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Abstract. We present some new results concerning the class ofK and (K,K ′)
quasiconformal mappings in the plane. Among the other things, we consider
the following results. A harmonic diffeomorphism w between two C2 Jordan
domains is a (K,K ′) quasiconformal mapping for some constants K ≥ 1 and
K ′ ≥ 0 if and only if it is Lipschitz continuous. We also discuss a generaliza-
tion of this result if K ′ = 0, which states that a harmonic diffeomorphism w

between two C1,α domains is quasiconformal if and only if it is bi-Lipschitz
continuous.
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1. Introduction

A function w is called harmonic in a region D if it has form w = u+ iv where
u and v are real-valued harmonic functions in D. If D is simply-connected,
then there are two analytic functions g and h defined on D such that w has the
representation

w = g + h.

If w is a harmonic univalent function, then by Lewy’s theorem (see [38]), w
has a non-vanishing Jacobian and consequently, according to the inverse mapping
theorem, w is a diffeomorphism. If k is an analytic function and w is a harmonic
function then w ◦ k is harmonic. However k ◦ w, in general is not harmonic.

By R we denote the set of real numbers. Throughout this paper, we will use
notation z = reiϕ, where r = |z| and ϕ ∈ R are polar coordinates and by wϕ and
wr we denote partial derivatives of w with respect to ϕ and r, respectively. Let

P (r, x) =
1− r2

2π(1− 2r cosx+ r2)
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denote the Poisson kernel. Note that every bounded harmonic function w defined
on the unit disk U := {z : |z| < 1} has the following representation

(1.1) w(z) = P [f ](z) =

∫ 2π

0

P (r, x− ϕ)f(eix)dx,

where z = reiϕ and f is a bounded integrable function defined on the unit circle
T := {z : |z| = 1}.

The Hilbert transformation of a function χ is defined by the formula

H [χ](ϕ) = −1

π

∫ π

0+

χ(ϕ+ t)− χ(ϕ− t)

2 tan(t/2)
dt

for a.e. ϕ and χ ∈ L1(T). The facts concerning the Hilbert transformation can
be found in ([62], Chapter VII).

Here and in the remainder of this paper it is convenient to use the convention:
if f is complex-valued function defined on T a.e. we consider also f as a periodic
function defined on R by f(t) = f(eit) and vise versa if the meaning of it is

clear from the context; we also write f ′(t) = ∂f(eit)
∂t

. Note that if γ is 2π-periodic
absolutely continuous on [0, 2π] (and therefore γ′ ∈ L1[0, 2π]) and h = P [γ], then

(h′r)
∗(eiθ) = H(γ′)(θ) a.e.,

where H denotes the Hilbert transform.

Let Γ be a curve of C1,µ class and γ : R → Γ∗ be arbitrary topological
(homeomorphic) parameterization of Γ and s(ϕ) =

∫ ϕ

0
|γ′(t)|dt. It is convenient

to abuse notation and to denote by Γ(s) natural parameterization.

For Γ(s) = γ(ϕ), we define nγ(ϕ) = iΓ′
(

s(ϕ)
)

and

Rγ(ϕ, t) = (γ(t)− γ(ϕ), nγ(ϕ)).

For θ ∈ R and h = P [γ], define

Eγ(θ) =
(

(h′r)
∗(eiθ), nγ(θ)

)

=
(

H(γ′)(θ), nγ(θ)
)

a.e. and(1.2)

υ(z, θ) = υγ(z, θ) =
(

rh′r(z), nγ(θ)
)

, z ∈ U .(1.3)

Note that υ∗(t, θ) =
(

H(γ′∗)(t), nγ(θ)
)

a.e.

To get a filling about C1,µ1 curve we give a basic example:

Example 1.4. For c > 0, 0 < µ < 1, and x0 > 0 the curve

(1.5) y = c|x|1+µ, |x| < x0

is C1,µ at origin but it is not C1,µ1 for µ1 > µ. It is convenient to write this
equation using polar coordinates z = reiϕ: r sinϕ = cr1+µ(cosϕ)1+µ and we
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find sinϕ = crµ(cosϕ)1+µ, 0 ≤ r < r0, where r0 is a positive number. Since
sinϕ = ϕ+ o(ϕ) and cosϕ = 1 = o(1), when ϕ→ 0, the curve γ(c, µ) defined by
joining curves ϕ = cr1+µ and π − ϕ = cr1+µ, 0 ≤ r < r0, which share the origin,
has similar properties near the origin as the curve defined by (1). The reader
can check that γ(c, µ) is C1,µ at origin but it is not C1,µ1 for µ1 > µ. Note that
if a curve satisfies ϕ ≤ cr1+µ, then it is is below the curve γ(c, µ).

Let

A =

(

a11 a12
a21 a22

)

∈ R2×2.

We will consider the matrix norm:

ΛA = |A| = max{|Az| : z ∈ R2, |z| = 1}
and the matrix function

λA = min{|Az| : |z| = 1}.
Let D and G be subdomains of the complex plane C, and w = u + iv : D → G
be a function that has both partial derivatives at a point z ∈ D. By ∇w(z) we
denote the matrix

(

ux uy
vx vy

)

. For the matrix ∇w we have

(1.6) Λw(z) = |∇w| = |wz|+ |wz̄|
and

(1.7) λw(z) = ||wz| − |wz̄||,
where

wz :=
1

2

(

wx +
1

i
wy

)

and wz̄ :=
1

2

(

wx −
1

i
wy

)

.

We say that a function u : D → R is ACL (absolutely continuous on lines)
in the region D, if for every closed rectangle R ⊂ D with sides parallel to the x
and y-axes, u is absolutely continuous on a.e. horizontal and a.e. vertical line in
R. Such a function has of course, partial derivatives ux, uy a.e. in D.

