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Abstract. In this paper we introduce and study the spaces (matrix spaces)
c2
0
(X,λ, p), c2(X, λ, p) and l2

∞
(X,λ, p) of locally convex topological vector

space X−valued double sequences which generalize several existing sequence
spaces. Besides investigations of conditions connected with the comparison of
these classes in terms of λ and p we study topological structure of these spaces
when topologized through a paranorm or through a family of paranorms.
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1. Introduction

Throughout this paper let (X,ℑ) be a Hausdorff locally convex topologi-
cal vector space (lcTVS) over the field of complex numbers C and X∗ be its
topological dual. We denote by U the fundamental system of balanced, convex
and absorbing neighbourhoods U of zero vector θ. We write g

U
to denote the

gauge (Minkowski functional) of U ∈ U , i.e., g
U
(x) = inf{α > 0 : x ∈ αU}.

D = {g
U
: U ∈ U} denotes the collection of continuous seminorms generating

the topology ℑ of X . For details about lcTVS we refer [5, 16].

By a generalized matrix, a generalized double sequence or a vector double
sequence we mean a double sequence x = (xmn) with elements from X . Let
p = (pmn) be a double sequence of strictly positive real numbers and λ = (λmn)
be a double sequence of non-zero complex numbers. We introduce the following
classes of vector double sequences and propose to study them in this paper.
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(1.1)

{

c20(X, λ, p) = {x = (xmn) : xmn ∈ X,m, n ≥ 1
and (g

U
(λmnxmn))

pmn → 0 as m+ n → ∞ for each g
U
∈ D};

(1.2)







c2(X, λ, p) = {x = (xmn) : xmn ∈ X,m, n ≥ 1 and there exists
x ∈ X such that (g

U
(λmnxmn − x))pmn → 0 as m+ n → ∞

for each g
U
∈ D};

and

(1.3)

{

l2∞(X, λ, p) = {x = (xmn) : xmn ∈ X,m, n ≥ 1 and
sup
m,n

(g
U
(λmnxmn))

pmn < ∞ for each g
U
∈ D}.

If λmn = 1 for all m,n then c20(X, λ, p) will be denoted by c20(X, p) and when
pmn = 1 for all m,n then c20(X, λ, p) will be denoted by c20(X, λ). Similarly we
define c2(X, p), c2(X, λ), l2∞(X, p) and l2∞(X, λ).

We observe that the above defined classes are the generalizations of various
sequence spaces, for instance,

(i) spaces of single scalar sequences c0(p), c(p) and l∞(p) [6, 7], D∧
0 (p), D

∧
∞(p)

[11], c0(λ), c(λ) and l∞(λ) [12];
(ii) spaces of Banach space X-valued single sequences c0(X, λ, p), c(X, λ, p) and

l∞(X, λ), p) [13], c0(X), c(X) and l∞(X) [8]; spaces of lcTVS X−valued
single sequences c0(X), c(X) and l∞(X) [2], c0(X, p), c(X, p) and l∞(X, p)
[15]; Γ(X) [14];

(iii) spaces of scalar double sequences cR0,2, c
R
2 [9], C00, C, l∞∞ [3] and Mu, Cuc

[1] can easily be obtained as special cases of the above introduced classes
when X, p = (pmn) and λ = (λmn) are suitably chosen.

By space of vector double sequences or vector matrix space E(X) we mean
a vector space of double sequences in X with respect to coordinatewise addition
and scalar multiplication. We know that depending upon the mode of tending
m and n to ∞ the double infinite summation

∑∞

m=1

∑∞

n=1 has several different
meanings associated to it, however we shall denote

∑∞

m=1

∑∞

n=1 by
∑∑

and
shall take it in the sense limN→∞

∑∑

2≤m+n≤N .

Throughout the paper we shall denote tmn = |λmn/µmn|
pmn , H = H(p) =

supm,n pmn, M = M(p) = max(1, H) and A[α] = max(1, |α|). For x ∈ X , δmn(x)

denotes the double sequence with x at (m,n)th−position and remaining terms
are θ; and δ(x) denotes the double sequence whose all terms are x.
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Definition 1.4. A paranormed space (E, q) is a topological vector space whose
pseudometric topology is given by the paranorm q (a real subadditive function
with q(θ) = 0, q(x) = q(−x) for all x ∈ E and with continuous scalar multipli-
cation), see [16, p.15].

