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1. Harmonic Mapping Problem and affine invariants

Let us consider differentiable mappings f = u+iv : Ω → C defined in a domain
Ω of the complex plane C = {z = x + iy : x, y ∈ R}. The partial differentiation
in Ω will be expressed by the Wirtinger operators

(1.1)
∂
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∂
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.

Accordingly, we shall abbreviate the complex derivatives of f to

(1.2) fz =
∂f

∂z
=
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(
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)

and fz̄ =
∂f

∂z̄
=
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(
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+ i

∂f
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.

For the derivative matrix

(1.3) Df(z) =

[

ux vx
uy vy

]

we compute the operator norm and the Hilbert-Schmidt norm

(1.4) ‖Df‖ = |fz|+ |fz̄|, |Df |2 = 2(|fz|2 + |fz̄|2) = u2x + v2x + u2y + v2y

and the Jacobian determinant

(1.5) Jf (z) = detDf(z) = uxvy − uyvx = |fz|2 − |fz̄|2.
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We have Jf > 0 if the mapping is sense-preserving, which will usually be the
case from now on.

The Laplace equation for f is

(1.6) ∆u = ∆v = 0, or, equivalently, fzz̄ = 0.

Thus, for any harmonic mapping f the functions fz and fz̄ are holomorphic.
Taking (1.5) into account, we can write

(1.7) fz̄ = νfz,

where ν is a holomorphic function, |ν| < 1 if f is sense-preserving. This is
the Beltrami equation of second kind [7]. The coefficient ν is invariant under a
conformal change of variable z.

The Harmonic Mapping Problem asks when there exists a harmonic homeo-
morphism between two given domains Ω and Ω∗. One can ask the same question
about two manifolds [20], or metric spaces [23, 25], but here we restrict the
consideration to domains in the complex plane C. Note that the inverse of a
harmonic mapping is in general not harmonic. Thus the mapping problem must
take the order of the pair (Ω,Ω∗) into account. Since any conformal mapping
is harmonic, the case of simply connected domains is covered by the Riemann
mapping theorem with just one exception. Specifically, if neither of the domains
Ω,Ω∗ is the entire plane C, then there is a conformal mapping between them,
and a conformal mapping is a harmonic homeomorphism.

The studies of the Harmonic Mapping Problem began with Radó’s theo-

rem (1927) which states that there is no harmonic homeomorphism f : Ω
onto−→ C

for any proper domain Ω  C. There is no harmonic homeomorphism f : C→ Ω
either, which can be proved as follows. Suppose such f exists. Recall the function
ν from (1.7) (the second Beltrami coefficient). Being bounded and holomorphic
in C, it must be constant by Liouville’s theorem. It follows that f is an affine

mapping; that is, f(z) = az + bz̄ + c with |a|2 − |b|2 6= 0. But then, of course,
f(C) = C.

Harmonic Mapping Problem for doubly connected domains originated from
the work of Johannes C. C. Nitsche on minimal surfaces. In 1962 he conjec-
tured [26] a precise condition that allows one circular annulus to be mapped
onto another by a harmonic homeomorphism. The recent solution of this con-
jecture [15] will be the subject of Section 2.

Let A = A(r, R) := {z ∈ C : r < |z| < R} denote a circular annulus in
the complex plane. We allow 0 6 r < R 6 ∞. The quantity ModA := log R

r
is

called the conformal modulus of an annulus. This notion extends to other doubly
connected domains as follows: ModΩ = ModA if there is a conformal mapping
of Ω onto A. Indeed, any doubly connected domain can be conformally mapped
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onto some circular annulus, and circular annuli with different values of the ratio
R/r are not conformally equivalent.

The reason why ModΩ is relevant to the Harmonic Mapping Problem is that
harmonic functions remain harmonic upon conformal change of the independent
variable z ∈ Ω. The harmonicity of a mapping f : Ω → Ω∗ is also preserved under
affine transformations of the target Ω∗. Thus it is natural to investigate necessary
and sufficient conditions for the existence of a harmonic homeomorphism in terms
of the conformal modulus of Ω and of some affine invariant of the target Ω∗. This
leads us to the concept of affine modulus introduced in [17].

