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Abstract. The notion of p-moduli of families of paths is a useful tool in the
study of analysis in metric measure space setting. In this note we briefly
describe this tool, and use it to construct the Newtonian spaces, which is an
analog of Sobolev type spaces in the metric measure space setting. The results
in this note assume only that the measure is Borel and that bounded sets have
finite measure and non-empty open sets have positive measure.

Keywords. p-modulus, metric space, paths, Newtonian spaces, path open
topology.

2010 MSC. 30C55, 30F45, 31C05, 30C65.

1. Introduction

Recent studies of analysis in metric measure space setting has been successful
because of the tools such as moduli of path-families. These tools were developed
originally in the context of complex analysis, where this notion (with p = 2) was
used to prove Caratheodory’s extension theorem of conformal mappings between
planar Jordan domains (see [Ah1] for a nice description of this use), and to
consider quasiconformal mappings (see for example [Ah2], [Oh1], [Nä]). The
The notion of p-modulus of path-families is now used in the study of potential
theory in metric measure spaces and in the study of quasiconformal mappings.
In this note we will give a brief description of p-moduli of curve families and
their associated notion of Sobolev type spaces, called the Newtonian spaces.

The rest of this section is devoted to the basic notations and the definition
of p-moduli of curve families. In Section 2 we will study some properties of the
p-modulus, and in Section 3 we will use this notion to define the Newtonian class
of functions on the metric measure space. This will be followed by a description
of basic properties of the Newtonian class.

ISSN 0971-3611 c© 2010



350 Nageswari Shanmugalingam HQM2010

The notion of 2-modulus (called the conformal modulus in the plane) of a
path-family was extensively used in Complex Analysis. Indeed, some of the other
papers in this proceedings collection, such as the ones by Kovalev–Onninen and
Sugawa give a good survey of its uses in complex analytic theory. The following
definition of p-Modulus of a curve family is a natural extension of this notion to
the non-linear setting.

Throughout this note, X = (X, d, µ) is a metric measure space equipped with
a metric d and a Borel measure µ such that, whenever B is a ball in X , we have
0 < µ(B) < ∞. Here, by a ball B we mean the set B = B(x, r) = {y ∈ X :
d(x, y) < r} for some x ∈ X and r > 0. We will also assume that X is separable,
complete, and connected, though in general some of these assumptions can be
relaxed.

A path or a curve in X is a continuous mapping γ : I → X for some interval
I ⊂ R. The path γ is said to be rectifiable if the length of γ, defined by

ℓ(γ) := sup

{ N∑

i=1

d(γ(ti), γ(ti+1)) : t1 < t2 < · · · < tN with t1, t2, · · · , tN ∈ I}

is finite. We say that γ is a compact rectifiable curve if γ is rectifiable and the
domain I of the map γ is a compact interval of R. If γ is a compact rectifiable
curve in X , then there is an associated ”length” mapping s : I = [a, b] → [0, ℓ(γ)]
given by s(t) = ℓ(γ|[a,t]); this map is monotone increasing map, and hence is
differentiable almost everywhere on the interval I = [a, b]. We set |γ′(t)| := s′(t),
wherever s′(t) exists. Using the map s one can construct a re-parametrization of
γ, called the arc-length parametrization and denoted γ0, such that γ0 : [0, ℓ(γ)] →
X with |γ′

0| = 1 almost everywhere on [0, ℓ(γ)]. A good discussion of this can
be found in [Vä]. While the discussion in [Vä] is set in the Euclidean context,
the discussion there is robust enough to hold also in our metric measure space
setting.

If γ is a compact rectifiable path and g : X → [0,∞] is a Borel-measurable
function, it follows that g ◦γ is a Lebesuge measurable function on I, the domain
of γ. We define

∫

γ

g ds :=

∫ ℓ(γ)

0

g ◦ γ0(s) ds.

We now define the p-modulus of a family of compact rectifiable curves; but the
reader should keep in mind that this definition and the notions described above
can be extended to all locally rectifiable paths as well.