A sense-preserving homeomorphism w : D → G, where D and G are subdo-
mains of the complex plane C, is said to be (K,K ′)-quasiconformal (or shortly
(K,K ′)-q.c. or q.c.) (K ≥ 1, K ′ ≥ 0) if w ∈ACL and

(1.8) |∇w|2 ≤ KJw +K ′ (z = reiϕ),

where Jw is the Jacobian of w given by

(1.9) Jw = |wz|2 − |wz|2 = Λw(z)λw(z).
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Mappings which satisfy (1.8) arise naturally in elliptic equations, where w =
u + iv, and u and v are partial derivatives of solutions, cf [14, Chapter XII]. If
K ′ = 0, and k = K−1

K+1
then instead of (K,K ′)-q.c. we write K−q.c. or k−q.c.

Let Ω be a Jordan domain with rectifiable boundary. We will say that a
mapping f : U → Ω is normalized if f(ti) = ωi, i = 0, 1, 2, where t0t1, t1t2, t2t0
and ω0ω1, ω1ω2, ω2ω0 are arcs of T and of γ = ∂Ω respectively, having the same
length 2π/3 and |γ|/3 respectively.

We will say that a mapping f : U → V is Hölder (Lipschitz) continuous, if
there exists a constant L such that

|f(z)− f(w)| ≤ L|z − w|α, z, w ∈ U,

where 0 < α < 1 (α = 1).

1.1. Background and new results. Let γ be a Jordan curve. By the Riemann
mapping theorem there exists a Riemann conformal mapping of the unit disk onto
a Jordan domain Ω = int γ. By Caratheodory’s theorem it has a continuous
extension to the boundary. Moreover if γ ∈ Cn,α, n ∈ N, 0 ≤ α < 1, then the
Riemann conformal mapping has Cn,α extension to the boundary (this result is
known as Kellogg’s theorem), see [60]. Conformal mappings are quasiconformal
and harmonic. Hence quasiconformal harmonic (shortly HQC) mappings are
natural generalization of conformal mappings. The class of HQC automorphisms
of the unit disk has been first considered by Martio in [43]. Hengartner and
Schober have shown that, for a given second dilatation (a = fz̄/fz, with ‖a‖ < 1)
there exist a q.c. harmonic mapping f between two Jordan domains with analytic
boundary ([18, Theorem 4.1]).

Recently there has been a number of authors who are working on the topic.
The situation in which the image domain is different from the unit disk firstly
has been considered by the first author in [22]. There it is observed that if
f is harmonic K- quasiconformal mapping of the upper half-plane onto itself
normalized such that f(∞) = ∞, then Imf(z) = cy, where c > 0; hence f is
bi-Lipschitz. In [22] (see also [24]) also characterization of HQC automorphisms
of the upper half-plane by means of integral representation of analytic functions
is given.

Using the result of Heinz ([17]): If w is a harmonic diffeomorphism of the unit
disk onto itself with w(0) = 0, then |wz|2+|wz̄|2 ≥ 1

π2 , it can be shown that, every
quasiconformal harmonic mapping of the unit disk onto itself is co-Lipschitz.

Further, Pavlović [54], by using the Mori’s theorem on the theory of quasi-
conformal mappings and by using an important approach, proved the following
intrigue result: every quasiconformal selfmapping of the unit disk is Lipschitz
continuous. Partyka and Sakan ([53]) yield explicit Lipschitz and co-Lipschitz
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constants depending on a constant of quasiconformality. Using the Hilbert trans-
forms of the derivative of boundary function, the first characterizations of HQC
automorphisms of the upper half-plane and of the unit disk have been given in
[54, 24]; for further result cf. [46]. Among the other things Knežević and the
second author in [35] showed that a q.c. harmonic mapping of the unit disk
onto itself is a (1/K,K) quasi-isometry with respect to Poincaré and Euclidean
distance. See also the paper of Chen and Fang [8] for a generalization of the
previous result to convex domains.

Since the composition of a harmonic mapping and of a conformal mapping
is itself harmonic, using the case of the unit disk and Kellogg’s theorem, these
theorems can be generalized to the class of mappings from arbitrary Jordan
domain with C1,α boundary onto the unit disk. However the composition of a
conformal and a harmonic mapping is not, in general, a harmonic mapping. This
means in particular that the results of this kind for arbitrary image domain do
not follow from the case of the unit disk or the upper half-plane and Kellogg’s
theorem.

Using some new methods the results concerning the unit disk and the half-
plane have been extended properly in the papers [23]–[32], [41] and [46]. In par-
ticular, in [25] we show how to apply Kellogg’s theorem and that simple proof
in the case of the upper half-plane has an analogy for C2 domain; namely, we
prove a version of ”inner estimate” for quasi-conformal diffeomorphisms, which
satisfies a certain estimate concerning their laplacian. As an application of this
estimate, we show that quasi-conformal harmonic mappings between smooth do-
mains (with respect to the approximately analytic metric), have bounded partial
derivatives; in particular, these mappings are Lipschitz.

For related results about quasiconformal harmonic mappings with respect to
the hyperbolic metric we refer to the paper of Wan [58] and of Marković [42].

Very recently, Iwaniec, Kovalev and Onninen in [19] have shown that, the class
of quasiconformal harmonic mappings is also interesting concerning the modulus
of annuli in complex plane.

In [48] C. B. Morrey proved a local Hölder estimate for quasiconformal map-
pings in the plane. Such a Hölder estimate was a fundamental development in
the theory of quasiconformal mappings, and had very important applications to
partial differential equations. Nirenberg in [50] made significant simplifications
and improvements to Morrey’s work (in particular, the restriction that the map-
pings involved be 1 − 1 was removed), and he was consequently able to develop
a rather complete theory for second order elliptic equation with 2 independent
variables. Simon [57, Theorem 2.2] (see also Finn-Serrin [12]) obtain a Hölder
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estimate for (K,K ′) quasiconformal mappings, which is analogous to that ob-
tained by Nirenberg in [50], but which is applicable to quasiconformal mappings
between surfaces in Euclidean space.

