliptic equations, fractal analysis or analysis on graphs.

Lipschitz functions are the natural class of smooth functions to be considered
in a metric space. Actually, in the Euclidean setting, Rademacher’s theorem
states that Lipschitz continuous functions are differentiable almost everywhere.
The Lipschitz condition is a purely geometric condition that makes perfect sense
in the metric setting and gives global information about the space.

On the other hand, the notion of derivative yields infinitesimal information:
it measures the infinitesimal oscillations of a function at a given point. However,
a metric space is not necessarily endowed with a natural linear or differentiable
structure and one does not have a derivative, even in the weak sense of Sobolev
spaces. Nevertheless, if f is a real-valued function on a metric space (X, d) and x
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is a point in X , one can use similar measurements of sizes of first-order oscillations
of f at small scales around x, such as oscrf(x) = sup{|f(y) − f(x)|/r : y ∈
X, d(x, y) ≤ r}. In fact, if we look at the superior limit of the above expression as
r tends to 0 we almost recover in many cases, as in the Euclidean or Riemannian
setting, the standard notion of derivative. Furthermore, this limit can play the
role of (length of) a gradient.

One interesting problem is to know under which circumstances one can use
information that is known infinitesimally, to yield information that holds globally
throughout the space. We present here some of the advances in understanding the
infinitesimal versus global behavior of Lipschitz functions in the metric setting.
The key assumption needed is that the space where the map is defined should
be highly connected, meaning that there are many paths joining any part of the
space.

Standard assumptions in analysis on metric spaces include that the measure
is doubling and that the space supports a p-Poincaré inequality. Both conditions
have been instrumental in this development. The first condition is imposed
on the measure and allow us for example to talk about Lebesgue points or to
define the maximal operator. On the other hand, the Poincaré inequality creates
a link between the measure, the metric and the (length of the) gradient. It
provides a way to pass from the infinitesimal information which gives the gradient
to larger scales. Metric spaces with doubling measure and Poincaré inequality
admit first order differential calculus akin to that in Euclidean spaces. Moreover,
it implies some kind of connectedness and even something more, the so-called
quasiconvexity of the space.

We also present here some recent advances in the study of p-Poincaré inequali-
ties for the case p = ∞. This limit case presents nice features such as a geometric
characterization in terms of modulus of curves in the space and a purely analytic
condition which connects different Lipschitz-type function spaces and Sobolev
spaces in the setting of arbitrary metric measure spaces.

2. Notation and Preliminaries.

Let (X, d) be a metric space. For x ∈ X and r > 0 we let B(x, r) := {y ∈
X : d(x, y) < r} be the open ball of radius r centered at x. For λ > 0 we write
λB(x, r) to mean B(x, λr).

By a curve γ we will mean a continuous mapping γ : [a, b] → X . Recall that
the length of a continuous curve γ : [a, b] → X in a metric space (X, d) is defined
as

ℓ(γ) := sup
{ n−1∑

i=0

d(γ(ti), γ(ti+1))
}
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where the supremum is taken over all finite partitions a = t0 < t1 < · · · < tn = b
of the interval [a, b]. We will say that a curve γ is rectifiable if ℓ(γ) < ∞. The
integral of a Borel function g over a rectifiable path γ is usually defined via the
path length parametrization γ0 of γ in the following way:

∫

γ

gds =

∫ ℓ(γ)

0

g ◦ γ0(t)dt.

Recall here that every rectifiable curve γ admits a parametrization by the arc-
length; that is, with γ0 : [a, b] → X , for all t1, t2 ∈ [a, b] with t1 ≤ t2, we
have ℓ(γ0|[t1,t2]

) = t2 − t1. Hence from now on we only consider curves that are

arc-length parametrized.

A metric space (X, d) is said to be a length space if for each pair of points
x, y ∈ X the distance d(x, y) coincides with the infimum of all lengths of curves in
X connecting x with y. Another interesting class of metric spaces, which contains
length spaces, are the so called quasiconvex spaces. Recall that a metric space
(X, d) is quasiconvex if there exists a constant C > 0 such that for each pair of
points x, y ∈ X , there exists a curve γ connecting x and y with ℓ(γ) ≤ Cd(x, y).
As one can expect, a metric space is quasiconvex if, and only if, it is bi-Lipschitz
homeomorphic to some length space.

