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Abstract. Suppose Ωj is a hyperbolic region in the complex plane C with hy-
perbolic metric λj(z)|dz| and associated hyperbolic distance function hj(z, w),
j = 1, 2. Let H = H(Ω1,Ω2) be the family of holomorphic maps f : Ω1 → Ω2

and C the subfamily of holomorphic coverings of Ω1 onto Ω2. The general ver-
sion of Pick’s Theorem provides a universal constraint on H; every function
in H is a weak contraction relative to the hyperbolic metric and functions in
C are local isometries. In particular, each f ∈ H \ C is a strict contraction:
h2(f(z), f(w)) < h1(z, w) for all distinct z, w ∈ Ω1 and |fh(z)| < 1 for all
z ∈ Ω1, where f

h(z) = λ2(f(z))f
′(z)/λ1(z) denotes the hyperbolic derivative.

The first part of the paper deals with the issue of quantifying the size of the
strict contraction from above and below in terms of the hyperbolic derivative
at a point. The second part of the paper is concerned with comparisons be-
tween C and H∗ = H\C as subsets of the space H endowed with the metric of
uniform convergence on compact subsets. If Ω1 is not conformally equivalent
to either D or D∗ = D \ {0}, then the complementary sets C and H∗ form a
separation of H because both are closed. This separation property explains
a number of rigidity results for H when Ω1 is not conformally equivalent to
either D or D∗. If Ω1 is conformally equivalent to either D or D∗, then there
is flexibilty: C is the boundary of H∗.
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1. Introduction

In many ways this paper can be regarded as a follow-up to [7]. The paper
[7] deals with holomorphic self-maps of a hyperbolic region while this paper is
concerned with holomorphic maps of one hyperbolic region into another. In
the case that both regions are the same, some theorems of this paper reduce to
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theorems in [7]. Not all results from [7] extend to the context of this paper; at
the same time there are results here without an analog in [7].

A region Ω in the complex plane C is hyperbolic if C \ Ω contains at least
two points. Let λΩ(z)|dz| denote the hyperbolic metric on Ω and hΩ the as-
sociated hyperbolic distance function. For the unit disk D, the hyperbolic
metric is λD(z)|dz| = 2|dz|/(1 − |z|2) and the hyperbolic distance function is
hD(a, b) = 2 tanh−1 p(a, b), where p(a, b) = |a − b|/|1 − āb| is the pseudohyper-
bolic distance function on D. If g : D → Ω is a holomorphic covering, then
λΩ(g(z))|g′(z)| = λD(z). For a simply connected hyperbolic region Ω, g is a con-
formal mapping and hΩ(g(z), g(w)) = hD(z, w) for all z, w ∈ D. If Ω is multiply
connected, then the isometry property hΩ(g(z), g(w)) = hD(z, w) only holds lo-
cally. For a ∈ Ω let ga : D → Ω be the unique holomorphic covering that satisfies
ga(0) = a and g′a(0) > 0. In this situation λΩ(a) = 2/g′a(0). For a ∈ Ω and
r > 0, the hyperbolic disk with center a and hyperbolic radius r is DΩ(a, r) =
{z ∈ Ω : hΩ(a, z) < r}. In particular, DD(0, r) = {z : |z| < tanh(r/2)} and
ga(DD(0, r)) = DΩ(a, r).

Typically we will be concerned with a pair of hyperbolic regions, say Ωj ,
j = 1, 2. In this context we will use a subscript j to indicate a quantity associated
with Ωj . For example, λj(z)|dz| denotes the hyperbolic metric on Ωj and hj(z, w)
the associated hyperbolic distance function. If f : Ω1 → Ω2 is a holomorphic
map, then the hyperbolic derivative of f at z is the complex number fh(z) =
λ2(f(z))f

′(z)/λ1(z) and the real number |fh(z)| is the hyperbolic change of scale
at z. It is convenient to fix notation for several families of holomorphic maps. For
hyperbolic regions Ωj , j = 1, 2, let H = H(Ω1,Ω2) be the set of all holomorphic
maps f : Ω1 → Ω2. The collection of holomorphic coverings of Ω1 onto Ω2

is denoted by C. We suppose that H is equipped with the metric topology of
uniform convergence on compact subsets (see [1, p.220]) derived from using the
hyperbolic distance on both Ω1 and Ω2. Note that if fn ∈ H, and if fn → ζ
uniformly on compact subsets Ω1, where ζ ∈ ∂Ω2, then fn is not a convergent
sequence in H (because the constant map with value ζ is not a map of Ω1 to Ω2).
Set H∗ = H \ C. Pick’s Theorem gives a universal constraint on functions in H.

Pick’s Theorem (general version). Suppose that Ωj is a hyperbolic region in

C, j = 1, 2, and f ∈ H.

(a) For all z ∈ Ω1, |fh(z)| ≤ 1. If equality holds at some point of Ω1, then f ∈ C.
Conversely, if f ∈ C, then equality holds at every point of Ω1.

(b) For all z, w ∈ Ω1, h2(f(z), f(w)) ≤ h1(z, w). If equality holds for a pair of

distinct points z, w ∈ Ω1, then f ∈ C. Conversely, if f ∈ C, then each point of

Ω1 has a neighborhood in which equality holds. If Ω2 is simply connected, then

each f ∈ C is a conformal mapping and equality holds for all pairs of points.
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Parts (a) and (b) of the general form of Pick’s Theorem are equivalent. Inte-
gration of the inequality |fh(ζ)| ≤ 1 along a hyperbolic geodesic joining z and
w produces the inequality in (b). Conversely, the inequality in (b) implies the
inequality in (a) since h2(f(z), f(w))/h1(z, w) → |fh(z)| when w → z. If f /∈ C,
then the strict inequalities in the general version of the Pick’s Theorem can be
made quantitative in terms of the hyperbolic derivative at a point. The first part
of the paper concerns two types of quantitative strengthenings of the general ver-
sion of Pick’s Theorem. Moreover, certain local lower bounds hold. Results of
this type are known in certain contexts, see [3], [4], [5], and [7].

Theorem 1.1. Suppose that Ωj is a hyperbolic region in C, j = 1, 2, and f ∈ H.

(a) Then for all z, w ∈ Ω1

(1.1)
|fh(w)| − tanhh1(w, z)

1− |fh(w)| tanhh1(w, z)
≤ |fh(z)| ≤ |fh(w)|+ tanhh1(w, z)

1 + |fh(w)| tanhh1(w, z)
.