Global Hölder continuity of (K, 0)-quasiconformal mapping between domains
satisfying certain boundary conditions has been extensively studied by many
authors and the results of this kind can be considered as generalizations of Mori’s
theorem (see for example the papers of Gehring & Martio [13] and Koskela,
Onninen & Tyson [36]).

In this paper we overview some recent results concerning the class of harmonic
quasiconformal mappings (HQC) and some new generalizations for the Hölder
and Lipschitz continuity of the class of (K,K ′)-q.c. harmonic mappings between
smooth domains.

In the section 2 we recall some results concerning the class of q.c. harmonic
selfmappings of the unit disk and of the half-plane. The most important fact is
that these classes are bi-Lipschitz mappings. Further in Section 3 we announce
some new results concerning the class of HQC between Jordan domains with
smooth C1,α boundary, due to Božin and the second author, cf [6].

Section 4 contains Proposition 4.3 which can be considered as a Caratheodory
theorem for (K,K ′)− quasiconformal mappings and by using this proposition
we extend Smirnov theorem for the class of (K,K ′)-quasiconformal harmonic
mappings. By using Proposition 4.3, Heinz-Berenstein theorem (Lemma 5.8),
and distance function with respect to image domain we first show that, (K,K ′)
quasiconformal harmonic mappings are Lipschitz continuous, providing that the
boundaries are twice differentiable Jordan curves (Theorem 5.9 the main result
of [26] and of Section 5). Theorem 5.9 can be considered as extensions of Kellogg
theorem and results of Martio, Pavlović, Partyka, Sakan and the authors. The
method developed in [31], and Lemma 4.7 (which is a Mori’s type theorem for
the class of (K,K ′) quasiconformal mappings) has an important role on finding
the quantitative Lipschitz constant, depending only on (K,K ′), the domain and
image domain, for normalized (K,K ′) quasiconformal harmonic mappings. By
using Theorem 5.9, we prove Corollary 5.13, and this in turn implies that a
harmonic diffeomorphism w between smooth Jordan domains is Lipschitz, if and
only if w is (K,K ′) quasiconformal.

2. Characterizations of HQC

2.1. The half plane. In this section we present some results from [46]. By H

we denote the upper-half plane and Π+ = {z : Rez > 0}.
The first characterizations of the HQC conditions have been obtained by Kalaj

in his thesis research.
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In the case of the upper half plane, the following known fact plays an important
role, cf for example [35]:

Lemma 2.1. Let f be an euclidean harmonic 1 − 1 mapping of the upper half-
plane H onto itself, continuous on H, normalized by f(∞) = ∞ and v = Imf .
Then v(z) = c Imz, where c is a positive constant. In particular, v has bounded
partial derivatives on H.

Lemma 2.1 is a corollary of the Herglotz representation of the positive har-
monic function v (see for example [4]).

Theorem 2.2. Let h : H → H be a harmonic function. Then h is orientation
preserving harmonic diffeomorphism of H onto itself, continuous on H∪R such
that h(∞) = ∞ if and only if there are an analytic function φ : H → Π+ and
constants c > 0 and c1 ∈ R such that

limz→∞Φ1(z) = ∞, where

1. Φ(z) =
∫ z

i
φ(ζ)dζ, Φ1 = ReΦ, and

2. h(z) = hφ(z) = Φ1(z) + icy + c1, z ∈ H.

Let χ denote restriction of h on R. In this setting, h(z) = hφ(z) = P [χ] + icy,
z ∈ H, where P = PH denotes the Poisson kernel for the upper half-plane H.

A version of this result is proved in [22] and [24].

Let h = u + iv. By Lemma 2.1, u = ReΦ and v = cy, where c > 0 and Φ is
analytic function in H. Since Φ′

y = iΦ′ and

h(z) = hφ(z) =
Φ(z) + Φ(z)

2
+ icy + c1,

we find

h′y(z) =
iΦ′(z) + iΦ′(z)

2
+ ic =

iφ(z)− iφ(z)

2
+ ic = −Im φ(z) + ic

Hence h′x(z) = Reφ(z) and h′y(z) = −Imφ(z) + ic. Since

hz =
h′x − ih′y

2
=
φ

2
+
c

2
is analytic, −h′y is harmonic conjugate of h′x and therefore h′y = H(h′∗) = H(χ) =
Imφ(z)− ic, where χ = h∗ denotes the restriction of h on R.

ByHQC0(H) (respectively HQCk
0 (H)) we denote the set of all qc (respectively

k-qc) harmonic mappings h of H onto itself for which h(∞) = ∞.

Recall by χ we denote restriction of h on R. If h ∈ HQC0(H) it is well-
known that χ : R → R is a homeomorphism and Reh = P [χ]. Now we give
characterizations of h ∈ HQC0(H) in terms of its boundary value χ.
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Theorem 2.3 ([22], [46]). The following condition are equivalent

(A1) h ∈ HQC0(H)
(A2) there is an analytic function φ : H → Π+ such that φ(H) is relatively

compact subset of Π+ and h = hφ.

Proof. Suppose (A1). We can suppose that h is K-qc and c = 1 in the repre-
sentation (2). Since v(z) = Imh(z) = y, we have λh ≥ 1/K. Let z0 ∈ H and
define the curve L = {z : Φ1(z) = Φ1(z0)} and denote by l0 the unit tangent
vector to the curve L at z0. Since |dhz0(l0)| ≤ 1, we have Λh ≤ K on H. Hence
absolute values of partial derivatives of h are bounded from above and below by
two positive constants. Thus, by (3) and (4), φ is bounded on H.