Definition 1.8. The affine modulus of a doubly connected domain Ω ⊂ C is
defined by

(1.9) Mod@ Ω = sup{Modφ(Ω) : φ : C
onto−→ C affine}.

Obviously Mod@ Ω > ModΩ. We illustrate basic properties of the affine
modulus with a few examples.

Example 1.10. There exists a doubly connected domain Ω such that ModΩ <
∞ but Mod@ Ω = ∞. For instance, let Ω be the upper half plane with the
horizontal segment [i, 1 + i] removed. Under the affine transformation x+ iy 7→
ǫx + iy the removed segment is mapped into [i, ǫ + i]. As ǫ → 0, the conformal
modulus of the affine image tends to infinity.

Example 1.11. There exists a doubly connected domain Ω for which Mod@ Ω <
∞ but the supremum in (1.9) is not attained. Such a domain can be obtained
by a modification of Example 1.10. Let Ω be the upper half plane with the
square {x+ iy : 0 6 x 6 1, 1 6 y 6 2} removed. Under the affine transformation
x + iy 7→ ǫx + iy the removed square is mapped into a rectangle with width ǫ.
As ǫ → 0, the conformal modulus of the affine image tends to the conformal
modulus of the upper half plane minus the vertical segment [i, 2i].

Example 1.12. A circular domain A = A(r, R) has Mod@A = ModA = log R
r
.

This follows from a classical theorem of Carleman [6] which asserts that A has
the greatest conformal modulus among all doubly connected domains with the
same area ratio. The area ratio of a doubly connected domain Ω is obtained by
dividing the area of Ω by the area of the bounded component of its complement.
Thus, Carleman’s theorem can be stated as

(1.13) Mod(G \K) 6
1

2
log

|G|
|K|

where G is a simply connected domain of finite area |G| and K is a compact
connected subset of G that does not separate G. Since the area ratio |G|/|K| is
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an affine invariant, inequality (1.13) yields

Mod@(G \K) 6
1

2
log

|G|
|K| .

In particular, for a circular annulus A = A(r, R) we have

log
R

r
= ModA 6 Mod@A 6

1

2
log

πR2

πr2
= log

R

r
with equality throughout.

In view of Example 1.12 one may ask if the area ratio of Ω∗ can be used to de-
tect the existence of harmonic homeomorphisms onto Ω∗. The answer is negative:
for any doubly connected domain Ω and any µ ∈ (0,∞) one can find a domain
Ω∗ with Mod@Ω∗ = µ which does not receive any harmonic homeomorphism
from Ω.

However, the pair of invariants ModΩ and Mod@ Ω allows us to give both
a necessary condition (Theorem 1.16 below) and a sufficient condition (Theo-

rem 1.14) for the existence of a harmonic homeomorphism f : Ω
onto−→ Ω∗.

Theorem 1.14. [17] Let Ω and Ω∗ be doubly connected domains in C such that

(1.15) Mod@Ω∗ > ModΩ.

Then there exists a harmonic homeomorphism f : Ω → Ω∗ unless C \ Ω∗ is

bounded. In the latter case there is no such f .

Question 1.1. Does equality in (1.15) (with both sides finite) suffice for the
existence of f?

Theorem 1.16. [17] If f : Ω → Ω∗ is a harmonic bijection between doubly

connected domains, and ModΩ <∞, then

(1.17) Mod@ Ω∗
> ModΩ · Φ(ModΩ)

where Φ: (0,∞) → (0, 1) is an increasing function such that Φ(τ) → 1 as τ → ∞.

One can take

(1.18) Φ(τ) = λ

(

coth
π2

2τ

)

, where λ(t) =
log t− log(1 + log t)

2 + log t
, t > 1.