Definition 1.1. Given a collection Γ of paths in X , the set of all admissible

functions of Γ, denoted A(Γ), is the set of all non-negative Borel-measurable
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functions g on X such that for all γ ∈ Γ we have∫

γ

g ds ≥ 1.

For 1 ≤ p < ∞, the p-modulus of Γ is the number

Modp(Γ) = inf
g∈A(Γ)

∫

X

gp dµ.

If A(Γ) is empty (for example, if Γ has a constant path), then Modp(Γ) = ∞.

We point out here that there is an analogous notion of Modp for p = ∞; we
direct the interested reader to the paper by Durand-Cartagena in this proceedings
collection.

A motivation for the notion of p-modulus is as follows. Given a non-negative
Borel measurable function g on X , we can use g to modify the metric on X (just
as in the Riemannian setting) by defining the new metric

dg(x, y) = inf
γ

∫

γ

g ds,

where the infimum is taken over all rectifiable paths γ connecting x to y. anal-
ogous to the Riemannian setting, given such a modification of the metric, we
should modify the p-dimensional measure, or volume, of X to

∫
X
gp dµ. So the

idea behind the p-modulus is to find the smallest p-dimensional volume pertur-
bation of X amongst all the metric modifications that see the new length of each
γ ∈ Γ to be at least 1.

2. Properties of p-modulus

In this section we discuss some properties of the p-Modulus for 1 ≤ p < ∞,
and we show that the p-modulus is an outer measure on the set of all compact
rectifiable curves onX . The notion of 2-modulus in the Euclidean planar domains
and n-modulus in the Rn setting have been extensively studied in [Vä] and [Oh2].
The classical study of 2-moduli actually considered the reciprocal of the quantity,
called the extremal length; see for example [Ah1], [Fu], and [AO].

Given two collections Γ1,Γ2 of compact rectifiable paths in X , we say that
Γ1 < Γ2 if every path in Γ2 has a sub-path in Γ1.

Lemma 2.1. If Γ1 < Γ2, then Modp(Γ1) ≥ Modp(Γ2).

Proof. The lemma follows from seeing that A(Γ1) ⊂ A(Γ2).

Next, as an example we shall give estimates for the p-modulus of a family of
paths in R

n.
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Example 2.2. Let X be the Euclidean space, equipped with the Euclidean
metric and n-dimensional Lebesgue measure. Let E ⊂ Sn−1, where Sn−1 is the
unit sphere centered at the origin in R

n, and let the (n−1)-dimensional measure
of E be denoted by Hn−1(E). Let 0 < r < R, and let Γ0 be the collection of
the rays that connect the origin to E, and Γ be the collection of segments of
the paths from Γ0 that have an end point in Sn−1(r), the sphere centered at the
origin with radius r, and an end point in Sn−1(R).

Note that the function g = (R− r)−1χB(0,R)\B(0,r) belongs to A(Γ), and so

Modp(Γ) ≤ Hn−1(E)
Rn − rn

(R − r)p
.

On the other hand, if g ∈ A(Γ), then for each γ ∈ Γ we know that
∫
γ
g ds ≥ 1. For

each θ ∈ E the path γθ : [r, R] → R
n given in polar coordinates by γθ(ρ) = (ρ, θ)

belongs to Γ, with |γ′
θ| ≡ 1. Now by Hölder’s inequality,

1 ≤

(∫

γθ

g dρ

)p

≤

(∫

γθ

g(ρ, θ)p ρn−1 dρ

) (∫

γθ

ρ−(n−1)/(p−1) dρ

)p−1

=

(∫ R

r

ρ−(n−1)/(p−1) dρ

)p−1 ∫

γθ

g(ρ, θ)p ρn−1 dρ.

Setting Cr,R,p =
(∫ R

r
ρ−(n−1)/(p−1) dρ

)p−1

, we have by Fubini’s theorem,

Hn−1(E) ≤ Cr,R,p

∫

Rn

gpdLn,

where Ln is the n-dimensional Lebesgue measure on R
n. It follows from taking

the infimum over all g ∈ A(Γ) in the above estimate that

Modp(Γ) ≥
Hn−1(E)

Cr,R,p

.