In particular, (A1) implies that h is bi-lipschitz.

Hence there are two positive constants s1 and s2 such that s1 ≤ χ′(x) ≤ s2,
a.e. Since χ′(x) = Reφ∗(x) a.e. on R and φ is bounded on H, we find s1 ≤
Reφ(z) ≤ s2, z ∈ H; and (A2) follows.

We leave to the reader to prove that (A2) implies (A1) and using equation
(2.5) below to prove (A1) ⇒ (A2).

It is clear that the conditions (A1) and (A2) are equivalent to:

(A3) There is analytic function φ ∈ H∞(H) and there two positive constants s1
and s2 such that s1 ≤ Reφ(z) ≤ s2, z ∈ H.

Since χ′(x) = Reφ∗(x) a.e. on R and Hχ′ = Imφ∗(x)− ic a.e. on R, we get
characterization in terms of Hilbert transform:

(A4) χ is absolutely continuous, and there two positive constants s1 and s2 such
that s1 ≤ χ′(x) ≤ s2, a.e. and Hχ

′ is bounded.

A similar characterization holds for smooth domains and in particular in the
case of the unit disk; see Theorems 2.10 and 2.8 below.

From the proof of Theorem 2.4 below, cf [35], it follows that if we set c = 1
in the representation (2), then h = hφ ∈ HQCk

0 (H) if and only φ(H) is in a disk
Bk = B(ak;Rk), where

ak =
1

2
(K + 1/K) =

1 + k2

1− k2

and

Rk =
1

2
(K − 1/K) =

2k

1− k2
.

First, we need to introduce some notation: For a ∈ C and r > 0 we define
B(a; r) = {z : |z − a| < r}. In particular, we write Ur instead of B(0; r).
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Theorem 2.4 ([35], the half plane euclidean-qch version). Let f be a K-qc
euclidean harmonic diffeomorphism from H onto itself. Then f is a (1/K,K)
quasi-isometry with respect to Poincaré distance and with respect to Euclidean
distance.

For higher dimension version of this result see [44, 47, 3].

Proof. We first show that, by pre composition with a linear fractional trans-
formation, we can reduce the proof to the case f(∞) = ∞. If f(∞) 6= ∞,
there is the real number a such that f(a) = ∞. On the other hand, there is a
conformal automorphism A of H such that A(∞) = a. Since A is an isometry
of H onto itself and f ◦A is a K-qc euclidean harmonic diffeomorphism from H

onto itself, the proof is reduced to the case f(∞) = ∞.

It is known that f has a continuous extension to H (see for example [37]).
Hence, by Lemma B, f = u + ic Im z, where c is a positive constant. Using the
linear mapping B, defined by B(w) = w/c, and a similar consideration as the
above, we can reduce the proof to the case c = 1. Therefore we can write f in
the form

f = u+ iIm z =
1

2
(F (z) + z + F (z)− z),

where F is a holomorphic function in H. Hence,

(2.5) µf(z) =
F ′(z)− 1

F ′(z) + 1
and F ′(z) =

1 + µf(z)

1− µf(z)
, z ∈ H.

Define

k =
K − 1

K + 1
and

w = Sζ =
1 + ζ

1− ζ
.

Then, S(Uk) = Bk = B(ak;Rk), where

ak =
1

2
(K + 1/K) =

1 + k2

1− k2

and

Rk =
1

2
(K − 1/K) =

2k

1− k2
.

Since f is k-qc, then µf(z) ∈ Uk and therefore F ′(z) ∈ Bk for z ∈ H. This
yields, first,

K + 1 ≥ |F ′(z) + 1| ≥ 1 + 1/K, K − 1 ≥ |F ′(z)− 1| ≥ 1− 1/K,
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and then,

1 ≤ Λf(z) =
1

2
(|F ′(z) + 1|+ |F ′(z)− 1|) ≤ K.

So we have λf (z) ≥ Λf(z)/K ≥ 1/K.
Thus, we find

(2.6) 1/K ≤ λf(z) ≤ Λf(z) ≤ K.

Let λ denote the hyperbolic density on H.
Since λ(f(z)) = λ(z), z ∈ H, using (2.6) and (A3), we obtain

1− k

1 + k
dh(z1, z2) ≤ dh(f(z1), f(z2)) ≤

1 + k

1− k
dh(z1, z2).

It also follows from (2.6) that

1

K
|z2 − z1| ≤ |f(z2)− f(z1)| ≤ K |z2 − z1|, z1, z2 ∈ H.

We leave to the reader to prove this inequality as an exercise.
This estimate is sharp (see also [24] for an estimate with some constant c(K)).

Theorem 2.4 has its counterpart for the unit disk.

Theorem 2.7 ([35], the unit disk euclidean-qch version). Let f be a K-qc eu-
clidean harmonic diffeomorphism from U onto itself. Then f is a (1/K,K)
quasi-isometry with respect to Poincaré distance.

2.2. The unit disc. We give characterizations in the case of the unit disk and
for smooth domains (see below) similar to that in Theorem 2.3, which is related
to the half-plane case.

Theorem 2.8. Let ψ be a continuous increasing function on R such that ψ(t+
2π)− ψ(t) = 2π, γ(t) = eiψ(t) and h = P [γ]. Then h is q.c. if and only if

1. ess infψ′ > 0,
2. there is analytic function φ : U → Π+ such that φ(U) is relatively compact

subset of Π+ and ψ′(x) = Reφ∗(ei x) a.e.

In the setting of this theorem we write h = P [γ] = hφ. The reader can use
the above characterization and functions of the form φ(z) = 2+M(z), where M
is an inner function, to produce examples of HQC mappings h = hφ of the unit
disk onto itself so the partial derivatives of h have no continuous extension to
certain points on the unit circle. In particular we can take M(z) = exp z+1

z−1
, cf

[5].
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Let D1 (respectively D2) be the family of all Jordan domains in the plane
which are of class C1,µ (res C2,µ) for some 0 < µ < 1.