When ModΩ → ∞, the comparison of inequalities (1.15) and (1.17) shows
that both are asymptotically sharp. However, our function Φ can certainly be
improved. Its best possible form is unknown.

Conjecture 1.1. [17] Suppose that f : Ω → Ω∗ is a harmonic bijection between
doubly connected domains. Then

(1.19) Mod@Ω∗
> log coshModΩ.
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The example of a pair of circular annuli shows that the inequality (1.19) would
be sharp, if true.

Let us write Ω1
∼→֒ Ω2 when Ω1 is contained in Ω2 in such a way that Ω1

separates the boundary components of Ω2. The monotonicity of modulus can be
expressed by saying that Ω1

∼→֒ Ω2 implies ModΩ1 6 ModΩ2 and Mod@ Ω1 6

Mod@ Ω2. Observe that both conditions (1.15) and (1.17) are preserved if Ω is
replaced by a domain with a smaller conformal modulus, or Ω∗ is replaced by
a domain with a greater affine modulus. Theorems 1.14 and 1.16 suggest the
formulation of the following conjectural comparison principles.

Problem 1.1. (Domain Comparison Principle) Let Ω and Ω∗ be doubly
connected domains such that ModΩ <∞ and there exists a harmonic bijection

f : Ω
onto−→ Ω∗. If Ω◦

∼→֒ Ω, then there exists a harmonic bijection f◦ : Ω◦
onto−→ Ω∗.

Problem 1.2. (Target Comparison Principle) Let Ω and Ω∗ be doubly

connected domains such that there exists a harmonic bijection f : Ω
onto−→ Ω∗. If

ModΩ∗
◦ <∞ and Ω∗ ∼→֒ Ω∗

◦, then there exists a harmonic bijection h◦ : Ω
onto−→ Ω∗

◦.

Let us now examine the properties of the affine modulus in more detail. The
equality Mod@ Ω = ModΩ is attained, for example, if Ω is the Teichmüller ring

(1.20) T (s) := C \ ([−1, 0] ∪ [s,+∞)), s > 0.

Indeed, for any affine automorphism φ : C→ C there is a C-affine automorphism
ψ(z) = αz + β that agrees with φ on R. Since φ(T (s)) = ψ(T (s)) and ψ is
conformal, it follows that Modφ(T (s)) = Mod T (s).

It is desirable to have an upper estimate for Mod@ Ω in terms of some geo-
metric properties of Ω. Recall that the width of a compact set E ⊂ C, denoted
w(E), is the smallest distance between two parallel lines that enclose the set. For
connected sets this is also the length of the shortest 1-dimensional projection.

Proposition 1.21. [17] Let Ω be a doubly connected domain such that ModΩ <
∞. Denote by d the distance between its boundary components, and by w the

width of the inner boundary component. If w > 0, then

(1.22) Mod@ Ω 6 Mod T (d/w).

Proof. Let φ : C→ C be an affine automorphism. Denote its Lipschitz constant
by L := |φz|+ |φz̄|. For the annulus φ(Ω) the distance between boundary compo-
nents is at most Ld and the diameter of the inner component is at least Lw. Now
the inequality (1.22) follows from the extremal property of the Teichmüller ring:
it has the greatest conformal modulus among all domains with given diameter
of the bounded component and given distance between components [1].
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Another canonical example of a doubly connected domain is the Grötzsch ring

(1.23) G(s) = {z ∈ C : |z| > 1} \ [s,+∞), s > 1.

We claim that

(1.24) Mod@ G(s) = Mod T
(

s−1
2

)

.

Proposition 1.21 implies one half of (1.24). To obtain the reverse inequality,
consider the images of G(s) under mappings of the form z + kz̄, k ր 1. They
converge to the domain C\ ([−2, 2]∪ [2s,∞)) which is a rescaled copy of T

(

s−1
2

)

.