The lower bound is positive for h1(z, w) < tanh−1 |fh(w)|.
(b) For all z, w ∈ Ω1

(1.2) h2(f(z), f(w)) ≤ log
(

cosh h1(z, w) + |fh(w)| sinhh1(z, w)
)

.

The inequalities in Theorem 1.1(a) are weak versions of Pick’s Theorem for
hyperbolic derivatives

(1.3) hD(|fh(z)|, |fh(w)|) ≤ 2h1(z, w);

see [3], [5] and Theorem 5.1 of [7]. In the special case that Ω1 = Ω2 = D, w = 0
and f(0) = 0, the upper bound (but in Euclidean terms) was established by
Goluzin ([9], [10, p. 335]). Yamashita rediscovered Goluzin’s result [19] and
extended it [20]. The upper bound (1.2) is due to Beardon and Carne [4]. The
simple identity

log
(

cosh h1(z, w) + |fh(w)| sinhh1(z, w)
)

= h1(z, w) + log
1

2

(

1 + |fh(w)|+ (1− |fh(w)|)e−2h1(z,w)
)

(1.4)

shows that inequality (1.2) improves the upper bound in part (b) of the gen-
eral version of Pick’s Theorem by roughly the negative additive factor log 1

2
(1 +

|fh(w)|) when z is far from w.

Given a hyperbolic region Ω and a ∈ Ω, let RΩ(a) denote the maximum value
of r > 0 such that DΩ(a, r) is simply connected. If g : D → Ω is a covering
with g(0) = a, then g is injective on DD(0, RΩ(a)), maps this disk injectively
onto DΩ(a, RΩ(a)) and hΩ(a, g(z)) = hD(0, z) for all z ∈ DD(0, RΩ(a)). For this
reason the quantity RΩ(a) is sometimes called the radius of injectivity at a. Ω
is hyperbolically uniformly simply connected if RΩ = inf{RΩ(a) : a ∈ Ω} > 0.
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If Ω is simply connected, then R(Ω) = +∞. This concept is sometimes called
uniformly thick by others [14].

Theorem 1.2. Suppose that Ωj is a hyperbolic region in C, j = 1, 2, and f ∈ H.

(a) Then for each w ∈ Ω1, f is injective on D1(w, r(w)), where

r(w) = min{R2(f(w)), tanh
−1 |fh(w)|},

for all z ∈ D1(w, (1/2)r(w)),

(1.5) − log
(

cosh h1(z, w)− |fh(w)| sinhh1(z, w)
)

≤ h2(f(z), f(w))

and for r < r(w)

(1.6) D2(f(w), ρ(r)) ⊂ f(D1(w, r)),

where ρ(r) = − log(cosh r − |fh(w)| sinh r).
(b) If Ω2 is hyperbolically uniformly simply connected, then these results are valid

with r(w) replaced by r′(w) = min{R2, tanh
−1 |fh(w)|}.

For Ωj, j = 1, 2, simply connected these results are sharp.

The identity

− log
(

cosh h1(z, w)− |fh(w)| sinhh1(z, w)
)

= h1(z, w)− log
1

2

(

1 + |fh(w)|+ (1− |fh(w)|)e2h1(w,z)
)

helps to illustrate how (1.5) controls the amount of contraction that is possible
near w. If Ω2 is hyperbolically uniformly simply connected, then Theorem 1.2
holds with r(w) replaced by r′(w) = min{R2, tanh

−1 |fh(w)|}. If Ω2 is simply
connected, then r′(w) = tanh−1 |fh(w)|.
Example 1.3. In general, the inequality (1.5) does not hold in a neighborhood of
w that depends only on |fh(w)|. To see this, consider the punctured unit disk D∗

which is not hyperbolically uniformly simply connected. For each positive integer
n the function fn(z) = zn is a holomorphic self-covering of D∗, so |fh

n (w)| = 1
for all w ∈ D∗. If inequality (1.5) held in some fixed neighborhood of w for all
fn, then it would give

hD∗(w, z) ≤ hD∗(fn(w), fn(z))

for all z in this neighborhood of w. For w ∈ D∗ this inequality is not valid in
any fixed neighborhood of w since for n sufficiently large there exists z in this
neighborhood of w with z 6= w and fn(z) = fn(w). Observe that R2(fn(w)) → 0
as n→ ∞.

The preceding results deal with improvements to Pick’s Theorem for a par-
ticular function based on its hyperbolic derivative at a point. Next, we consider
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refinements of Pick’s Theorem that require a restriction on Ω1 and sometimes
a normalization on the function. These types of results are called rigidity the-

orems. The Aumann-Carathéodory Rigidity Theorem [2] concerns holomorphic
self-maps of multiply connected hyperbolic regions that have a fixed point. This
was extended to the context of holomorphic maps f : Ω1 → Ω2 of hyperbolic
regions when Ω1 is not simply connected in [17]; the extension produces a rigidity
form of the general version of Pick’s Theorem for multiply connected hyperbolic
regions.

Generalized Aumann-Carathéodory Rigidity Theorem. Suppose that Ωj

is a hyperbolic region with Ω1 multiply connected and aj ∈ Ωj, j = 1, 2. There is

a number α in [0, 1), such that if f ∈ H and f(a1) = a2, then

|fh(a1)|
{

= 1, if f ∈ C;
≤ α, if f ∈ H∗.

The constant α depends only on aj and Ωj , j = 1, 2. The smallest value of
α for which the result holds is denoted by α = α(a1,Ω1, a2,Ω2) and is called
the generalized Aumann–Carathéodory rigidity constant. The exact value of the
Aumann-Carathéodory rigidity constant is known only when Ω1 = Ω2 is an annu-
lus [18] or a punctured disk [7]. The Generalized Aumann-Carathéodory Rigidity
Theorem provides global control on the hyperbolic contraction for noncoverings.

Theorem 1.4. Suppose that Ωj is a hyperbolic region with Ω1 multiply connected,

aj ∈ Ωj, j = 1, 2, and associated rigidity constant α = α(a1,Ω1, a2,Ω2). If

f ∈ H∗ and f(a1) = a2, then for all z ∈ Ω1

|fh(z)| ≤ α+ tanh h1(a1, z)

1 + α tanh h1(a1, z)

and

h2(f(z), f(a1)) ≤ log
(

cosh h1(a1, z) + α sinh h1(a1, z)
)

.