We can endow our metric spaces with a measure µ in which case, (X, d, µ)
will denote a metric measure space, that is, a metric space equipped with a
metric d and a Borel regular measure µ defined on the Borel set B(X), that
is, µ is an outer measure on a metric space (X, d) such that all Borel sets are
µ-measurable and for each set E ⊂ X there exists a Borel set F such that E ⊂ F
and µ(E) = µ(F ).

A measure µ is doubling if there is a constant Cµ > 0 such that for all x ∈ X
and r > 0,

(2.1) 0 < µ(B(x, 2r)) ≤ Cµ µ(B(x, r)) < ∞.

We shall denote by Cµ the least constant that satisfies condition (2.1), i.e., we
define

Cµ := sup
B

µ(2B)

µ(B)
.

In a complete metric space X , the existence of a doubling measure which is
not trivial and is finite on balls implies that X is separable and proper. The
latter means that closed bounded subsets of X are compact. In particular, X is
locally compact. Therefore, the notion of doubling metric spaces is intrinsically
finite-dimensional and it is not possible to endow infinite dimensional spaces with
doubling measures.
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Some of the classical theorems in analysis in the Euclidean setting can be
extended to doubling metric measure spaces. The Lebesgue differentiation The-
orem is such an example: if f is a locally integrable function on a doubling metric
space X , then

f(x) = lim
r→0

∫

B(x,r)
fdµ,

for µ-a.e. point in X . In other words, almost every point in X is a Lebesgue

point for f , see for example [12, Theorem 1.8].

Here for arbitrary A ⊂ X with 0 < µ(A) < ∞ we write

fA =

∫

A
f =

1

µ(A)

∫

A

fdµ.

Furthermore, it is also possible to define the maximal operator and obtain the
same continuity properties from Lp(X, µ) to Lp(X, µ) as in the Euclidean case
(see [12, Theorem 2.2]).

In what follows, ‖ · ‖∞ will denote the supremum norm whereas ‖ · ‖L∞ will
denote the essential supremum norm, provided we have a measure on X .

3. Pointwise Lipschitz functions on metric measure spaces

Let (X, d) be a metric space. A function f : X → R is C-Lipschitz if there
exists a constant C > 0 such that

|f(x) − f(y)| ≤ Cd(x, y),

for each x, y ∈ X . From now on, LIP(·) will denote the Lipschitz constant:

LIP(f) := sup
x,y∈X
x 6=y

|f(y) − f(x)|
d(y, x)

.

We denote by LIP(X)( respectively, LIP∞(X)) the space of Lipschitz functions
(respectively, bounded functions which are in LIP(X)).

Given a function f : X → R, the pointwise Lipschitz constant of f at a non
isolated point x ∈ X is defined as follows:

Lip f(x) = lim sup
y→x
y 6=x

|f(x) − f(y)|
d(x, y)

.

If x is an isolated point we define Lip f(x) = 0.

Loosely speaking, the operator Lip f estimates some kind of infinitesimal lip-
schitzian property around each point. Recently, this functional has played an
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important role in several contexts. We just mention here the construction of dif-
ferentiable structures in the setting of metric measure spaces [4], [16], the theory
of upper gradients [14], [24], or Stepanov differentiability theorem [2].

For example, if f ∈ C1(Ω) where Ω is an open subset of Euclidean space, or of
a Riemannian manifold, then Lip f = |∇f |. On the other hand, if Ω is an open
subset of the first Heisenberg group H, Lip f = |∇Hf | where ∇Hf denotes the
horizontal gradient of f .

This concept gives rise to a class of function spaces, pointwise Lipschitz func-

tion spaces, which contains in some sense infinitesimal information about the
functions:

D(X) = {f : X −→ R : ‖Lip f‖∞ < +∞}.
We also denote by D∞(X) the space of bounded functions which are in D(X).

It is not difficult to see that for f ∈ D(X), Lip f is a Borel function on X and that
‖Lip(·)‖∞ yields a seminorm in D(X). Moreover, pointwise Lipschitz functions
are continuous.

It is clear that if f is a C-Lipschitz function, then Lip f(x) ≤ C for every x ∈ X
and so the space D(X) clearly contains the space LIP(X). The other inclusion
is not true in general. For example, if we consider a cusp domain in R

2 endowed
with the Euclidean distance, one can define functions f ∈ D∞(X)\LIP∞(X).
For a proof of this fact see [5, Example 2.7].