The identity (1.24) somewhat resembles the well-known relation between con-
formal moduli of the Grötzsch and Teichmüller rings [1],

(1.25) ModG(s) = 1

2
Mod T (s2 − 1).

Remark 1.26. Since equality holds in (1.24), Proposition 1.21 is sharp. The
pair of domains Ω = T

(

s−1
2

)

and Ω∗ = G(s) can serve as a test case for whether
equality in (1.15) implies the existence of a harmonic bijection.

2. The Nitsche conjecture and beyond

As in the preceding section, we let A = A(r, R) := {z ∈ C : r < |z| < R}
denote a circular annulus in the complex plane. Schottky’s theorem (1877) asserts
that A(r, R) can be mapped conformally onto another annulus A∗ = A(r∗, R∗) if
and only if

(2.1)
R

r
=
R∗

r∗
,

which is the reason why the conformal modulus ModΩ of a doubly connected
domain Ω is well-defined.

Since harmonic mappings are more flexible than conformal ones, one may ask:
When does there exist a harmonic homeomorphism of A(r, R) onto A(r∗, R∗)?
Johannes C. C. Nitsche conjectured [26] that such a mapping exists if and only
if

(2.2)
R∗

r∗
>

1

2

(

R

r
+
r

R

)

.

To understand where (2.2) comes from, consider radial mappings, that is,

f : A
onto−→ A∗ of the form

(2.3) f(ρeiθ) = g(ρ)eiθ

where g is a real-valued strictly monotone function. From Laplace’s equation
∆f = 0 one obtains that g must be of the form g(ρ) = Aρ + Bρ−1. The
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monotonicity of g imposed a restriction on the coefficients A and B, and thus
yields (2.2).

But of course, harmonic homeomorphisms between annuli do not have to be
radial. Let us give an explicit non-radial example. It is convenient to scale both
annuli so that the inner radius of each is 1; that is, r = r∗ = 1. Define

(2.4) f(z) =
z + a

1 + āz
+ c log|z|, z ∈ A,

where a, c ∈ C and |a| < 1. Clearly, f maps the unit circle onto itself. The outer
boundary of A is also mapped onto a circle, and we can choose c, depending on
a and R, so that this circle is centered at 0. We also want the mapping f to have
nonnegative Jacobian determinant

(2.5) Jf :=

∣

∣

∣

∣

∂f

∂z

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∂f

∂z̄

∣

∣

∣

∣

2

everywhere in A. This leads to an upper bound on |a| which depends on R.
Within this upper bound we have a one-parameter family of harmonic homeo-
morphisms.

The Nitsche conjecture was proved in [14, 15]. The following is an informal
outline of the proof in which we assume that all mappings under consideration
are smooth up to the boundary of their domain.

Suppose f : A(1, R) → A(1, R∗) is a sense-preserving harmonic homeomor-
phism that preserves the order of boundary components. Denote Tρ = {|z| = ρ}
and T = T1. Introduce the quantity

U(ρ) := −
∫

Tρ

|f |2, 1 6 ρ 6 R,

where −
∫

stands for the average value on the circle Tρ. The Nitsche conjecture will
follow from U(R) > (R+R−1)2/4. We would like to interpret U as a subsolution
of a second-order differential equation. The initial values are U(1) = 1 and
U ′(1) > 0, the latter being a consequence of U(ρ) > 1 for ρ > 1. Assume for a
moment that U satisfies the second-order differential inequality

(2.6) L[U ] := d

dρ

[

ρ3
d

dρ

(

U

ρ2 + 1

)]

> 0.
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Multiply (2.6) by (R2 − ρ2)/ρ2 and integrate by parts twice:

0 6

∫ R

1

R2 − ρ2

ρ2
L[U ] dρ

= −R
2 − 1

2
(U ′(1)− 1) +

∫ R

1

2R2 d

dρ

(

U

ρ2 + 1

)

dρ

6
R2 − 1

2
+

2R2

R2 + 1
U(R)−R2

=
2R2

R2 + 1

{

U(R)− (R2 + 1)2

4R2

}

(2.7)

as desired.