Hence it follows that Modp(Γ) is positive if and only if Hn−1(E) > 0.

The above example also demonstrates a way of computing estimates of p-
moduli of path-families whenever there is a way of decomposing the measure as
a product of two measures that is compatible with a sub-family of the family of
paths in Γ. As a consequence of the above computation and Theorem 2.3 below,
it follows that the p-modulus of the collection of all rectifiable curves connecting
points in Sn−1(r) to Sn−1(R) is positive. For more examples of this nature, we
refer the reader to [Vä], [Oh2], and [HeK].

Theorem 2.3. The following hold true:

1. Modp(∅) = 0.
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2. If Γ1 ⊂ Γ2 are collections of compact rectifiable paths in X, then

Modp(Γ1) ≤ Modp(Γ2).

3. If Γi, i ∈ J ⊂ N, is a countable collection of sets of compact rectifiable

paths in X, then

Modp

(
⋃

i∈J

Γi

)
≤
∑

i∈J

Modp(Γi).

Proof. The first assertion follows from the fact that 0 ∈ A(∅), while the second
assertion follows from the fact that if Γ1 ⊂ Γ2 then A(Γ1) ⊃ A(Γ2).

To prove the third assertion, we may assume without loss of generality that∑
i∈J Modp(Γi) is finite. Fix ε > 0; then for each i ∈ J we can choose gi ∈ A(Γi)

such that ∫

X

gpi dµ ≤ Modp(Γi) + 2−iε.

Observe that we have
∫
γ
gi ds ≥ 1 for each γ ∈ Γi. For each n ∈ N we set

ρn := sup
i∈I : i≤n

gi.

Note that∫

X

ρpn dµ ≤
∑

i∈I : i≤n

∫

X

gpi dµ ≤
∑

i∈I : i≤n

(
Modp(Γi) + 2−iε

)
≤ ε+

∑

i∈J

Modp(Γi).

Since {ρn}n is a monotone increasing sequence in Lp(X), it follows that it has a
limit ρ∞ ∈ Lp(X) with

∫

X

ρp∞ dµ ≤ ε+
∑

i∈J

Modp(Γi).

Since each gi is Borel measurable, so is ρn and hence so is ρ∞. For each γ ∈⋃
i∈J Γi we have that γ ∈ Γi0 for some i0 ∈ J , and so

∫

γ

ρ∞ ds ≥

∫

γ

gi0 ds ≥ 1.

Therefore ρ∞ ∈ A
(⋃

i∈J Γi

)
, and it follows that

mod p

(
⋃

i∈J

Γi

)
≤

∫

X

ρp∞ dµ ≤ ε+
∑

i∈J

Modp(Γi).

Letting ε → 0 now yields the desired result.

The results of the above theorem tells us that Modp is an outer measure on
the set of all compact rectifiable curves on X .
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Definition 2.4. We say that a property applicable to paths in X holds for p-
almost every path in X if the family of all paths for which the property fails has
p-modulus zero.

The next result, in the Euclidean setting, is originally due to Fuglede.

Proposition 2.5. Let {gi}i be a sequence of non-negative Borel measurable func-

tions on X and g be a non-negative Borel measurable function on X such that

gi − g → 0 in Lp(X). Then there is a subsequence {gik}k such that for p-almost

every compact rectifiable path γ in X,

lim
k

∫

γ

gik ds =

∫

γ

g ds.

Proof. Since gi − g → 0 in Lp(X), by passing to a subsequence if necessary we
may assume that ∫

X

|gi − g|p dµ ≤ 2−i.

Observe that if
∫
γ
|gik − g| ds → 0, then limk

∫
γ
gik ds =

∫
γ
g ds. Let

Γ =

{
γ non-constant compact rectifiable path : lim sup

i

∫

γ

|gi − g| ds > 0

}
.