It is well known that LIP∞(X) is a Banach space with the norm

‖f‖LIP∞(X) := ‖f‖∞ + LIP(f).

One can also endow D(X) with a norm which arises naturally from the defi-
nition of the operator Lip. For each f ∈ D∞(X), let us define

‖f‖D∞ := max{‖f‖∞, ‖Lip f‖∞}.
This norm is not complete in the general case, as it can be seen in Example 3.3.

However, there is a wide class of spaces, the locally radially quasiconvex metric

spaces (see Definition 3.1), for which D∞(X) admits a Banach space structure.

Definition 3.1. Let (X, d) be a metric space. We say that X is locally radially

quasiconvex if for each x ∈ X , there exist a neighborhood Ux and a constant
Kx > 0 such that for each y ∈ Ux there exists a rectifiable curve γ in Ux

connecting x and y such that ℓ(γ) ≤ Kxd(x, y).

Theorem 3.2. [5, 3.2] Let (X, d) be a locally radially quasiconvex metric space.

Then, (D∞(X), ‖ · ‖D∞) is a Banach space.

The following example shows that in general (D∞(X), ‖·‖D∞) is not a Banach
space.
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Example 3.3. Consider the connected metric space X = X0∪
⋃∞

n=1Xn∪G ⊂ R
2

with the metric induced by the Euclidean one, where X0 = {0} × [0,+∞),
Xn = { 1

n
}× [0, n], n ∈ N and G = {(x, 1

x
) : 0 < x ≤ 1}. For each n ∈ N consider

the sequence of functions fn : X → [0, 1] given by

fn

(1

k
, y
)

=

{
k−y

k
√
k

if 1 ≤ k ≤ n

0 if k > n,

and fn(x, y) = 0 if x 6= 1
k
∀k ∈ N. Observe that fn( 1

k
, 0) = 1√

k
and fn( 1

k
, k) = 0

if 1 ≤ k ≤ n. Since Lip fn( 1
k
, y) = 1

k
√
k

and Lip fn(x, y) = 0 if x 6= 1
k
∀k ∈ N, we

have that fn ∈ D∞(X) for each n ≥ 1. In addition, if 1 < n < m,

‖fn − fm‖∞ =
1√
n + 1

and ‖Lip(fn − fm)‖∞ =
1

(n + 1)
√
n + 1

.

Thus, we deduce that {fn}n is a Cauchy sequence in (D∞(X), ‖·‖D∞). However,
if fn → f in D∞ then fn → f pointwise. Then fm( 1

n
, 0) = 1√

n
for each m ≥ n

and so f( 1
n
, 0) = 1√

n
and f(0, 0) = 0. Thus, we obtain that

Lip(f)(0, 0) ≥ lim
n→∞

|f(( 1
n
), 0) − f(0, 0)|
d( 1

n
, 0)

= lim
n→∞

1√
n

1
n

= +∞,

and so f /∈ D∞(X). This means that (D∞(X), ‖ · ‖D∞) is not a Banach space.
Observe that if one connects X0 to {1}× [0, 1] by a curve that does not intersect
any of the Xn, n ≥ 2 one obtains a path-connected metric space X such that
(D∞(X), ‖ · ‖D∞) is not complete.

We say that LIP∞(X) = D∞(X) with comparable energy seminorms if the two
sets are the same and there is a constant C > 0 such that for all f ∈ LIP∞(X),

LIP(f) ≤ C‖Lip f‖∞.

As shown before, D∞(X) is not a Banach space in general. However, if
LIP∞(X) = D∞(X) with comparable energy seminorms, then D∞(X) is also
a Banach space.

The main aim of this section is to see under which conditions a function
f : X → R is Lipschitz if and only if Lip f is a bounded functional. More
precisely, we look for conditions regarding the geometry of the metric space X
under which LIP∞(X) = D∞(X) with comparable energy seminorms. As it can
be expected, we need some kind of connectedness.