The Generalized Aumann-Carathéodory Rigidity Theorem requires a choice
of base points. Heins [11] established an extension of the Aumann-Carathéodory
Rigidity Theorem that does not involve any specified points.

Heins’ Rigidity Theorem. Suppose Ω is a hyperbolic plane region that is nei-

ther simply connected nor conformally equivalent to D∗. If f is a conformal

automorphism of Ω, then there does not exist a sequence (fn) of holomorphic

self-maps of Ω that converges locally uniformly to f and fn 6= f for all n.

The classical Aumann-Carathéodory Rigidity Theorem is an immediate corol-
lary of Heins’ result. We extend Heins’ Rigidity Theorem by replacing the family
A of conformal mappings with the larger family C of holomorphic coverings.
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Generalized Heins Rigidity Theorem. Suppose that Ωj, j = 1, 2, is a hyper-

bolic region in C and Ω1 is not conformally equivalent to either D or D∗. Then

there does not exist a sequence (fn) in H∗ that converges locally uniformly to a

function f ∈ C.

The Generalized Heins Rigidity Theorem is not valid if Ω1 is conformally
equivalent to either D or D∗. To see this, let Ω1 = Ω2 be either D or D∗. Then
fn(z) =

n
n+1

z is a sequence in H∗ that converges locally uniformly to the iden-

tity function f(z) = z which lies in C. The Generalized Aumann-Carathéodory
Rigidity Theorem for multiply connected hyperbolic regions that are not con-
formally equivalent to D∗ is an immediate consequence of the Generalized Heins
Rigidity Theorem. There is a general version of rigidity in terms of the metric
topology on H.

Theorem 1.5. Suppose that Ωj, j = 1, 2, is a hyperbolic region.

(a) The set C is closed in H.

(b) If Ω1 is simply connected or is conformally equivalent to D∗, then C = ∂H∗.

(c) If Ω is neither simply connected nor conformally equivalent to D
∗, then C and

H∗ form a separation of H.

A result similar to Theorem 1.5 is established in [7]. The difference is that
the related theorem in [7] is valid only when Ω1 = Ω2 and C is replaced by the
smaller family A of conformal automorphisms of Ω1 = Ω2. There is an error
in Theorem 1.5(a) in [7] where it is asserted that A is compact. In fact, it is
only closed. Here is an example in which A is closed and not compact. Let
Ω = {z : |Im z| < 1}. Then fn(z) = z + n, n = 1, 2, . . . , is a sequence in the
group A of conformal automorphisms of Ω. Every subsequence of (fn) converges
locally uniformly to ∞; there is no subsequence which converges to a conformal
automorphism of Ω, so A is not compact.

In the final portion of the paper we measure the hyperbolic distance between
a holomorphic function and a related ‘extremal’ function when Ω1 is simply
connected. In this context there is flexibility rather than rigidity. For example,
we can give bounds on the convergence of a sequence (fn) in H∗ to a covering f ∈
C. For the remainder of this section Ω1 denotes a simply connected hyperbolic
region and for aj ∈ Ωj , gj : D → Ωj is the unique covering with gj(0) = aj and
g′j(0) > 0, j = 1, 2. Note that g1 is a conformal mapping because Ω1 is simply
connected. In this context the goal is to compare a holomorphic map with an
associated covering. In order to state these results, we introduce notation for
canonical coverings. For aj ∈ Ωj , ϕ = ϕa1,a2 = g2g

−1
1 is the unique covering of

Ω1 onto Ω2 that satisfies ϕ(a1) = a2 and ϕ′(a1) > 0, or equivalently, ϕh(a1) = 1.
For a1 ∈ Ω1 and θ ∈ R let ρa1,θ denote the hyperbolic rotation of Ω1 about a1
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through angle θ. Then ρa1,θ = g1ρθg
−1
1 , where ρθ is the Euclidean rotation about

the origin through angle θ, and ρ′a1,θ(c) = eiθ. For a fixed a1 ∈ Ω1, {ρa1,θ : θ ∈ R}
is the group of conformal automorphisms of Ω1 that fix a1. Then ϕθ := ϕρa1,θ is
the unique covering of Ω1 onto Ω2 that sends a1 to a2 and satisfies ϕh

θ (a1) = eiθ.
For a1 ∈ Ω1 and η ∈ R, let Γa1,η denotes the hyperbolic geodesic ray emanating
from a1 that has Euclidean unit tangent eiη at a1. Clearly, ρa1,θ(Γa1,η) = Γa1,η+θ.

Here we state one type of comparison theorem in which a holomorphic map is
compared to the covering that satisfies initial conditions at a1 determined from
f ; two other types of comparisons are established in Section 5. For f ∈ H with
Ω1 simply connected, a1 ∈ Ω1 and f ′(a1) 6= 0, let ϕf : Ω1 → Ω2 be the unique
holomorphic covering that satisfies ϕf(a1) = f(a1) and argϕ′

f (a1) = arg f ′(a1);
if f ′(a1) = 0, choose any covering ϕf that maps a1 to f(a1). If Ωj = D, aj = 0,
f(0) = 0 and f ′(0) = αeiθ, where α ∈ [0, 1], then ϕf(z) = eiθz. When Ω1 is
simply connected, there is no gap as in the Generalized Aumann-Carathéodory
Rigidity Theorem. Rather as |fh(a1)| → 1 the function f approaches a covering
and the rate of convergence to a covering can be made quantitative. The general
version of Pick’s Theorem gives

h2(f(z), ϕf (z)) ≤ h2(f(a), ϕf(z)) + h2(f(z), f(a))

≤ 2h1(a, z).
(1.7)

This simple estimate can be improved.

Theorem 1.6. Suppose that Ωj, j = 1, 2, is a hyperbolic region with Ω1 simply

connected, f ∈ H, a1 ∈ Ω1 and f ′(a1) 6= 0. Let ϕf ∈ C be the unique covering

that satisfies ϕf(a1) = f(a1) and argϕ′
f (a1) = arg f ′(a1); if f

′(a1) = 0, choose
any covering ϕf that maps a1 to f(a1).
(a) For all z ∈ Ω1

(1.8) h2(f(z), ϕf(z)) ≤ h1(a1, z) + log
(

cosh h1(a1, z)− |fh(a1)| sinh h1(a1, z)
)

.