In the next subsection and Section 3 we extend the above theorem to smooth
domains.

Note that the proof that a HQC mapping h between the unit disk and D2

(more generally C2 and C1,1) domain is bi-Lipshitz is more delicate than in the
case of the upper half plane, see Theorem 3.1 below. For example, one can use
Lemma 5.8 (which we call Heinz-Berenstein inner estimate) instead of Lemma 2.1
to prove that h is Lipshitz.

Note that the proof that a HQC mapping between the unit disk andD1 domain
is bi-Lipshitz is much more delicate than in the case of the upper half plane, cf
Theorem 3.5 below.

2.3. HQC and convex smooth codomains. We need the following result
related to convex codomains.

Theorem 2.9. Suppose that h is a euclidean harmonic mapping from U onto a
bounded convex domain D = h(U), which contains the disc B(h(0);R0) . Then

(1) d(h(z), ∂D) ≥ (1− |z|)R0/2, z ∈ U.
(2) Suppose that ω = h∗(eiθ) and h∗r = h′r(e

iθ) exist at a point eiθ ∈ T, and
there exists the unit inner normal n = nω at ω = h∗(eiθ) with respect to
∂D. Then E := (h∗r , nh∗) ≥ c0, where c0 =

R0

2
.

(3) In addition to the hypothesis stated in the item (2), suppose that h′∗ exists
at the point eiθ. Then |Jh| = |(h∗r, N)| =

∣

∣(h∗r , n)
∣

∣|N | ≥ c0|N |, where

N = i h′∗ and the Jacobian is computed at the point eiθ with respect to the
polar coordinates.

(4) If D is of C1,µ class and h is quasiconformal, then the function E is con-
tinuous on T.

For the proof of first three items we refer to [44] (see also [22] for related results).
For the proof of (4) see [6] or [21].

Theorem 2.10. Suppose that C1, α domain D is convex and denote by γ pos-
itively oriented boundary of D. Let h0 : T → γ be an orientation preserving
homeomorphism and h = P [h0]. The following conditions are then equivalent

a) h is K-qc mapping
b) h is bi-Lipschitz in the Euclidean metric
c) the boundary function h∗ is bi-Lipschitz in the Euclidean metric and Hilbert

transform H [h′∗] of its derivative is in L∞.
d) the boundary function h∗ is absolutely continuous, ess sup|h′∗| < +∞, ess inf |h′∗| >

0 and Hilbert transform H [h′∗] of its derivative is in L∞.
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For an extension of this theorem concerning Cauchy transform C[h′∗] see [46].
For the proof of this result for the case of the unit disk we refer to [54]. Theo-
rem 2.10 has been proved in [31].

3. HQC are bi-Lipschitz

In this section we discus the co-Lipschitz character of the class HQC for non-
convex smooth Jordan domains. Recall first that Theorem 2.10, which assert
that a harmonic q.c. mapping of the unit disk of a convex domain is bi-Lipschitz,
provided that the image domain is C1,α. For the proof of co-Lipschitz part of
Theorem 2.10 the first author used a version of Heinz lemma for convex domains
([20]) refereed in this approach as convexity type argument. On the other hand,
the first author proved the following result:

Theorem 3.1 ([32]). Let w = f(z) be a K quasiconformal harmonic mapping
between a Jordan domain Ω1 with C1,α boundary and a Jordan domain Ω with
C2,α boundary. Let in addition a ∈ Ω1 and b = f(a). Then w is bi-Lipschitz.
Moreover there exists a positive constant c = c(K,Ω1,Ω, a, b) ≥ 1 such that

(3.2)
1

c
|z1 − z2| ≤ |f(z1)− f(z2)| ≤ c|z1 − z2|, z1, z2 ∈ Ω1.

Theorem 3.1 has been extended by the first author for C1,1 image domains in
[29].

In the following approach we announce some generalizations of results Theo-
rem 3.1 for the class of HQC between C1,α domains (0 < α < 1).

3.1. The Gehring-Osgood inequality. For a domain G ⊂ Rn let ρ : G →
(0,∞) be a function. We say that ρ is a weight function or a metric density if
for every locally rectifiable curve γ in G, the integral

lρ(γ) =

∫

γ

ρ(x)ds

exists.

In this case we call lρ(γ) the ρ-length of γ. A metric density defines a metric
dρ : G×G→ (0,∞) as follows. For a, b ∈ G, let

dρ(a, b) = inf
γ
lρ(γ)

where the infimum is taken over all locally rectifiable curves in G joining a and
b. It is an easy exercise to check that dρ satisfies the axioms of a metric. For
instance, the hyperbolic (or Poincaré) metric of D is defined in terms of the
density ρ(x) = c/(1− |x|2) where c > 0 is a constant.
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The quasi-hyperbolic metric k = kG of G is a particular case of the metric dρ
when ρ(x) = 1

d(x,∂G)
.

Suppose that G ⊂ Rn, f : G → Rn is K-qr and G′ = f(G). Let ∂G′ be a
continuum containing at least two distinct points. By Gehring-Osgood inequality
[11], there exists a constant c > 0 depending only on n and K such that

kG′(fy, fx) ≤ cmax{kG(y, x)α, kG(y, x)}, α = K1/(1−n), x, y ∈ G .

Using Gehring-Osgood inequality, the following result is proved:

Theorem 3.3. [47] Under the above condition, if f , in addition, is a harmonic
mapping, then f : (G, kG) → (G′, kG′) is Lipschitz.