Lemma 3.4. [5, 2.3] Let (X, d) be a metric space and let f ∈ D(X). Let x, y ∈ X
and suppose that there exists a rectifiable curve γ : [a, b] → X connecting x and

y, that is, γ(a) = x and γ(b) = y. Then, |f(x) − f(y)| ≤ ‖Lip f‖∞ ℓ(γ).
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As a straightforward consequence of the previous result, we deduce

Corollary 3.5. If (X, d) is a quasiconvex space then LIP∞(X) = D∞(X) with

comparable energy seminorms.

Proposition 3.6. Let (X, d) be a complete locally compact connected metric

space. Then X is a quasiconvex space if and only if LIP∞(X) = D∞(X) with

comparable energy seminorms.

Proof. The fact that if X is a quasiconvex space then LIP∞(X) = D∞(X) with
comparable energy seminorms is Corollary 3.5. On the other hand, for each
x ∈ X and ε > 0 we define the ε-distance from x to z to be

(3.7) ρx,ε(z) := inf
N−1∑

i=0

d(zi, zi+1),

where the infimum is taken over all finite ε-chains (zi)
N
i=0. For positive integers

N we set ρx,ε,N = min{N, ρx,ε}. Since X is connected we see that ρx,ε,N is finite-
valued everywhere and |ρx,ε,N(z)−ρx,ε,N (w)| ≤ d(z, w) when d(z, w) < ε; thus for
all w ∈ X we have Lip ρx,ε,N(w) ≤ 1. Hence ρx,ε,N belongs to D∞(X). Because
LIP∞(X) = D∞(X) with comparable energy seminorms there is a constant
C > 0 such that LIP(ρx,ε,N) ≤ C with C independent of x, ε, N . It follows
that for all y ∈ X and all ε > 0,

(3.8) |ρx,ε,N(y)| = |ρx,ε,N(y) − ρx,ε,N(x)| ≤ LIP(ρx,ε,N)d(x, y) ≤ Cd(x, y).

Using a standard limiting argument, which involves Arzela-Ascoli’s theorem
and inequality (3.8), we can construct a 1-Lipschitz rectifiable curve connecting x
and y with length at most Cd(x, y). Since x and y were arbitrary this completes
the proof. For further details about the construction of the curve we refer the
reader to [18, Theorem 3.1].

4. Sobolev spaces on metric measure spaces

Our aim in this section is to compare the function spaces D∞(X) and LIP∞(X)
with certain Sobolev spaces on metric-measure spaces. There are several possible
extensions of the classical theory of Sobolev spaces to the setting of metric spaces
equipped with a Borel measure. Haj lasz defined in [11] the spaces M1,p for
1 ≤ p ≤ ∞ in connection with maximal operators. Shanmugalingam in [24]
introduced, using the notion of upper gradient (and more generally weak upper
gradient) the Newtonian spaces N1,p(X) for 1 ≤ p < ∞. There are another
interesting notions of Sobolev spaces to the context of metric measure spaces
(see for example [9],[8],[15],[19]). However under suitable conditions, all the
approaches turn to be equivalent ([25, 26]). The overview article [10] by Haj lasz
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presents further generalizations of Sobolev spaces in metric measure spaces. It
should be pointed out, that if the space supports a p-Poincaré inequality, 1 <
p < ∞ (see definition 5.1), all the approaches to Sobolev spaces described in [10]
are also equivalent (see [17, Theorem 1.0.6]).

Following [10] we record the definition of the Haj lasz-Sobolev space M1,p(X).

For 0 < p ≤ ∞ the space M̃1,p(X, d, µ) is defined as the set of all functions
f ∈ Lp(X) for which there exists a function 0 ≤ g ∈ Lp(X) such that

(4.1) |f(x) − f(y)| ≤ d(x, y)(g(x) + g(y)) µ-a.e.

As usual, we get the space M1,p(X, d, µ) after identifying any two functions

u, v ∈ M̃1,p(X, d, µ) such that u = v almost everywhere with respect to µ. The
space M1,p(X, d, µ) is equipped with the norm

‖f‖M1,p = ‖f‖Lp + inf
g
‖g‖Lp,

where the infimum is taken over all functions 0 ≤ g ∈ Lp(X) that satisfy the
requirement (4.1).