The problem with the above “solution” is that the inequality (2.6) fails for
some harmonic homeomorphisms; counterexamples can be found in the form (2.4).
To understand this further, consider the orthogonal expansion

(2.8) f =
∑

n∈Z

fn

where

fn(z) = anz
n +

bn
z̄n
, n 6= 0; f0(z) = a0 log|z|+ b0.

Then

U(ρ) =
∑

n∈Z

Un(ρ) where Un(ρ) = −
∫

Tρ

|fn|2.

Since (2.6) is linear it is enough to check it for each Un separately. They all
satisfy it, except for U0.

Although the pointwise inequality L[U ] > 0 fails, the computation (2.7) re-
quires only the integral inequality

(2.9)

∫ R

1

R2 − ρ2

ρ2
L[U ] dρ > 0.
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The following identity [15] comes into play.

2R2

R2 + 1
−
∫

TR

|f |2 − R2 + 1

2
−
∫

T

|f |2

− (R2 − 1)−
∫

T

|f ||f |ρ − (R2 − 1) logR −
∫

T

Im f̄ (fθ − if)

=
1

π

∫∫

A

[

(R2 − 1) log
R

ρ
+
R2 − ρ2

ρ2

]

·
∣

∣

∣

∣

ρfρ − ifθ
1 + ρ2

− 2ρ2 f

(1 + ρ2)2

∣

∣

∣

∣

2

+
1

π

∫∫

A

[

(R2 − ρ2)− (R2 − 1) log
R

ρ

]

·
∣

∣

∣

∣

ρfρ + ifθ
1 + ρ2

+
2 f

(1 + ρ2)2

∣

∣

∣

∣

2

.

(2.10)

It should be emphasized that (2.10) holds for any complex-valued harmonic
function that is continuously differentiable up to the boundary of A. Now we
must use the assumption that f is a homeomorphism onto A(1, R∗). In this case
the left hand side of (2.10) is less than or equal to

(2.11)
2R2

R2 + 1
−
∫

TR

|f |2 − R2 + 1

2
.

Thus, in order to show that (2.11) is nonnegative it suffices to check that the right
hand side of (2.10) is nonnegative. This comes down to the signs of coefficients

(R2 − 1) log
R

ρ
+
R2 − ρ2

ρ2
and (R2 − ρ2)− (R2 − 1) log

R

ρ
.

The first of them is indeed nonnegative. So is the second, when R 6 e. However,
it takes on negative values when R > e.

The stubborn case R > e forces us to abandon the differential operator L[U ].
Instead of the neat identity (2.10) we employ a less satisfying inequality

−
∫

Tρ

|f |2 −
(

ρ+ ρ−1

2

)2

−
∫

T

Im(f̄ fθ)− 2−
∫

T

|f ||f |ρ

− ρ2 − 4− ρ−2

2

{

−
∫

T

detDf +

[

−
∫

T

detDg − 1

2π

∫∫

D

|Dg|2
]}

> 0

(2.12)

in which g is the harmonic extension of f|T to the unit disk D. Inequality (2.12)
holds for any complex-valued harmonic function g provided that ρ > e.

Now recall that f is also a sense-preserving homeomorphism. Its winding
number on T amounts to

−
∫

T

Im(f̄ fθ) = 1.
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Also, the Jacobian detDf is nonnegative, as is the integral

−
∫

T

|f ||f |ρ.

It remains to verify that the expression in square brackets in (2.12) is nonnegative
when g is a sense-preserving harmonic homeomorphism of D onto itself. This is
a nontrivial result in itself.

One may wonder about the underlying reason for separate consideration of
annuli with very small modulus and annuli with very large modulus. In the
expansion (2.8) the most difficult term to handle is f0, as it grows slowly and
lacks the convexity properties shared by fn for n 6= 0. When the radius ρ is
small, the logarithmic term f0 is comparable to the powers of ρ, which allows us
to take advantage of its contribution to the integral means U(ρ). But when ρ is
large, |f0| contributes a negligible amount to U(ρ) while its effect on U(1) and
U ′(1) can be substantial. This necessitates the introduction of integral averages
other than U(ρ), such as the average of the Jacobian of f .