(b) If Ω2 is also simply connected, then for all z ∈ Ω1

(1.9) h1(a1, z)− log
(

cosh h1(a1, z) + |fh(a1)| sinhh1(a1, z)
)

≤ h2(f(z), ϕf(z)).

These bounds are sharp.

In the special case that Ω1 = Ω2 is simply connected and f(a1) = a1 this
result is given in [7]. The identity

log
(

cosh h1(a1, z)− |fh(a1)| sinh h1(a1, z)
)

= −h1(a1, z) + log
1

2

(

1 + |fh(a1)|+ (1− |fh(a1)|)e2h1(a1,z)
)

(1.10)
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shows that the inequality (1.8) can be written as

h2(f(z), ϕf (z)) ≤ log
1

2

(

1 + |fh(a1)|+ (1− |fh(a1)|)e2h1(a1,z)
)

.

When |fh(a1)| is close to 1, the upper bound is small when z is not too far from
a1. Likewise, the identity

log
(

cosh h1(a1, z) + |fh(a1)| sinh h1(a1, z)
)

= −h1(a1, z) + log
1

2

(

1 + |fh(a1)|+ (1− |fh(a1)|)e−2h1(a1,z)
)

gives the lower bound

− log
1

2

(

1 + |fh(a1)|+ (1− |fh(a1)|)e−2h1(a1,z)
)

≤ h2(f(z), ϕf(z)),

when Ω2 is simply connected. This provides a lower bound on the distance
between f and ϕf .

Versions of the preceding results are valid for holomorphic maps of one hyper-
bolic Riemann surface into another hyperbolic Riemann surface. For simplicity
we have stated our results only for the special case in which the two hyperbolic
surfaces are regions in the plane. The reader should note that the hyperbolic
derivative is not invariantly defined in the context of Riemann surfaces while the
hyperbolic change of scale is an invariant quantity.

I would like to thank the referee for carefully reading the manuscript and
pointing out a number of misprints.

2. Extremal functions

For simply connected hyperbolic regions Ω1 and Ω2 Theorems 1.1, 5.1, 1.6 and
5.2 are sharp and the extremal functions are two-sheeted branched coverings. We
explicitly give the extremal function when the two hyperbolic regions are both
the unit disk D and the holomorphic self-map fixes the origin. The sharpness in
the general case follows by conformal invariance. For α ∈ [0, 1) the function Tα
given by

Tα(z) =
z(z + α)

1 + αz

is a two-sheeted branched self-covering of D with Tα(0) = 0, T ′
α(0) = α and

T ′′
α(0) = 2(1−α2). Let Sα(z) = −Tα(−z) and rα = α/

(

1+
√
1− α2

)

. Note that

hD(0,−rα) =
1

2
hD(0, α) = tanh−1 α.
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The injectivity of Tα in {|z| < rα} = DD(0, tanh
−1 α) follows from

T ′
α(z) =

αz2 + 2z + α

(1 + αz)2

and the fact that ReT ′
α(z) > 0 for |z| < rα. Since T

′
α(−rα) = 0, the function Tα

is not injective in any larger disk centered at the origin, so the injectivity radius
in Theorem 1.1(c) is sharp. It is straightforward to verify that Tα(−rα) = −r2α
and Tα(|z| < rα) ⊃ {|w| < r2α}. From

(2.1) hD(0, Tα(r)) = log (cosh hD(0, r) + α sinh hD(0, r)) , 0 < r < 1,

the sharpness of inequality (1.2) follows. The formula

(2.2) hD(0, Sα(r)) = − log (cosh hD(0, r)− α sinh hD(0, r)) ,

which holds if 0 ≤ r ≤ α, establishes the sharpness of (1.5). The identities,

T h
α (r) =

αr2 + 2r + α

r2 + 2αr + 1
=

α + tanhhD(0, r)

1 + α tanh hD(0, r)

and

Sh
α(r) =

αr2 − 2r + α

r2 − 2αr + 1
=

α− tanh hD(0, r)

1− α tanh hD(0, r)
,

verify that inequalities (1.1) are best possible. The sharpness of Theorem 5.1 is
a consequence of

hD(Sα(r), αr) = hD(0, αr) + log (cosh hD(0, r)− α sinh hD(0, r)) .

The exactness of Theorem 1.6 follows from

hD(Sα(r), r) = hD(0, r) + log (cosh hD(0, r)− α sinh hD(0, r))

and

hD(Tα(r), r) = hD(0, r)− hD(Tα(r), 0)

= hD(0, r)− log (cosh hD(0, r) + α sinh hD(0, r)) .

Finally,

hD(Sα(r), Tα(r)) = log
(

cosh2 hD(0, r)− α2 sinh2 hD(0, r)
)

illustrates the sharpness of Theorem 5.2.
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3. Proofs of the strengthened versions of Pick’s Theorem

Proof. (of Theorem 1.1) (a) Theorem 5.1 of [7] contains the upper bound in the
special case that Ω1 = Ω2. The proof given there extends to the general case.

|fh(z)| = tanh

(

1

2
hD(0, f

h(z))

)

≤ tanh

(

1

2
hD(0, |fh(w)|) + 1

2
hD(|fh(z)|, |fh(w)|)

)

≤ tanh

(

1

2
hD(0, |fh(w)|) + h1(z, w)

)

=
|fh(w)|+ tanh h1(z, w)

1 + |fh(w)| tanhh1(z, w)
.

The lower bound follows from the upper bound by interchanging z and w and
then solving the inequality for |fh(z)|.

(b) Inequality (1.2) is stated for the unit disk in [4] and the authors note it
extends to general hyperbolic regions by making use of holomorphic coverings.
We want to point out that (1.2) can be obtained by integrating the upper bound
in (1.1). Let γ(s), 0 ≤ s ≤ L = hΩ(z, w) be a hyperbolic geodesic from w to
z that is parametrized by hyperbolic arc length. In particular, hΩ(w, γ(s)) = s
and λΩ(γ(s))|γ′(s)| = 1 for all s ∈ [0, L]. Then

hΩ(f(z), f(w)) ≤
∫

f◦γ

λΩ(ω)|dω|

=

∫

γ

λΩ(f(ζ))|f ′(ζ)||dζ |

=

∫ L

0

|fh(γ(s))| ds

≤
∫ L

0

|fh(w)|+ tanh s

1 + |fh(w)| tanh s ds

=

∫ L

0

|fh(w)| cosh s+ sinh s

cosh s+ |fh(w)| sinh s ds

= log
(

coshL+ |fh(w)| sinhL
)

,

which is (1.2).