In particular, if p = ∞ it can be shown that M1,∞(X, d, µ) coincides with
LIP∞(X) provided that µ(B) > 0 for every open ball B ⊂ X (see remark 5.1.4
in [1]). In addition, we also have that 1/2‖ · ‖LIP∞ ≤ ‖ · ‖M1,∞ ≤ ‖ · ‖LIP∞ . In
this case we obtain that M1,∞(X) = LIP∞(X) ⊆ D∞(X).

Another interesting generalization of Sobolev spaces to general metric spaces
are the so-called Newtonian Spaces N1,p, introduced by Shanmungalingam [24,
25]. Its definition is based on the notion of upper gradient. This concept was
introduced by Heinonen and Koskela [14] and serves the role of derivatives in a
metric space.

A non-negative Borel function g on X is said to be an upper gradient for an
extended real-valued function f on X, if

(4.2) |f(γ(a)) − f(γ(b))| ≤
∫

γ

g

for every rectifiable curve γ : [a, b] → X , when both f(γ(a)) and f(γ(b)) are
finite, and

∫
γ
g = ∞ otherwise.

Observe that g ≡ ∞ is an upper gradient of every function on X and if there
are no rectifiable curves in X then g ≡ 0 is an upper gradient of every function on
X . If f is Lipschitz, then g = LIP(f) is an upper gradient for f . Moreover, the
pointwise Lipschitz constant Lip f provides us with a smaller upper gradient than
the global Lipschitz constant. On the other hand, each function f ∈ W 1,p(Rn)
has a representative that has a p-integrable upper gradient (see [24]).
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The upper gradient plays the role of a derivative in the formula (4.2) which is
similar to the one related to the Fundamental Theorem of Calculus. The point
is that using upper gradients we may have many of the properties of ordinary
Sobolev spaces even though we do not have derivatives of our functions.

If g is an upper gradient of u and g̃ = g almost everywhere, then it may
happen that g̃ is no longer an upper gradient for f . We do not want our upper
gradients to be sensitive to changes on small sets. To avoid this unpleasant
situation the notion of weak upper gradient is introduced as follows. First we
need a way to measure how large a family of curves is. The most important
point is if a family of curves is small enough to be ignored. This kind of problem
was first approached in [7]. In what follows let Υ ≡ Υ(X) denote the family of all
non-constant rectifiable curves in X . It may happen that Υ = ∅, but we will be
mainly concerned with metric spaces for which the space Υ is large enough. If E
is a subset of X then Γ+

E is the family of curves γ such that L 1(γ−1(γ∩E)) > 0.

From now on, will focus on the case p = ∞.

Definition 4.3. For Γ ⊂ Υ, let F (Γ) be the family of all Borel measurable
functions ρ : X → [0,∞] such that

∫

γ

ρ ≥ 1 for all γ ∈ Γ.

We define the ∞-modulus of Γ by

Mod∞ Γ = inf
ρ∈F (Γ)

{‖ρ‖L∞}.

If some property holds for all curves γ 6∈ Γ for some Γ ⊂ Υ that satisfies
Mod∞ Γ = 0, then we say that the property holds for ∞-a.e. curve.

It can be easily checked that Mod∞ is an outer measure as it is for 1 ≤ p < ∞,
see for example [11, Theorem 5.2].

The following lemma provides a characterization of path families whose ∞-
modulus is zero.

Lemma 4.4. [5, 5.7] Let Γ ⊂ Υ. The following conditions are equivalent:

(a) Mod∞ Γ = 0.
(b) There exists a Borel function 0 ≤ ρ ∈ L∞(X) such that

∫
γ
ρ = +∞, for

each γ ∈ Γ.
(c) There exists a Borel function 0 ≤ ρ ∈ L∞(X) such that

∫
γ
ρ = +∞, for

each γ ∈ Γ and ‖ρ‖L∞ = 0.

Remark 4.5. An important feature of the ∞-modulus of curves is that if we
have two measures µ and λ defined on X with the same zero measure sets, then
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the ∞- modulus of a family of curves is the same, independent of the measure
we use to compute it.

Lemma 4.6. Let E ⊂ X. If µ(E) = 0, then Mod∞(Γ+
E) = 0.

Definition 4.7. A non-negative Borel function g on X is an ∞-weak upper

gradient of an extended real-valued function f on X if for ∞-a.e. curve γ ∈ Υ,

|f(γ(a)) − f(γ(b))| ≤
∫

γ

g

when both f(γ(a)) and f(γ(b)) are finite, and
∫
γ
g = ∞ otherwise.