The following area contraction result appeared as a follow-up to the investi-
gation of the case R > e. Let Dr = {z : |z| < r}; the area of a set E will be
denoted by |E|.

Theorem 2.13. [22] Let f : D
onto−→ D be a bijective harmonic mapping. Then

(2.14) |f(Dr)| 6 |Dr|, 0 < r < 1.

The area contraction inequality (2.14) is also true for any holomorphic map-
ping f : D→ D, which is easy to prove. However, the following questions remains
open.

Question 2.1. Does (2.14) hold for injective harmonic mappings f : D → D?
Or even for arbitrary harmonic mappings f : D→ D?

Let us now take another look at mappings between annuli, from the viewpoint
of quasiconformality. Recall the distortion theorems of H. Grötzsch (1928) which
presaged the development of the theory of quasiconformal mappings [1].

Theorem 2.15. If f : A(r, R)
onto−→ A(r∗, R∗) is a K-quasiconformal mapping,

then

(2.16)

(

R

r

)1/K

6
R∗

r∗
6

(

R

r

)K

.

Equalities are attained, uniquely modulo conformal automorphisms of A, for the

multiples of the mappings f(z) = |z| 1

K
−1z and h(z) = |z|K−1z, respectively.
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We notice at once that the extremal mappings in Theorem 2.15 fail to be
harmonic except forK = 1. This naturally leads one to expect a better inequality
for harmonic quasiconformal mappings. And indeed, we have the following sharp
result.

Theorem 2.17. [16] If f : A(r, R)
onto−→ A(r∗, R∗) is a K-quasiconformal har-

monic mapping, then

(2.18)
R∗

r∗
>
K + 1

2K

R

r
+
K − 1

2K

r

R
.

Equality is attained, uniquely modulo conformal automorphisms of A, for

(2.19) f(z) =
K + 1

2K

z

r
+
K − 1

2K

r

z̄
.

In contrast to (2.16), the inequality (2.18) is one-sided: it only gives the lower
bound for the modulus of the image. There is a natural conjecture for the upper
bound, but it remains open.

Conjecture 2.1. If f : A(r, R)
onto−→ A(r∗, R∗) is a K-quasiconformal harmonic

mapping, then

(2.20)
R∗

r∗
6
K + 1

2

R

r
− K − 1

2

r

R
.

Equality is attained, uniquely modulo conformal automorphisms of A, for f(z) =
K+1
2

z
r
− K−1

2
r
z̄
.

Theorem 2.17 and Conjecture 2.1 impose more constraints on f than the
original Nitsche conjecture did. In the opposite direction, one can try to remove
the assumption that f is a bijection.

Conjecture 2.2. (Generalized Nitsche bound) Let A = A(r, R) and A∗ =
A(r∗, R∗) be a pair of circular annuli. Suppose that f : A → A∗ is a harmonic
mapping not homotopic to a constant within the class of continuous mappings
from A to A∗. Then

(2.21)
R∗

r∗
>

1

2

(

√

R

r
+

√

r

R

)

.

If f is in addition injective, then

(2.22)
R∗

r∗
>

1

2

(

R

r
+
r

R

)

.
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The mapping f(z) = z + 1
z̄
and the domain A = A(1/R,R) turn (2.21) into

an equality. The mapping f also shows the sharpness of (2.22) when restricted
to the annulus A(1, R).

The theorems and conjectures stated above have implications for the theory
of minimal surfaces (see [7, 27] for background on minimal surfaces and their
relation to planar harmonic mappings). Let C be the interior of a right circular
cylinder with inner radius 1 and outer radius R > 1. To fix ideas, suppose that
the axis of symmetry of C is vertical. Consider a doubly connected minimal
surface S which is contained in C, projects one-to-one on a horizontal plane, and
has boundary curves lying on each component of ∂C. The Nitsche conjecture
implies that under these conditions the conformal modulus of S is greatest when
S is a one-sided slab of a catenoid. More precisely,

(2.23) ModS 6 log(R +
√
R2 − 1).