Note also that if γ is a constant curve, then
∫
γ
h ds = 0 whenever h is a function

on X . Thus the claim of the proposition follows if we show that Modp(Γ) = 0.
To this end, for n ∈ N let

Γn =

{
γ non-constant compact rectifiable path : lim sup

i

∫

γ

|gi − g| ds ≥ 1/n

}
.

Because of Theorem 2.3, if for each n we have Modp(Γn) = 0, then it follows that
Modp(Γ) = 0. To prove that Modp(Γn) = 0, for each i ∈ N we set

Γi
n =

{
γ non-constant compact rectifiable path :

∫

γ

|gi − g| ds ≥ 1/n

}
,

and note that

(2.6) Γn =
⋂

k∈N

⋃

N∋i≥k

Γi
n.

By the definition of Γi
n we see that n |gi − g| ∈ A(Γi

n). It follows that

Modp(Γ
i
n) ≤ np

∫

X

|gi − g|p dµ ≤ np 2−i.
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An application of Theorem 2.3 yields

Modp

(
⋃

N∋i≥k

Γi
n

)
≤ np

∑

N∋i≥k

2−i = 2np 2−k

whenever k ∈ N. The above estimate, together with Theorem 2.3 and (2.6),
gives Modp(Γn) ≤ np 2−k for every k ∈ N, and it follows that Modp(Γn) = 0.

The above proposition asks that the limit function, g, also be Borel measur-
able. The next lemma allows us to dispense with this requirement, and is quite
useful in allowing us to use more general functions in computing the p-modulus
of a family of paths.

Proposition 2.7. Let g ∈ Lp(X) be a non-negative function. Then there is a

Borel measurable function g0 on X such that g0 = g µ-almost everywhere in X
and for p-almost every compact rectifiable path γ in X we have g ◦ γ = g0 ◦ γ
almost everywhere in the domain of γ, and hence the path integral

∫
γ
g ds makes

sense for p-almost every compact rectifiable path in X.

Proof. Given that µ is a Borel measure and bounded sets have finite measure,
it follows from basic measure theory that there is a non-negative Borel measur-
able function g0 such that g = g0 µ-almost everywhere in X . Let E = {x ∈
X : g0(x) 6= g(x)}. Then µ(E) = 0. If γ is a compact rectifiable arc-length
parametrized curve such that H1(γ−1(E)) = 0, then g ◦ γ = g0 ◦ γ almost ev-
erywhere in the domain of γ, and so the claim of measurability and integrability
follows for such γ. The proposition now follows from Lemma 2.9 below.

Lemma 2.8. If g ∈ Lp(X) is a non-negative function, then for p-almost every

compact rectifiable path γ in X we have
∫
γ
g ds < ∞.

Proof. By Proposition 2.7, we may assume without loss of generality that g is
Borel measurable. Now the lemma follows from the fact that if Γ is the collection
of all non-constant compact rectifiable paths γ in X for which

∫
γ
g ds = ∞, then

for every ε > 0 we have εg ∈ A(Γ) and hence Modp(Γ) = 0.

Recall that given a rectifiable path γ we denote by γ0 its arc-length parametriza-
tion.

Lemma 2.9. Let E ⊂ X such that µ(E) = 0, and let

Γ+
E = {γ compact rectifiable path : H1(γ−1

0 (E)) > 0}.

Then Modp(Γ
+
E) = 0.
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Proof. Since µ is Borel, we can find a Borel set F ⊂ X such that E ⊂ F and
µ(F ) = 0. Now by the definition of Γ+

E we see that ∞χF ∈ A(Γ+
E). The claim

now follows from the fact that
∫
X
(∞χF )

p dµ = 0.

3. Newtonian spaces of functions on X

Sobolev spaces are useful in the study of potential theory and partial differ-
ential equations, see for example [Maz] and [EG].

There are many notions of Sobolev type spaces of functions in the metric
setting; for an overview we refer the reader to [HaK], [He], [Sh3] and [Sh4]. The
notion of Sobolev type space we consider here is the one based on the notion
of upper gradients, a notion that was first formulated by Heinonen and Koskela
in [HeK]. Much of the results given here can also be found in [Sh1] and [Sh2].