Proof. (of Theorem 1.2) Fix w ∈ Ω1 and a holomorphic function f : Ω1 → Ω2.
Let gj : D → Ωj be a covering (j = 1, 2) with g1(0) = w and g2(0) = f(w). Take
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F : D → D to be the lift of fg1 : D → Ω2 relative to g2 such that F (0) = 0. Then
g2F = fg1 and there is no harm in assuming that α := F ′(0) = fh(w) > 0.

We first note that analogs of part (a) hold for F at the origin. By [7, Thm.
1.1(c)] the function F is injective on the disk hD(0, Z) < tanh−1 α. Next, we give
a form of (1.5). From [7, Thm. 1.1(c)]

hD(F (Z), F (W )) ≥ − log (cosh hD(Z,W )− α sinh hD(Z,W ))

for all Z,W ∈ D. For W = 0 we get

(3.1) hD(F (Z), 0) ≥ − log (cosh hD(Z, 0)− α sinh hD(Z, 0)) .

Third, DD(0, ρ(r)) ⊂ F
(

DD(0, r)
)

follows from [5, Thm. 1.1(b)].

It remains to show that these results for F can be “pushed down” to re-
sults for f : Ω1 → Ω2. We verify that g1 and g2 are injective on appropri-
ate disks. The covering g2 is injective on DD

(

0, R2(f(w))
)

and maps it onto

D2

(

f(w), R2(f(w))
)

. The function F maps DD

(

0, R2(f(w))
)

into itself. Hence,

if r(w) = min{R2(f(w)), tanh
−1 α}, then g2F = fg1 is injective on DD(0, r(w)).

Therefore, g1 is injective on DD(0, r(w)), maps it onto D1(w, r(w)) and f is
injective on D1(w, r(w)). Also, for r < r(w),

D2(f(w), ρ(r)) = g2
(

DD(0, ρ(r))
)

⊂ g2F
(

DD(0, r)
)

= fg1
(

DD(0, r)
)

= f
(

D1(w, r)
)

,

which establishes (1.6). Finally, (3.1) implies (1.5). The restriction to hyperbolic
disk of radius (1/2)r(w) is necessary to insure that both g1 and g2 are hyperbolic
isometries on disks about the origin with this radius.

(2.2) establishes the sharpness of (1.5) for each α = |fh(0)| ∈ (0, 1), when
Ω1 = Ω2 = D, w = 0 and f(0) = 0.

4. Proofs of rigidity results

Proof. (of Theorem 1.4) If f ∈ H∗ sends a1 to a2, then |fh(a1)| ≤ α by the
Generalized Aumann-Carathéodory Rigidity Theorem. The conclusions of The-
orem 1.4 follow from Theorem 1.1 because the expressions

|fh(a1)|+ tanh h1(a1, z))

1 + |fh(a1)| tanhh1(a1, z)
and cosh h1(a1, z) + |fh(a1)| sinh h1(a1, z)

are increasing functions of |fh(a1)|.
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We recall a few basic facts about the hyperbolic length of a free homotopy
class of closed paths in a hyperbolic region. For details the reader is referred to
the work of [12], [16], [13] and [17]. For a path γ in a hyperbolic region Ω, let

LΩ(γ) =

∫

γ

λΩ(z)|dz|

denote the hyperbolic length of γ, with the understanding that the length is
taken to be infinity if γ is not rectifiable. A loop is a closed path. For a loop γ
in Ω, let {γ} denote the family of all loops δ in Ω that are freely homotopic to γ
in Ω. The notation δ ≈ γ means δ is freely homotopic to γ in Ω. The modulus
of the free homotopy class {γ} is

MΩ({γ}) = inf {LΩ(δ) : δ ≈ γ} .
If γ is null homotopic, then MΩ({γ}) = 0. It is possible that MΩ({γ}) = 0
without γ being null homotopic. For instance, the hyperbolic metric for the
punctured unit disk D∗ is

λD∗(z)|dz| = |dz|
|z| log(1/|z|) .

If γ is the circle |z| = r ∈ (0, 1), then LD∗(γ) = 2π/ log(1/r) → 0 as r → 0.
Therefore, every free homotopy class in D∗ has modulus zero. A closed path
γ in Ω is retractible to an isolated boundary point c if c ∈ C∞ is an isolated
boundary point of Ω, D∗ is a disc punctured at c such that D∗ ⊆ Ω and γ is
freely homotopic to a closed path in D∗. γ is retractible to an isolated boundary
point if and only if MΩ(γ) = 0. Let {γ} denote the free homotopy class of γ
in Ω. If γ is a closed path in Ω that is not retractible to an isolated boundary
point, then {γ} contains an essentially unique path γ0 such that

∫

γ0

λΩ(z) |dz| =MΩ(γ).

The extremal path γ0 is unique up to initial point and parametrization.

The following result is part of the folklore, but the author has been unable to
locate a reference, so a short proof is included.

Theorem 4.1. Suppose Ω is a hyperbolic region. There exists a closed path γ in

Ω with MΩ(γ) > 0 if and only if Ω is neither simply connected nor conformally

equivalent to D
∗.

Proof. If Ω is simply connected nor conformally equivalent to D∗ it is elementary
that MΩ(γ) = 0 for every closed path γ in Ω. Let k : D → Ω be a covering
projection and Γ the associated group of cover transformations. We may assume
Ω is not simply connected and prove that if MΩ(γ) = 0 for every closed path γ
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in Ω, then Ω is conformally equivalent to D∗. A closed path γ in Ω corresponds
to a parabolic element of Γ if and only ifMΩ(γ) = 0. We prove that if Γ consists
of parabolic elements, then Ω is conformally equivalent to D∗. If Γ contains only
parabolic elements, then by [15, p. 92] Ω must be conformally equivalent to D∗

since it cannot be conformally equivalent to a torus or the punctured plane.