If true, Conjecture 2.2 would imply that the same bound (2.23) holds for any
minimal surface S which is a graph contained in C and not contractible within
C. If the requirement that S is a graph is dropped, then the conformal modulus
of S should be greatest when S is a symmetric two-sided slab of a catenoid,
namely

(2.24) ModS 6 2 log(R +
√
R2 − 1).

We do not go into any details here and refer the reader to [15, 16] instead.

3. Hopf differentials and diffeomorphic approximation of

Sobolev homeomorphisms

A quadratic differential on a domain Ω in the complex plane C takes the form
Q = F (z) dz2, where F is a complex function on Ω. Given a complex harmonic
function h : Ω → C, the associated Hopf differential

Qh = hzhz̄ dz
2

is holomorphic, meaning that

(3.1)
∂

∂z̄

(

hzhz̄
)

= 0.

Naturally, the Sobolev spaceW 1,2
loc (Ω,C) should be considered as the domain of

definition of equation (3.1). This places hzhz̄ in L
1
loc(Ω), so the complex Cauchy-

Riemann derivative ∂
∂z̄

applies in the sense of distribution. By Weyl’s lemma

hzhz̄ is a holomorphic function.

Conversely, if a Hopf differential Qh = hzhz̄ dz
2 is holomorphic for some C1-

mapping h, then h is harmonic at the points where the Jacobian determinant
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Jh(z) = detDh = |hz|2 − |hz̄|2 6= 0, see [8, 10.5]. Here the assumption that
Jh(z) 6= 0 is critical. Let us illustrate it by the following.

Example 3.2. Consider a mapping h ∈ C1,1(C◦) defined on the punctured plane
C◦ = C \ {0} by the rule

(3.3) h(z) =

{

z
|z|

for 0 < |z| 6 1
1
2

(

z + 1
z̄

)

for 1 6 |z| <∞.

Direct computation shows that

hz(z) =

{

1
2
|z|−1 for 0 < |z| 6 1

1
2

for 1 6 |z| <∞
and

hz̄(z) =

{

−1
2
|z|z̄−2 for 0 < |z| 6 1

−1
2
z̄−2 for 1 6 |z| <∞.

Thus

(3.4) Qh = −dz2

4z2
in C◦.

It may be worth mentioning that the mapping h in (3.3) is the unique (up to
rotation of z) minimizer of the Dirichlet energy

E [H ] =

∫

A

|DH|2

over the annulus A = A(r, R) = {z : r < |z| < R}, 0 < r < 1 < R, subject to

all weak limits of homeomorphisms H : A
onto−→ A(1, R∗), where R∗ =

1
2

(

R + 1
R

)

,
see [3].

It is natural to ask whether a Sobolev homeomorphism h ∈ W 1,2
loc (Ω,C) with

holomorphic Hopf differential is harmonic. This question originated in a series
of papers by Eells, Lemaire and Sealey [9, 10, 28].

Theorem 3.5. [18] Every homeomorphism h of Sobolev class W 1,2
loc

(Ω,C) that

satisfies equation (3.1) is harmonic.

The Eells-Lemaire problem under the additional assumption that h is a qua-
siconformal homeomorphism was settled earlier by Hélein [12] in the affirmative.
Theorem 3.5 dispenses with the quasiconformality condition and treats general
planar W 1,2-homeomorphisms. Since the inverse of such a homeomorphism need
not be in any Sobolev class, some difficulties arise. They were overcome with the
aid of an approximation theorem which we will present next.
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The Sobolev space W 1,p(Ω,Rn), 1 6 p <∞, is the completion of C∞-smooth
mappings having finite Sobolev norm

‖f‖W 1,p(Ω) = ‖f‖Lp(Ω) + ‖Df‖Lp(Ω) <∞.