We can compute the quasihyperbolic metric k on C∗ by using the cover-
ing exp : C → C∗, where exp is exponential function. Let z1, z2 ∈ C∗, z1 =
r1e

it1 , z2 = r2e
it2 and θ = θ(z1, z2) ∈ [0, π] the measure of convex angle between

z1, z2. We will prove

k(z1, z2) =

√

| log r2
r1
|2 + θ2 .

Let l = l(z1) be line defined by 0 and z1. Then z2 belongs to one half-plane,
say M , on which l = l(z1) divides C.

Locally denote by log a branch of Log on M . Note that log maps M con-
formally onto horizontal strip of width π. Since w = log z, we find the quasi-
hyperbolic metric

|dw| = |dz|
|z| .

Note that ρ(z) = 1
|z|

is the quasi-hyperbolic density for z ∈ C∗ and therefore

k(z1, z2) = |w1−w2| = | log z1− log z2|. Let z1, z2 ∈ C∗, w1 = log z1 = log r1+ it1.
Then z1 = r1e

it1 ; there is t2 ∈ [t1, t1 + π) or t2 ∈ [t1 − π, t1) and w2 = log z2 =
log r2 + it2 . Hence

k(z1, z2) =

√

| log r2
r1
|2 + (t2 − t1)2 ,

and therefore as a corollary of Gehring-Osgood inequality, we have

Proposition 3.4. Let f be a K-qc mapping of the plane such that f(0) = 0,
f(∞) = ∞ and α = K−1 . If z1, z2 ∈ C∗, |z1| = |z2| and θ ∈ [0, π] (respec-
tively θ∗ ∈ [0, π]) is the measure of convex angle between z1, z2 (respectively
f(z1), f(z2)), then
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θ∗ ≤ cmax{θα, θ},
where c = c(K). In particular, if θ ≤ 1, then θ∗ ≤ cθα.

We announce some results obtained in [6]. The results make use of Proposition
3.4, which is a corollary of the Gehring-Osgood inequality [11], as we are going
to explain.

Let Ω be Jordan domain in D1, γ curve defined by ∂Ω and h K-qch from
U onto Ω and h(0) = a0. Then h is L-Lipschitz, where L depends only on
K, dist(a0, ∂Ω) and D1 constant Cγ. In [6] we give an explicit bound for the
Lipschitz constant.

Let h be a harmonic quasiconformal map from the unit disk onto D in class
D1. Examples show that a q.c. harmonic function does not have necessarily
a C1 extension to the boundary as in conformal case. In [6] it is proved that
the corresponding functions Eh∗ is continuous on the boundary and for fixed θ0,
υh∗(z, θ0) is continuous in z at eiθ0 on U.

The main result in [6] is

Theorem 3.5. Let Ω and Ω1 be Jordan domains in D1, and let h : Ω 7→ Ω1 be
a harmonic q.c. homeomorphism. Then h is bi-Lipschitz.

It seems that we use a new idea here. Let Ω1 be C1,µ curve. We reduce proof
to the case when Ω = H . Suppose that h(0) = 0 ∈ Ω1. We show that there is
a convex domain D ⊂ Ω1 in D1 such that γ0 = ∂D touch the boundary of Ω1

at 0 and that the part of γ0 near 0 is a curve γ(c) = γ(c, µ). Since there is qc
extension h1 of h to C, we can apply Proposition 3.4 to h1 : C

∗ → C∗. This gives
estimate for arg γ1(z) for z near 0, where γ1 = h−1(γ(c)), and we show that there
constants c1 > 0 and µ1 such that the graph of the curve h−1(γ(c)) is below of
the graph of the curve γ(c1) = γ(c1, µ1). Therefore there is a domain D0 ⊂ H in
D1 such that h(D0) ⊂ D. Finally, we combine the convexity type argument and
noted continuity of functions E and υ to finish the proof.

4. Global and Hölder continuity of (K,K ′)-q.c. mappings

For a ∈ C and r > 0, putD(a, r) := {z : |z−a| < r} and define ∆r = ∆r(z0) =
U∩D(z0, r). Denote by kρ the circular arc whose trace is {ζ ∈ U : |ζ− ζ0| = ρ}.
Lemma 4.1 (The length-area principle, [26]). Assume that f is a (K,K ′)− q.c.
on ∆r, 0 < r < 1, z0 ∈ T . Then

(4.2) F (r) :=

∫ r

0

l2ρ
ρ
dρ ≤ πKA(r) +

π

2
K ′r2 ,
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where lρ = |f(kρ)| denote the length of f(kρ) and A(r) is the area of f(∆r).

A topological space X is said to be locally connected at a point x if every
neighborhood of x contains a connected open neighborhood. It is easy to verify
that the set A is locally connected in z0 ∈ A if for every sequence {zn} ⊂ A,
which converges to z0 there exists, for big enough n, connected set Ln ⊂ A which
contains z0 and zn such that diam(Ln) → 0. The set is locally connected if it is
locally connected at every point. By using Lemma 4.1 we obtain

Proposition 4.3 (Caratheodory theorem for (K,K ′) mappings, [26]). Let D be
a simply connected domain in C whose boundary has at least two boundary points
such that ∞ /∈ ∂D. Let f : U → D be a continuous mapping of the unit disk U

onto D and (K,K ′) quasiconformal near the boundary T.

Then f has a continuous extension to the boundary if and only if ∂D is locally
connected.

Remark 4.4. If we replace the hypothesis that f is (K,K ′) in Proposition 4.3
with f ∈ W 1,2(U), for some 0 < r < 1, then f has also continuous extension to
U. After we wrote a version of this paper, Vuorinen informed us that results of
this type related to Proposition 4.3 has been announced in [40].

Let γ ∈ C1,µ, 0 < µ ≤ 1, be a Jordan curve and let g be the arc length
parameterization of γ and let l = |γ| be the length of γ. Let dγ be the distance
between g(s) and g(t) along the curve γ, i.e.