Let Ñ1,∞(X, d, µ) = Ñ1,∞(X) be the class of all Borel functions u ∈ L∞(X) for

which there exists an ∞-weak upper gradient g in L∞(X). For f ∈ Ñ1,∞(X, d, µ)
we set

‖f‖Ñ1,∞ = ‖f‖L∞ + inf
g
‖g‖L∞,

where the infimum is taken over all ∞-weak upper gradients g of f .

Definition 4.8. We define an equivalence relation in Ñ1,∞(X) by f1 ∼ f2 if
and only if ‖f1 − f2‖Ñ1,∞ = 0. The space N1,∞(X, d, µ) = N1,∞(X) denotes the

quotient Ñ1,∞(X, d, µ)/ ∼ and it is equipped with the norm

‖f‖N1,∞ = ‖f‖Ñ1,∞ .

Theorem 4.9. [5, 5.18] N1,∞(X) is a Banach space.

Lemma 4.10. If f ∈ D∞(X) then Lip(f) is an upper gradient of f .

Proof. Let γ : [a, b] → X be a rectifiable curve, parametrized by arc-length,
which connects x and y. It can be checked that γ is 1-Lipschitz. The function
f ◦γ is a pointwise Lipschitz function and by Stepanov’s differentiability theorem
(see [27]), it is differentiable a.e. Note that |(f ◦ γ)′(t)| ≤ Lip f(γ(t)) at every
point of [a, b] where (f ◦ γ) is differentiable. Now, we deduce that

|f(x) − f(y)| ≤
∣∣∣
∫ b

a

(f ◦ γ)
′

(t)dt
∣∣∣ ≤

∫ b

a

Lip(f(γ(t))) dt

as wanted.

Now suppose that µ(B) > 0 for every open ball B ⊂ X . It is clear by Lemma

4.10 that D∞(X) ⊂ Ñ1,∞(X) and that the map

φ : D∞(X) −→ N1,∞(X)
f −→ [f ].
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is an inclusion. Indeed, if f1, f2 ∈ D∞(X) with 0 = [f1−f2] ∈ N1,∞(X), we have
f1 − f2 = 0 µ-a.e. Thus f1 = f2 in a dense subset and since f1, f2 are continuous
we obtain that f1 = f2. Therefore we have the following chain of inclusions:

(4.11) LIP∞(X) = M1,∞(X) ⊂ D∞(X) ⊂ N1,∞(X),

and ‖ · ‖N1,∞ ≤ ‖ · ‖D∞ ≤ ‖ · ‖LIP∞ ≤ 2 ‖ · ‖M1,∞ .

Observe that in general, D∞(X) 6= N1,∞(X). Indeed, the path-connected
metric space mentioned in Example 3.3 gives an example in which D∞(X) is not
a Banach space whereas N1,∞(X) is a Banach space and so D∞(X) 6= N1,∞(X).

In the next section, we will look for conditions under which the spaces LIP∞(X)
and N1,∞(X) coincide. In particular, this will gives us the equality of all the
spaces in the chain (4.11) above. The main idea to get the equality is to con-
struct curves not “too long” which avoid zero-measure sets. More precisely, given
two points x, y ∈ X and a zero measure set E, one should be able to construct a
quasiconvex curve γ connecting the two points and such that L

1(γ−1(γ∩E)) = 0.
For a proof along this line see [5, Theorem 5.2].

5. The ∞-Poincaré inequality in metric measure spaces

It is known that if X is doubling and supports a p-Poincaré inequality then we
have equality of the Sobolev spaces M1,p(X) and N1,p(X) [25, Theorem 4.9],[17,
Theorem 1.0.6]. Furthermore, under the same assumptions, Lipschitz functions
are dense in N1,p(X) [25, Theorem 4.1]. Since we are looking for the equality of
the spaces M1,∞ and N1,∞ it would be reasonable to look for an ∞-version of
the Poincaré inequality.

The classical Poincaré inequality allows one to obtain integral bounds on the
oscillation of a function using integral bounds on its derivatives. It is worth
mentioning that in this type of inequalities the derivative itself is not needed,
but only the size of the gradient of the function is really used; a nice discussion
of this can be found in [23]. This is the idea behind many generalizations of
Poincaré inequalities, in spaces where we may not have a linear structure. The
idea of Poincaré inequalities makes sense in the more general setting of metric
measure spaces.