Definition 3.1. Let f be a function onX , and g a non-negative Borel measurable
function on X . We say that g is an upper gradient of f if whenever γ is a non-
constant compact rectifiable path in X , we have

|f(y)− f(x)| ≤

∫

γ

g ds

when both f(x) and f(y) are finite-valued, and
∫
γ
g ds = ∞ if at least one of

f(x), f(y) is not finite-valued. Here x and y denote the end points of γ.

We say that g is a p-weak upper gradient of f if the above condition holds for
p-almost every non-constant compact recitifiable path in X .

From the absolute continuity of integrals on intervals in R, the following lemma
immediately follows.

Lemma 3.2. Let f be a function on X and γ be a non-constant, compact,

rectifiable path on X. Suppose that g is an upper gradient of f such that
∫
γ
g ds <

∞. Then f ◦ γ is absolutely continuous.

The next lemma is due to Koskela and McManus [KMc].

Lemma 3.3. If g is a p-weak upper gradient of f , then there is a sequence of

upper gradients {gi}i of upper gradients of f such that |gi − g| → 0 in Lp(X).

Proof. Let Γ be the collection of non-constant compact rectifiable paths in X
for which g fails the upper gradient condition for f . Then Modp(Γ) = 0 because
g is a p-weak upper gradient of f . So for each positive integer k we can find
ρk ∈ A(Γ) such that

∫
X
ρpk dµ ≤ 1/kp. The choice of gk = g + ρk satisfies the

claim of the lemma.
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The next lemma follows immediately from Proposition 2.5 and Proposition 2.7.

Lemma 3.4. Let {gi} be a sequence of upper gradients of f and g be a function

on X such that |gi − g| → 0 in Lp(X). Then g is a p-weak upper gradient of f .

Note that if g is an upper gradient of f and h isa non-negative Borel measur-
able function, then g + h is also an upper gradient of f ; that is, upper gradients
are not unique. The next lemma gives a useful tool to computing minimal, and
hence unique, p-weak upper gradient of f in reasonable circumstances.

Lemma 3.5. Let Df be the set of all p-weak upper gradients of f . Then

Df ∩ Lp(X) is a closed convex subset of Lp(X), and hence if 1 < p < ∞ and

Df ∩ Lp(X) is non-empty, then there is a unique gf ∈ Lp(X) ∩ Df such that

‖gf‖Lp(X) ≤ ‖g‖Lp(X) for all g ∈ Df , and furthermore, whenever g ∈ Lp(X)∩Df ,
we have gf ≤ g µ-almost everywhere in X.

Proof. We leave it to the reader to verify that Df is a convex set; it follows then
that Df ∩Lp(X) is also a convex set. By Lemma 3.4, it follows that Df ∩Lp(X)
is also a closed subset of Lp(X). The remaining parts of the lemma are verified
by the fact that when 1 < p < ∞ the space Lp(X) is a uniformly convex Banach
space. Indeed, the µ-almost everywhere minimizing property of gf is verified
by the fact that if g ∈ Df ∩ Lp(X) and E = {x ∈ X : g(x) < gf(x)}, then
gχE + gfχX\E ∈ Df ∩ Lp(X). This last fact can be directly deduced from the
definition of weak upper gradients; we leave it up to the reader to do so (see
also [Sh2]).

The function gf can be thought of as the metric space analog of the modulus
of the gradient of an Euclidean Sobolev function.

Definition 3.6. Given a measurable function f on X , we consider the following
associated number

‖f‖N1,p(X) := ‖f‖Lp(X) + inf
g∈Df

‖g‖Lp(X).

We say that f ∈ Ñ1,p(X) if ‖f‖N1,p(X) is finite.

By Lemms 3.2 and Lemma 2.8, if f ∈ Ñ1,p(X) then f is absolutely continuous
on p-almost every non-constant compact rectifiable path in X . We leave the next
lemma as an exercise for the reader.

Lemma 3.7. If f1, f2 are functions on X, then

Df1 +Df2 ⊂ D(f1 + f2) ∩D(max{f1, f2}).