(4.5) dγ(g(s), g(t)) = min{|s− t|, (l − |s− t|)}.

A closed rectifiable Jordan curve γ enjoys a b− chord-arc condition for some
constant b > 1 if for all z1, z2 ∈ γ there holds the inequality

(4.6) dγ(z1, z2) ≤ b|z1 − z2|.
It is clear that if γ ∈ C1,α then γ enjoys a chord-arc condition for some bγ > 1.

The following lemma is a (K,K ′)-quasiconformal version of [59, Lemma 1].
Moreover, here we give an explicit Hölder constant Lγ(K,K

′). It is one of the
main tools in proving Theorem 5.9.

Lemma 4.7. [26] Assume that γ enjoys a chord-arc condition for some b > 1.
Then for every (K,K ′)− q.c. normalized mapping f between the unit disk U and
the Jordan domain Ω = intγ there holds

|f(z1)− f(z2)| ≤ Lγ(K,K
′)|z1 − z2|α
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for z1, z2 ∈ T, α = 1
K(1+2b)2

and

(4.8) Lγ(K,K
′) = 4(1 + 2b)2α

√

max

{

2πK|Ω|
log 2

,
2πK ′

K(1 + 2b)2 + 4

}

.

Remark 4.9. By applying Lemma 4.7, and by using the Möbius transforms, it
follows that, if f is an arbitrary (K,K ′)−q.c. mapping between the unit disk
U and Ω, where Ω satisfies the conditions of Lemma 4.7, then |f(z1)− f(z2)| ≤
C(f, γ,K,K ′)|z1 − z2|α on T.

4.1. A question. Lemma 4.7 states that, every (K,K ′) quasiconformal map-
ping of the unit disk onto a Jordan domain with rectifiable boundary satisfying
chord-arc condition is Hölder on the boundary. This can be extended a little bit,
for example the lemma remains true if we put z1 ∈ T and z2 ∈ U instead of
z1, z2 ∈ T. On the other hand the results of Nirenberg, Finn, Serrin and Simon
state that f is Holder continuous in every compact set of the unit disk. It remains
an interesting and important open question, does every (K,K ′) quasiconformal
mapping f between the unit disk and a Jordan domain with smooth boundary
enjoy Hölder continuity.

The following theorem is an extension of the Smirnov theorem on the theory of
conformal mappings to the class of (K,K ′) quasiconformal harmonic mappings.
Let h1 = h1(U) and H1 = H1(U) be Hardy spaces of harmonic respectively
analytic functions defined on the unit disk.

Theorem 4.10 (Smirnov theorem for (K,K ′) q.c. harmonic mappings,[26]).
Let w be a (K,K ′) quasiconformal harmonic mapping of the unit disk U onto a
Jordan domain D. Then ∇w ∈ h1 if and only if ∂D is a rectifiable Jordan curve.
Moreover, ∇w ∈ h1 implies that w is absolutely continuous on T.

5. Lipschitz continuity of (K,K ′)-q.c. harmonic mappings

In this section we formulate Theorem 5.9 which is the main result of the paper
[26]. The proof is based on a result of Heinz and Berenstein (Lemma 5.8) and
on auxiliary results (Lemmas 5.1- 5.6):

Lemma 5.1 ([30]). Let Ω be a Jordan C2 domain, f : T → ∂Ω injective continu-
ous parameterization of ∂Ω and w = P [f ]. Suppose that w = P [f ] is a Lipschitz
continuous harmonic function between the unit disk U and Ω. Then for almost
every eiϕ ∈ T we have

(5.2) lim sup
r→1−0

Jw(re
iϕ) ≤ π

4

κ0
2
|f ′(ϕ)|

∫ π

−π

dγ(f(e
i(ϕ+x)), f(eiϕ))2

x2
dx,
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where Jw(z) denotes the Jacobian of w at z, f ′(ϕ) := d
dϕ
f(eiϕ) and

(5.3) κ0 = sup
s

|κs|,

and κs is the curvature of γ at the point g(s).

If we denote ∂Ω by γ, then under the conditions of the above lemma we have
first |Rf (ϕ, x)| ≤ κ0

2
dγ(f(e

iϕ), f(eix))2 and therefore

Eγ(ϕ) ≤
π

4

κ0
2

∫ π

−π

dγ(f(e
i(ϕ+x)), f(eiϕ))2

x2
dx ,

for almost every eiϕ ∈ T.

Let d be the distance function with respect to the boundary of the domain
Ω: d(w) = dist(w, ∂Ω). Let Γµ := {z ∈ Ω : d(z) ≤ µ}. For basic properties
of distance function we refer to [14]. For example ∇d(w) is a unit vector for
w ∈ Γµ, and d ∈ C2(Γµ), provided that ∂Ω ∈ C2 and µ ≤ 1/ sup{|κz| : z ∈ ∂Ω}.
We now have.

Lemma 5.4. [26] Let Ω be a C2 Jordan domain, w : Ω1 7→ Ω be a C1, (K,K ′)
q.c., χ = −d(w(z)) and µ > 0 such that 1/µ > κ0 = ess sup{|κz| : z ∈ ∂Ω}.

Then:

(5.5) |∇χ| ≤ |∇w| ≤ K|∇χ|+
√
K ′

in w−1(Γµ).

Lemma 5.6. [29] Let {e1, e2} be the natural basis in the space R2 and Ω,Ω1 be
two C2 domains. Let w : Ω1 7→ Ω be a harmonic mapping and let χ = −d(w(z))
and µ > 0 such that 1/µ > κ0 = ess sup{|κz| : z ∈ ∂Ω}. Then

(5.7) ∆χ(z0) =
κω0

1− κω0
d(w(z0))

|(Oz0∇w(z0))Te1|2,

where e1 ∈ Tz0 and Tz0 denotes the tangent space at z0, z0 ∈ w−1(Γµ), ω0 ∈ ∂Ω
with |w(z0)− ω0| = dist(w(z0), ∂Ω), and Oz0 is an orthogonal transformation.