The following Poincaré inequality is now standard in literature on analysis in
metric measure spaces.

Definition 5.1. Let 1 ≤ p < ∞. We say that (X, d, µ) supports a weak p-
Poincaré inequality if there exist constants Cp > 0 and λ ≥ 1 such that for every
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Borel measurable function f : X → R ∪ {−∞,∞} and every upper gradient
g : X → [0,∞] of f , the pair (f, g) satisfies the inequality

(5.2)

∫

B(x,r)
|f − fB(x,r)| dµ ≤ Cp r

(∫

B(x,λr)
gpdµ

)1/p

for each ball B(x, r) ⊂ X . The word weak refers to the possibility that λ may
be strictly greater than 1.

To require that inequality (5.2) holds in X is to require that the space has
plenty of rectifiable curves, uniformly at all scales. For that reason for a space to
support a Poincaré inequality one needs some kind of connectedness. Indeed, let
us consider the space X = A ∪ B with A,B ⊂ R

n with A,B bounded open sets
in R

n which are a positive distance apart and L n(A),L n(B) > 0. The function
f = χA if Lipschitz on X , |∇f | = 0 but

∫

X

|f − fX |dL n =
2L n(A)L n(B)

L n(A) + L n(B)
> 0.

A further geometric implication of the p-Poincaré inequality is the fact that
if a complete doubling metric measure space supports a p-Poincaré inequality
then there exists a constant such that each pair of points can be connected with
a curve whose length is at most the constant times the distance between the
points (see [22] or [14]), that is, the space is quasiconvex.

There is a long list of metric spaces supporting a Poincaré inequality, including
some standard examples such as R

n, Riemannian manifolds with non-negative
Ricci curvature, Carnot groups (in particular the Heisenberg group), but also
other non-Riemannian metric measure spaces of fractional Hausdorff dimension,
see for example [20], [13] and references therein. Metric spaces with doubling
measure and p-Poincaré inequality admit a first order differential calculus theory
akin to that in Euclidean spaces [4],[16]. One surprising fact is that some geo-
metric consequences of this condition seem to be independent of the parameter
p and the picture is not yet clear.

It follows from Hölder’s inequality that if a space admits a p-Poincaré inequal-
ity, then it admits a q-Poincaré inequality for each q ≥ p. Recently Keith and
Zhong [17] proved a self-improving property for Poincaré inequalities, that is,
if X is a complete metric space equipped with a doubling measure satisfying a
p-Poincaré inequality for some 1 < p < ∞, then there exists ε > 0 such that
X supports a q-Poincaré inequality for all q > p − ε. The strongest of all these
inequalities would be the 1-Poincaré inequality, which is closely related to rela-
tive isoperimetric inequalities. For example, it is well known that the 1-Poincaré
inequality is equivalent to the relative isoperimetric property [21], [3]. A natural
question that arises at this point is the following: what would be the weakest
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version of p-Poincaré inequality that would still give reasonable information on
the geometry of the metric space?

Definition 5.3. We say that (X, d, µ) supports a weak ∞-Poincaré inequality

if there exist constants C > 0 and λ ≥ 1 such that for every Borel measurable
function f : X → R ∪ {∞} and every upper gradient g : X → [0,∞] of f , the
pair (f, g) satisfies the inequality∫

B(x,r)
|f − fB(x,r)| dµ ≤ C r‖g‖L∞(B(x,λr))

for each ball B(x, r) ⊂ X .

First let us notice that there exist spaces with a weak ∞-Poincaré inequality
which do not admit a weak p-Poincaré inequality for any finite p.

Example 5.4. Let T be a non-degenerate triangular region in R
2 and let T ′

be an identical copy of T . Let X be the metric space obtained by identifying a
vertex V of T with a vertex V ′ of T ′ (V = V ′ = {0}) and the metric defined by

d(x, y) =

{
|x− y| if x, y ∈ T or x, y ∈ T ′,

|x− V | + |V ′ − y| if x ∈ T and y ∈ T ′.