Hence Ñ1,p(X) is a vector space and a lattice; that is, if f1, f2 ∈ Ñ1,p(X) and

λ ≥ 0, then max{f1, f2},min{f1, f2},min{f1, λ} are in Ñ1,p(X).
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Definition 3.8. For f, h ∈ Ñ1,p(X), we say that f ∼ h if ‖f − h‖N1,p(X) = 0.

It is easy to see that ∼ is an equivalence relation on Ñ1,p(X). The Newtonian

space is the quotient space N1,p(X) = Ñ1,p(X)/ ∼.

It is directly verifiable that N1,p(X) is a normed vector space equipped with
the norm ‖ · ‖N1,p(X).

One should not get caught up too much in the notation of quotient space
formalism in using Newtonian spaces. Instead, one should just keep in mind
that these are merely functions that are well-defined up to an exceptional set
(see Proposition 3.10 below). This is quite analogous to thinking of Lp-functions
as those that are well-defined up to sets of µ-measure zero.

The following definition, in the Euclidean setting, is due originally to [Oh2].
Recall that by Lemma 2.9 we know that if µ(E) = 0 then Modp(Γ

+
E) = 0. The

following stronger condition is not necessarily satisfied by all sets of measure
zero.

Definition 3.9. Let E ⊂ X . We say that E is p-exceptional if µ(E) = 0 and
Modp(ΓE) = 0, where ΓE is the collection of all non-constant compact rectifiable
paths in X that intersect E.

Proposition 3.10. Let f, h ∈ Ñ1,p(X). Then f ∼ h if and only if the set

E = {x ∈ X : f(x) 6= h(x)} is p-exceptional.

Proof. The fact that f ∼ h if E is p-exceptional is quite direct; we leave it to
the reader to verify this.

Now suppose that f ∼ h, and let E be as above. Since

‖f − h‖Lp(X) ≤ ‖f − h‖N1,p(X) = 0,

we see that µ(E) = 0 and that (by Lemma 3.5) 0 is a p-weak upper gradient of
f −h. Now the result follows from the fact that if γ ∈ ΓE , the function 0 cannot
satisfy the upper gradient condition on γ for f − h.

Under certain additional assumptions on the metric measure space the corre-
sponding Newtonian functions exhibit the fine properties of Euclidean Sobolev
functions, as shown in [Sh1]. For the fine properties of Sobolev functions in the
Euclidean setting we refer the interested reader to [EG].

It was shown in [Sh1] that N1,p(X) is always a Banach space. We wrap up
this note by considering the following refinement of the topology on X .

Definition 3.11. We say that a set U ⊂ X is p-path open if for p-almost every
non-constant compact rectifiable path γ : I → X , the set γ−1(U) is relatively
open in I. Let Tp be the collection of p-path open subsets of X .
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It is a direct exercise to see that Tp is a topology on X and that this topology
is a refinement of the metric topology on X . The following is left to the reader
as an exercise.

Exercise 3.1. Show that every function in N1,p(X) is continuous with respect
to the p-path open topology Tp.

The discussion in this note is an introduction to the use of the tool of p-
moduli of path-families, and described basic results that are used in the theory
of analysis in metric measure spaces. The discussion is far from being exhaustive,
but an interested reader can find more information by consulting the references
cited here and the references cited in those. In the general setting of this note,
there are still many fundamental open problems. One of them is the following.

Problem 3.1. Under certain additional hypotheses on the metric measure space
(such as doubling and Poincaré type inequalities), it is known that Lipschitz func-
tions are dense in N1,p(X) and that functions in N1,p(X) are quasicontinuous
(see for example [Sh1] and [BBS]). Are there metric spaces where locally Lips-
chitz continuous functions, or even merely continuous functions, are not dense in
N1,p(X)? If continuous functions form a dense subclass ofN1,p(X) then functions
in N1,p(X) would have quasicontinuous representatives.

Acknowledgment. The author was partly supported by the NSF grant OISE-
1019689.
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