Proof. (of Generalized Heins Rigidity Theorem) Suppose fn ∈ H, f ∈ C and
fn → f locally uniformly. We show there exists N such that fn ∈ C for all
n ≥ N . Because Ω1 is not conformally equivalent to either D or D∗, there is a
free homotopy class {γ}1 in Ω1 with positive modulus. Let γ0 denote the unique
loop in {γ}1 with minimal hyperbolic length. This means that if γ ≈ γ0, then
0 < L1(γ0) ≤ L1(γ) and equality holds if and only if γ is a reparametrization
of γ0. Because f ∈ C is a local isometry, L2(f ◦ γ) = L1(γ) for any path γ.
Since f is a covering, {f ◦ γ0}2 = f ◦ {γ0}1. Therefore, f ◦ γ0 is the unique
loop in {f ◦ γ0}2 with minimal hyperbolic length. Pick’s Theorem implies that
L2(fn ◦ γ0) ≤ L1(γ0) with equality if and only if fn ∈ C. Because fn → f
locally uniformly, there exists N such that fn ◦ γ0 ≈ f ◦ γ0 for all n ≥ N . Since
fn ◦ γ ∈ {f ◦ γ0}2 for n ≥ N , we may conclude L1(γ0) = L2(f ◦ γ0) ≤ L2(fn ◦ γ0)
for all n ≥ N . Hence, L2(fn ◦γ0) = L1(γ0) for n ≥ N and the equality statement
in the general version of Pick’s Theorem implies that fn ∈ C for n ≥ N .

Proof. (of Theorem 1.5) (a) We begin by showing that C is closed. Suppose
fn ∈ C, and fn → f , where f ∈ H. We want to show that f ∈ C. Since fn is a
local isometry of the hyperbolic metric, |fh

n (z)| = 1 for all z ∈ Ω1. This implies
that |fh(z)| = 1 for all z ∈ Ω, so the general version of Pick’s Theorem implies
f ∈ C, or C is closed.

(b) Note that if ϕ is a conformal map of Ω1 onto Ω′
1, then the map Φ :

H(Ω1,Ω2) → H(Ω′
1,Ω2) given by Φ(f) = f ◦ ϕ−1 is a homeomorphism of

H(Ω1,Ω2) onto H(Ω′
1,Ω2) which, when restricted to C(Ω1,Ω2), is a homeomor-

phism of C(Ω1,Ω2) onto C(Ω′
1,Ω2). Therefore, we need only consider the cases in

which Ω1 is D or D∗. For Ω1 = D, C is the set of holomorphic coverings of D onto
Ω2. If f ∈ C, and fn(z) = f( n

n+1
z), then fn → f so that C ⊂ H∗. Note that if A

is a closed subset of a metric space X , H∗ = X \ A and A ⊂ H∗, then H∗ = X
and so ∂H∗ = H∗\Int(H∗) = X \H∗ = A. Hence, C(D,Ω2) = ∂H∗(D,Ω2). Next,
suppose that Ω = D∗. If f ∈ C(D∗,Ω2), then f(

n
n+1

z) → f(z) in H(D∗,Ω2), so

that C(D∗,Ω2) ⊂ H∗(D∗,Ω2). As in the case when Ω1 = D, we deduce that
C(D∗,Ω2) = ∂H∗(D∗,Ω2).

(c) We start by demonstrating that C is open if Ω1 is not conformally equiv-
alent to either D or D∗. As the topology on H is a metric topology, a function
f ∈ H lies in the closure H∗ of H∗ if and only if it is the locally uniform limit



330 D. Minda HQM2010

of functions in H∗. By the Generalized Heins Rigidity Theorem no function in C
lies in the closure H∗ of H∗. Consequently, H∗ is closed, and so C is open, when
Ω is not conformally equivalent to either D or D∗.

If Ω1 is not conformally equivalent to either D or D∗, then the disjoint sets,
C and H∗, are both closed, so the Generalized Heins’ Rigidity Theorem is an
immediate corollary.

We state without proof the analog of Theorem 1.5 when base points are uti-
lized. The proof is analogous to that of Theorem 1.5. For aj ∈ Ωj , Ha1,a2 is the
set of holomorphic maps that send a1 to a2. It is straightforward to show that
Ha1,a2 is closed in H. Let Ca1,a2 be the subset of coverings that map a1 to a2. Set
H∗

a1,a2
= Ha1,a2 \ Ca1,a2 .

Theorem 4.2. Suppose that Ωj is a hyperbolic region and aj ∈ Ωj, j = 1, 2.
(a) Ca1,a2 and Ha1,a2 are compact in H.

(b) If Ω1 is simply connected, then Ca1,a2 = ∂H∗
a1,a2

.

(c) If Ω is not simply connected, then Ca1,a2(Ω) is both open and closed in Ha1,a2.

Let d denote the metric on H. Since the disjoint sets, H∗
a1,a2

and C∗
a1,a2

, are
both compact, d(H∗

a1,a2
, Ca1,a2) > 0. The Generalized Aumann-Carathéodory

Rigidity Theorem is an immediate consequence of this.

5. Flexibility results

Initially we assume that Ω2 also is simply connected. When both Ω1 and
Ω2 are simply connected, conformal maps of Ω1 onto hyperbolic disks in Ω2

play a role. For r > 0 let σa2,r denote the conformal map of Ω2 onto D2(a2, r)
that fixes a2 and satisfies σ′

a2,r
(a2) > 0. Note that σa2,r = g2σrg

−1
2 , where σr

is the Euclidean contraction z 7→ tanh(r/2)z that maps D onto DD(0, r), and
σ′
a2,r

(a2) = tanh(r/2). Observe that the hyperbolic rotation ρa2,θ commutes with
σa2,r. For a2 ∈ Ω2 and D = D2(a2, r), we determine the density λD(a2) in terms
of λ2(a2) and r. Because σa2,rg2(z) is a conformal map of D onto DΩ(a2, r) that
maps the origin to a2 with positive derivative at the origin,

λD(a2) =
2

g′2(0) tanh(r/2)
=

λ2(a2)

tanh(r/2)
.

Therefore, if ψ : Ω1 → D is a conformal mapping with ψ(a1) = a2, then

1 =
λD(a2)|ψ′(a1)|

λ1(a1)
=

λ2(a2)|ψ′(a1)|
λ1(a1) tanh(r/2)

and so
|ψh(a1)| = tanh(r/2).
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In fact, ψθ = σa2,rϕθ is the unique conformal map of Ω1 onto D2(a2, r) that sends
a1 to a2 and whose derivative at a1 is a positive multiple of eiθ.