The space is a bow-tie shaped subset of R2. We equip the space with the weighted

measure µ given by dµ(x) = ω(x)dL 2(x), where ω(x) = e
− 1

|x|2 . It is already
known that this space equipped with the Lebesgue measure L 2 admits a p-
Poincaré inequality for p > 2 (see for example [24]). However (X, d, µ) does not
admit a weak p-Poincaré inequality for any finite p but admits a weak ∞-Poincaré
inequality. See [6] for further details.

If X is only known to support an ∞-Poincaré inequality then the space is
still quasiconvex, as demonstrated by Proposition 3.4 in [6]. But in fact a ∞-
Poincaré inequality gives us a stronger geometric implication: every pair of sets
of positive measure, which are a positive distance apart, can be connected by a
“thick” family of quasiconvex curves in the sense that the modulus of this family
of curves is positive. The following definition makes this idea more precise.

Definition 5.5. A metric measure space (X, d, µ) is said to be a ∞-thick qua-

siconvex space if there is a constant C ≥ 1 such that for all x, y ∈ X , all
0 < ε < 1

4
d(x, y), and all measurable sets E ⊂ B(x, ε) and F ⊂ B(y, ε) satisfy-

ing µ(E)µ(F ) > 0, we have that

Mod∞(Γ(E, F, C)) > 0.

Here Γ(E, F, C) denotes the set of all curves γp,q connecting p ∈ E and q ∈ F
with ℓ(γp,q) ≤ Cd(p, q).
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Remark 5.6. Note that every complete ∞-thick quasiconvex space supporting
a doubling measure is quasiconvex. The converse is not true in general. The
Sierpinski carpet is a quasiconvex space which is not ∞-thick quasiconvex ([6,
Corollary 4.15]).

In what follows we say that LIP∞(X) = N1,∞(X) with comparable energy

seminorms if there is a constant C > 0 such that for all f ∈ N1,∞(X) there
exists f0 ∈ LIP∞(X) with f = f0 µ-a.e. and

LIP(f0) ≤ C inf
g
‖g‖L∞,

where the infimum is taken over all ∞-weak upper gradients g of f .

The following theorem gives the equality of all the spaces in (4.11). Moreover,
it is a geometric and analytic characterization of ∞- Poincaré inequality. A
complete proof of this theorem can be found in [6].

Theorem 5.7. Suppose that X is a connected complete metric space supporting

a doubling Borel measure µ which is non-trivial and finite on balls. Then the

following conditions are equivalent:

(a) X supports a weak ∞-Poincaré inequality.

(b) X is thick quasiconvex.

(c) LIP∞(X) = N1,∞(X) with comparable energy seminorms.

(d) X supports a weak ∞-Poincaré inequality for functions in N1,∞(X).

The equivalence of Condition (c) with the other three conditions needs the
additional assumption of connectedness of X since the example of the union of
two disjoint planar discs satisfies (c) but fails the other three conditions. The
other three conditions directly imply that X is connected.

Theorem 5.8. Suppose that X is a connected complete metric space supporting

a doubling Borel measure µ which is non-trivial and finite on balls. Then the

following conditions are equivalent:

(a) X supports an ∞-Poincaré inequality for locally Lipschitz continuous func-

tions with continuous upper gradients.

(b) X is quasiconvex.

(c) LIP∞(X) = D∞(X) with comparable energy seminorms.

Observe that the implication (b) ⇐⇒ (c) follows from Proposition 3.6. Just
observe that the doubling measure implies the locally compactness of the space
and the result follows.

The implication (a) ⇒ (b) is given by the proof of Proposition 3.4 in [6].
We only need to apply the Poincaré inequality to the locally Lipschitz continu-
ous function ρx,ε (see definition 3.7) and its continuous upper gradient 1. The
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implication (b) ⇒ (a) follows from the argument that if g is a continuous up-
per gradient of a locally Lipschitz continuous function f , then for x, y ∈ X , by
choosing a quasiconvex path γ connecting x to y, we get

|f(x) − f(y)| ≤
∫

γ

g ds ≤ C d(x, y) sup
z∈B(x,Cd(x,y))

g(z).

So if B is a ball in X and x, y are points in B, then
∫

B

∫

B
|f(x) − f(y)| dµ(x) dµ(y) ≤ Crad(B) sup

z∈CB
g(z) = Crad(B)‖g‖L∞(CB).
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