Lemma 5.8 (Heinz-Berenstein). [16]. Let χ : U 7→ R be a continuous function
between the unit disc U and the real line satisfying the conditions:

1. χ is C2 on U,
2. χ(θ) = χ(eiθ) is C2 and
3. |∆χ| ≤ a|∇χ|2 + b on U for some constant c0 (natural growth condition).

Then the function |∇χ| = |gradχ| is bounded on U.

Theorem 5.9 (The main theorem). [26] Suppose that
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(a1) Ω is a Jordan domain with C2 boundary and
(a2) w is (K,K ′) -q.c. harmonic mapping between the unit disk and Ω.

Then

(c1) w has a continuous extension to U, whose restriction to T we denote by f .
(c2) Furthermore, w is Lipschitz continuous on U.
(c3) If f is normalized, there exists a constant L = L(K,K ′, ∂Ω) (which satisfies

the inequality (5.17) below) such that

(5.10) |f ′(t)| ≤ L for almost every t ∈ [0, 2π],

and

(5.11) |w(z1)− w(z2)| ≤ (KL+
√
K ′)|z1 − z2| for z1, z2 ∈ U.

Remark 5.12. Note that a C2 curve satisfies b−chord-arc condition for some
b and has bounded curvature and that the constant L in the previous theorem
depends only on K,K ′, κ0 and b, where κ0 is its maximal curvature.

By using Theorem 5.9 we deduce

Corollary 5.13 ([26]). Let h be a harmonic orientation preserving diffeomor-
phism between two plane Jordan domains Ω and D with C2 boundaries. Let in
addition φ : U → Ω be a conformal transformation and take w = h ◦ φ = P [f ].
Then the following conditions are equivalent

1. h is a (K,K ′)-qc mapping.
2. h is Lipschitz w.r. to the Euclidean metric.
3. f is absolutely continuous on T, f ′ ∈ L∞(T) and H [f ′] ∈ L∞(T).

The following proposition makes clear difference between (K,K ′)-q.c. har-
monic mappings and K-q.c. ((K, 0)-q.c.) harmonic mappings.

Proposition 5.14 ([29, 21]). Under conditions of Corollary 5.13, the following
conditions are equivalent:

1. h is a K-qc mapping.
2. h is bi-Lipschitz w.r. to the Euclidean metric.
3. f is absolutely continuous on T and f ′, 1/l(∇h), H [f ′] ∈ L∞(T).

By using Corollary 5.13 and Proposition 5.14, we obtain that the function
given in the following example is a (K,K ′)-quasiconformal harmonic mapping
which is not (K, 0) quasiconformal.
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Example 5.15. Let f(eix) = ei(x+sinx). Then the mapping w = P [f ] is a Lips-
chitz mapping of the unit disk U onto itself, because f ∈ C∞(T) and therefore
w is (K,K ′)-quasiconformal for some K and K ′ (Corollary 5.13) but it is not
(K, 0)-quasiconformal for any K, because f is not bi-Lipschitz.

Remark 5.16. a) The proof of Theorem 5.9 yields the following estimate of a
Lipschitz constant L for a normalized (K,K ′)−quasiconformal harmonic map-
ping between the unit disk and a Jordan domain Ω bounded by a Jordan curve
γ ∈ C2 satisfying a b−chord-arc condition.

(5.17) L ≤
(

Kλκ0b (Lγ(K,K
′))1+1/λπ1/λ +

√
K ′

)λ

,

where

α =
1

K(1 + 2b)2
, λ =

2− α

α
,

κ0 is defined by (5.3) and Lγ(K,K
′) in (4.8). Thus L depends only on K,K ′, κ0

and b−chord-arc condition.

See [54], [53], [35] and [23] for estimates, in the special case where γ is the
unit circle, and w is K−q.c. (K ′ = 0).

b) Notice that, the proof of Theorem 5.9 did not depend on Kellogg’s and
Warschawski theorem (that implies that a conformal mapping of the unit disk
onto a Jordan domain Ω with C1,α boundary is bi-Lipschitz) nor on Lindelöf
theorem in the theory of conformal mappings (see [15] for this topic). For a gen-
eralization of Kellogg’s theorem we refer to the paper of Lesley and Warschawski
[39], where they gave an example of C1 Jordan domain D, such that the Riemann
conformal mapping of the unit disk U onto D is not Lipschitz. We expect that,
the conclusion of Theorem 5.9 remains true, assuming only that the boundary
of Ω is C1,α. This problem has been overcome for the class of K-q.c. mappings
in [31] by composing by conformal mappings and by using ”approximation ar-
gument”. However, the composition of a (K,K ′) q.c. mapping and a conformal
mapping is not necessarily a (K1, K

′
1) q.c. mapping, and it causes further diffi-

culties because the method used in [31] does not work for (K,K ′) q.c. mappings
in general.

References

[1] L. Ahlfors, Lectures on Quasiconformal mappings, Van Nostrand Mathematical Studies,
D. Van Nostrand 1966.
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[24] D. Kalaj and M. Pavlović, Boundary correspondence under harmonic quasiconformal

homeomorfisms of a half-plane, Ann. Acad. Sci. Fenn., Math. 30(1)(2005), 159–165.
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[52] C. Pommerenke and S.E. Warschawski, On the quantitative boundary behavior of
conformal maps, Comment. Math. Helv. 57(1982), 107–129.

[53] D. Partyka and K. Sakan, On bi-Lipschitz type inequalities for quasiconformal har-
monic mappings, Ann. Acad. Sci. Fenn. Math. 32(2007), 579–594.
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