Given a holomorphic map f : Ω1 → Ω2 of simply connected hyperbolic regions,
we specify the first canonical self-map associated with f . Fix a1 ∈ Ω1 and assume
f ′(a1) 6= 0. We compare f to a conformal map of Ω onto a hyperbolic disk with
center a2 := f(a1) and radius determined by f ′(a1) = |f ′(a1)|eiθ. Precisely, if
r = 2 tanh−1 |fh(a1)| then ψf := σa2,rϕθ is the unique conformal mapping of Ω1

onto DΩ(a2, r) with f
h(a1) = ψh

f (a1). It is reasonable to compare f(z) and ψf (z).
In the special case that Ωj = D, j = 1, 2, aj = 0 and f ′(0) = α ∈ (0, 1), then
ψf (z) = αz. The general form of the Pick’s Theorem implies that

h2(f(z), ψf (z)) ≤ h2(f(a1), ψf (z)) + h2(f(z), f(a1))

≤ h2(f(a1), ψf (z)) + h1(a1, z)

≤ 2h1(a1, z).

(5.1)

The next result improves this elementary estimate.

Theorem 5.1. Suppose that Ωj is a simply connected hyperbolic region in C and

aj ∈ Ω, j = 1, 2, f ∈ H with f(a1) = a2 and f ′(a1) 6= 0. Let ψf denote the

conformal map of Ω1 onto the hyperbolic disk D2(a2, 2 tanh
−1 |fh(a1)|) that maps

a1 to a2 and satisfies ψh
f (a1) = fh(a1). Then, for all z ∈ Ω1,

h2(f(z), ψf (z))

≤ h2(f(a1), ψf (z)) + log
(

cosh h1(a1, z)− |fh(a1)| sinh h1(a1, z)
)

.
(5.2)

The bound is sharp.

Note that the term cosh h1(a1, z) − |fh(a1)| sinh h1(a1, z) < 1 for h1(a1, z) <
2 tanh−1 |fh(a1)| and is larger than 1 when h1(a1, z) > 2 tanh−1 |fh(a1)|. The
identity (1.10) and h2(f(a1), ψf (z)) ≤ h1(a1, z) together show that (5.2) implies

h2(f(z), ψf (z)) ≤ − log
1

2

(

1 + |fh(a1)|+ (1− |fh(a1)|)e2h1(a1,z)
)

.

Proof. (of Theorem 5.1) The idea of the proof is to reduce to the case of a
holomorphic self-map of the D that fixes the origin and has non-vanishing de-
rivative at the origin. Let f ∈ H with f ′(a1) 6= 0 and set f(a1) = a2. We may
assume f ′(a1) > 0; if not, replace f by ρa2,−θf . Then F = g−1

2 fg1 is a holo-
morphic self-map of D that fixes the origin and F ′(0) = fh(a1) =: α. Moreover,
g−1
2 ψfg1(z) = αz. Because gj, j = 1, 2, is a hyperbolic isometry, inequality (5.2)
is equivalent to

(5.3) hD(F (z), αz) ≤ hD(0, αz) + log
(

cosh hD(0, z)− α sinh hD(0, z)
)

.
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Note that F ∈ Bα, the family of holomorphic self-maps G of D that are normal-
ized by G(0) = 0 and G′(0) = α. If G ∈ Bα, then for each θ ∈ R the ‘rotation’
Gθ(z) = e−iθG(eiθz) belongs to Bα. Let Hα(z) = (z+α)/(1+αz). Observe that
Tα(z) = zHα(z). For r ∈ (0, 1) and α ∈ (0, 1], the value region {G(r) : G ∈ Bα}
is the closed disk r∆ in D that is symmetric about the real axis and meets the
real axis in the interval [Sα(r), Tα(r)], where ∆ = Hα(|z| ≤ r); see [7].

The inequality (5.3) is trivial if z = 0, so we may assume 0 < |z| < 1.
Because of rotational invariance of both the hyperbolic distance and the family
Bα, we may even assume 0 < z = r < 1. It is straightforward to verify that
s := Sα(r) < αr < t := Tα(r) and hD(t, αr) < hD(s, αr), or equivalently,

p(t, αr) =
(1− α2)r2

1 + αr − α2r2 − αr3
< p(s, αr) =

(1− α2)r2

1− αr − α2r2 + αr3
.

Consequently, if c is the hyperbolic center of the hyperbolic disk r∆, then Sα(r) <
c < αr < Tα(r). Therefore, for any w ∈ r∆, hD(w, αr) ≤ hD(Sα(r), αr) with
equality if and only if w = Sα(r). Direct calculation gives

hD(Sα(r), αr) = log
(1 + αr)(1− 2αr + r2)

(1− αr)(1− r2)

= log
1 + αr

1− αr
+ log

1− 2αr + r2

1− r2
.

From
1 + |z|2
1− |z|2 = cosh hD(0, z)) and

2|z|
1− |z|2 = sinh hD(0, z),

and hD(0, αr) = log(1 + αr)/(1− αr), inequality (5.3) holds.

In a similar manner one can show that the sharp Euclidean analog of (5.3) is

|F (z)− αz| ≤ α|z| − Sα(|z|) =
(1− α2)|z|2
1− α|z| ,

where F is a holomorphic self-map of D with F (0) = 0 and F ′(0) = α ∈ [0, 1].
From this inequality we obtain

|F (z)− z| ≤ |F (z)− αz|+ |αz − z|

≤ (1− α2)|z|2
1− α|z| + (1− α)|z|

=
(1− α)|z|(1 + |z|)

1− α|z| ,

a sharp bounded noted in [7].
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Proof. (of Theorem 1.6) (a) At first we assume that Ω2 is simply connected; in
this case Theorem 5.1 quickly gives the result. Observe that ψf = σa2,rϕf , where
r = 2 tanh−1 |fh(a1)|. Then
h2(f(z), ϕf(z)) ≤ h2(f(z), ψf (z)) + h2(ψf (z), ϕf(z))

≤ h2(ψf (z), ϕf(z)) + h2(f(a1), ψf(z))

+ log
(

cosh h1(a1, z)− |fh(a1)| sinh h1(a1, z)
)

= h2(f(a1), ϕf(z))) + log
(

cosh h1(a1, z)− |fh(a1)| sinh h1(a1, z)
)

= h1(a1, z) + log
(

cosh h1(a1, z)− |fh(a1)| sinh h1(a1, z)
)

because the points ψf (z) and ϕf(z) lie on the same hyperbolic geodesic ray
emanating from f(a1) and ϕf is a hyperbolic isometry.