By the definition, any mapping f ∈ W 1,p can be approximated by smooth map-
pings in the W 1,p norm. If f happens to be invertible, one may want the approx-
imating smooth mappings to be invertible as well.

Question 3.1. Suppose that h : Ω
onto−→ Ω∗ is a homeomorphism in W 1,p(Ω,Rn).

Can h be approximated by diffeomorphisms hj : Ω
onto−→ Ω∗ in W 1,p(Ω,Rn)?

A different (but equivalent in dimensions n 6 3) version of Question 3.1 asks
for hj to be piecewise affine invertible mappings. In this form the approximation
problem was put forward by J. M. Ball [4, 5] who attributed it to L.C. Evans.
The paper [19] provides an affirmative solution of the Ball-Evans problem in the
planar case when 1 < p <∞.

Problem 3.1. Does the approximation result in [19] hold when p = 1? Can it
be extended to n = 3?

Our construction of an approximating diffeomorphism heavily relies on the
following p-harmonic replacement argument. Let U ⊂ C be a bounded simply
connected domain. For any h◦ ∈ W 1,p(U,C) ∩ C(U), 1 < p < ∞, there exists a
unique coordinate-wise p-harmonic mapping h : U → C; that is,

{

div|∇u|p−2∇u = 0

div|∇v|p−2∇v = 0
, 1 < p <∞, h = u+ iv

such that h|∂U = h◦|∂U .

The Radó-Kneser-Choquet Theorem (p = 2) and the Alessandrini-Sigalotti
extension [2] of the Radó-Kneser-Choquet Theorem (1 < p <∞) give a great tool
for constructing coordinate-wise p-harmonic homeomorphisms. Given a sense-
preserving homeomorphism h◦ : ∂U → ∂Γ onto a convex Jordan curve Γ, the p-
harmonic replacement produces a C∞-diffeomorphism from U onto the bounded
component of C\Γ such that h has boundary values h◦. In particular, Jh(z) > 0
in U .

We end this section with a strengthened version of the Radó-Kneser-Choquet
Theorem found in [13]. We denote by PUf the harmonic replacement of f in a
domain U , as described above (with p = 2).

Theorem 3.6. Let U and D be bounded simply connected domains in C with

D convex. Suppose that f : ∂U → ∂D is a mapping that can be continuously

extended to a homeomorphism of U onto D. Then PUf is a harmonic homeo-

morphism of U onto D.
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In other words, if there is some homeomorphic extension of f , then there
is a harmonic homeomorphism extension (necessarily unique). The difference
between Theorem 3.6 and the versions of the Radó-Kneser-Choquet theorem
commonly found in the literature (e.g., [7]) is that U is not assumed to be a
Jordan domain. Let us derive Theorem 3.6 from the Jordan case.

Proof. Let F : U
onto−→ D be some homeomorphism that extends f . Denote

g = PUf . It is not difficult to show that g(U) = D; the issue is the injectivity
of g.

Let {Dn} be an exhaustion of D by convex domains. Define Un = F−1(Dn)
and note that Un is a Jordan domain. By the Radó-Kneser-Choquet Theorem the
mapping gn := PUnF is a harmonic homeomorphism of Un onto Dn. As n→ ∞,
gn → PUf uniformly on compact subsets of U . This can be seen by harmonic
measure estimates, or directly from the Wiener solution of the Dirichlet problem
presented in [11].

The convergence of harmonic functions implies the convergence of their deriva-
tives. Therefore Jgn → Jg pointwise, in particular Jg > 0. This means that the
holomorphic functions gz and gz̄ satisfy the inequality |gz̄| 6 |gz|. The latter is
only possible when either |gz̄| < |gz| in U or |gz̄| ≡ |gz| in U . The second case
cannot occur, for it would yield Jg ≡ 0, contradicting g(U) = D. Therefore
Jh > 0, so the mapping g is locally invertible. But it is also a uniform limit of
homeomorphisms gn (locally), which implies that h is injective in U .
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