Next, we consider the case in which Ω2 is multiply connected, so that ϕf is
a covering of Ω1 onto Ω2. Let F be the lift of f relative to ϕf so that F is a
holomorphic self-map of Ω1 that fixes a1 and ϕfF = f . Note that F ′(a1) > 0 so
that the comparison conformal automorphism of Ω1 for F is the identity. Then
by using the facts that ϕf is distance decreasing, the first part of the proof and
|fh(a1)| = |F h(a1)| we have

h2(f(z), ϕf(z)) ≤ h2(ϕfF (z)), ϕf(z))

≤ h2(F (z), z)

≤ h1(a1, z) + log
(

cosh h1(a1, z)− |F h(a1)| sinh h1(a1, z)
)

= h1(a1, z) + log
(

cosh h1(a1, z)− |fh(a1)| sinh h1(a1, z)
)

(b) If Ω2 is simply connected, then ϕf is a conformal mapping and the lower
bound comes from

h1(a1, z) = h2(f(a1), ϕf(z)) ≤ h2(f(a1), f(z)) + h2(f(z), ϕf (z))

together with the upper bound in (1.2).

The final comparison is with a two-sheeted branched covering of Ω1 onto Ω2

when both regions are simply connected. In fact, these coverings are extremal for
all of our theorems, so a comparison with these coverings is natural. Given aj ∈
Ωj , we construct a canonical two-sheeted branched self-covering that sends a1 to
a2. For α ∈ [0, 1) the function τα = g2Tαg

−1
1 , where Tα(z) = z(z+α)/(1+αz), is

a two-sheeted branched covering of Ω1 onto Ω2 with τα(a1) = a2 and τ
h
α(a1) = α.

These two conditions do not uniquely determine a two-sheeted branched covering
that sends a1 to a2. For instance, the functions Tα,θ(z) = e−iθTα(e

iθz) are all
two-sheeted branched coverings of D onto itself that fix the origin and satisfy
T ′
α,θ(0) = α, so g2Tα,θg

−1
1 is a two-sheeted branched self-covering that satisfies
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the same two initial conditions at a1 as τα. The function Tα,θ satisfies T ′′
α,θ(0) =

2(1−α2)eiθ; so Tα has the special property that its second derivative at the origin
is positive. The second derivative is not conformally invariant so it need not be
true that τ ′′α(a1) > 0. A tedious calculation shows that

4
∂ log |τhα,θ(a1)|

∂z
= λΩ(a1)

T ′′
α(0)

T ′
α(0)

.

The canonical two-sheeted branched covering τα = g2Tαg
−1
1 is uniquely deter-

mined by requiring the third initial condition that ∂ log |τhα(a1)|
∂z

> 0 in addition to

the first two initial conditions, τα(a1) = a2 and τhα(a1) = α. We note the im-
portant property that τα maps the geodesic ray Γa1,0 onto Γa2,0. For any θ ∈ R,
τα,θ = ρa2,θταρa1,−θ is the two-sheeted branched covering that sends a1 to a2, has
hyperbolic derivative α at a1 and maps Γa1,θ onto Γa2,θ.

Theorem 5.2. Suppose that Ωj is a simply connected hyperbolic region in C,

aj ∈ Ωj, j = 1, 2, f ∈ H, f(a1) = a2 and α := fh(a1) ∈ [0, 1). Let τf = τα ∈ C
be the canonical holomorphic two-sheeted branched covering of Ω1 onto Ω2 that

maps a1 to a2 and has hyperbolic derivative α at a1. Then, for all z ∈ Γa1,θ,

(5.4) h2(f(z), τf,θ(z)) ≤ log
(

cosh2 h1(a1, z)− fh(a1)
2 sinh2 h1(a1, z)

)

,

where τf,θ = ρf(a),θτfρa,−θ. The bound is sharp.

If fh(a1) = |fh(a1)|eiη, where |fh(a1)| ∈ [0, 1), replace f by ρf(a),−ηf in Theo-
rem 5.2. In the special case that Ω = D, a = 0, f(0) = 0 and f ′(0) = α ∈ [0, 1),
inequality (5.4) can be written as

hD(f(re
iθ), eiθTα(r)) ≤ log

(

cosh2 hD(0, re
iθ)− α2 sinh2 hD(0, re

iθ)
)

.

When α is close to 1, the right-hand side is small when r is not too big.

Proof. (of Theorem 5.2) Initially we consider z0 ∈ Γa1,0. By using inequality
(5.2) of Theorem 5.1 and the fact that ψf (z0) lies between f(a) and τf(z0) on
Γf(a),0, we have

h2(f(z0), τf(z0)) ≤ h2(f(z0), ψf(z0)) + h2(ψf(z0), τf(z0))

≤ h2(f(a1), ψf(z0)) + log
(

cosh h1(a1, z0)− |fh(a)| sinh h1(a1, z0)
)

+ h2(f(a1), τf(z0))− h2(f(a1), ψf (z0))

= log
(

cosh2 h1(a1, z0)− α2 sinh2 h1(a1, z0)
)

,

where we have also used

h2(f(a1), τf (z0)) = log
(

cosh h1(a1, z0) + |fh(a1)| sinh h1(a1, z0)
)

,
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see (2.1). In order to obtain the general case when z ∈ Γa1,θ, apply the pre-
ceding to ρa2,−θfρa1,θ which has nonnegative derivative at a1 and the point
z0 = ρa1,−θ(z) ∈ Γa1,0 and note that hΩ(a1, z) = hΩ(a2, z0).

For the unit disk the sharp Euclidean analog of Theorem 5.2 is
∣

∣

∣

∣

F (r)− r(α+ r)

1 + αr

∣

∣

∣

∣

≤ Tα(r)− Sα(r) =
2(1− α2)r2

1− α2r2
,

where F is a holomorphic self-map of D with F (0) = 0 and F ′(0) = α ∈ [0, 1).
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