Now corresponding to K-, AK-, AD-, and C- properties of scalar sequence
spaces [4] and its vector version for sequence spaces [10], we define :

Definition 1.5. A topological sequence space (E(X),ℑ) where E(X) is a vector
double sequence space in X is said to be

(i) a GK-space if the mapping Pmn : E(X) → X,Pmn(x) = xmn is continuous
for each m,n ≥ 1;

(ii) a GAD-space if it is a GK-space and Φ2(X) is dense in E(X) with respect
to ℑ, where Φ2(X) = {x = (xmn) : xmn ∈ X and xmn = θ for all but
finitely many m,n ≥ 1};

(iii) a GAK-space if it is aGK−space and for each x = (xmn) in E(X), SN(x) →
x as N → ∞ where SN(x) =

∑∑

2≤m+n≤N δmn(xmn);
(iv) a GC-space if Rmn : X → E(X), Rmn(x) = δmn(x) is continuous for each

m,n ≥ 1.

2. c20(X, λ, p), c2(X, λ, p) and l2∞(X, λ, p)

Here we investigate conditions on p = (pmn) and λ = (λmn) so that a class
c20(X, λ, p), c2(X, λ, p) or l2∞(X, λ, p) is contained in or equal to a similar class.

Throughout this section, unless stated otherwise, we shall take p = (pmn)
and q = (qmn) in l2∞, space of all bounded scalar double sequences.

Lemma 2.1. c20(X, λ, p) ⊂ c20(X, µ, p) if and only if

(2.2) lim
m+n→∞

inf tmn > 0.

Proof. Sufficiency of the condition can easily be proved. For necessity, suppose
that limm+n→∞ inf tmn = 0. Then there exist sequences (m(k)) and (n(k) of
integers such that for each k ≥ 1

k
∣

∣λm(k)n(k)

∣

∣

pm(k)n(k) <
∣

∣µm(k)n(k)

∣

∣

pm(k)n(k) .

We now choose z ∈ X and g
V
∈ D such that g

V
(z) = 1 and define x = (xmn) by

xmn = λ−1
mnk

−1/pmnz, for m = m(k), n = n(k), k ≥ 1, and
= θ, otherwise.

Thus for each g
U
∈ D

(g
U
(λm(k)n(k)xm(k)n(k)))

pm(k)n(k) =
1

k
(g

U
(z))pm(k)n(k) ≤

1

k
A[(g

U
(z))M(p)]
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implies that x = (xmn) ∈ c20(X, λ, p), but for each k ≥ 1

(g
V
(µm(k)n(k)xm(k)n(k)))

pm(k)n(k) =

∣

∣

∣

∣

µm(k)n(k)

λm(k)n(k)

∣

∣

∣

∣

pm(k)n(k) 1

k
(g

V
(z))pm(k)n(k) > 1

shows that x /∈ c20(X, λ, p). This completes the proof.

Similarly, we can prove:

Lemma 2.3. c20(X, µ, p) ⊂ c20(X, λ, p) if and only if

(2.4) lim
m+n→∞

sup tmn < ∞.

Combining Lemmas 2.1 and 2.3, we easily get:

Theorem 2.5. c20(X, λ, p) = c20(X, µ, p) if and only if

(2.6) 0 < lim
m+n→∞

inf tmn ≤ lim
m+n→∞

sup tmn < ∞.

Lemma 2.7. If p = (pmn) ∈ l2∞ and q = (qmn), not necessarily in l2∞, then
c20(X, λ, p) ⊂ c20(X, λ, q) if and only if

(2.8) lim
m+n→∞

inf
qmn

pmn
> 0.

Proof. (2.8) is sufficient can easily be proved. For necessity of (2.8), suppose
that c20(X, λ, p) ⊂ c20(X, λ, q), but limm+n→∞ inf qmn

pmn
= 0. Then there exist

sequence (m(k)) and (n(k)) of integers such that for each k ≥ 1

kqm(k)n(k) < pm(k)n(k).

We now choose z ∈ X and g
V

∈ D such that g
V
(z) = 1 and define the

sequence x = (xmn) by

xmn = λ−1
mnk

−1/pmnz, for m = m(k)n = n(k), k ≥ 1, and
= θ, otherwise.

Thus we see that x ∈ c20(X, λ, p), but for each k ≥ 1

(g
V
(λm(k)n(k) xm(k)n(k)))

qm(k)n(k) = k−qm(k)n(k)/pm(k)n(k) > k−k > e−1/2,

implies that x /∈ c20(X, λ, q), a contradiction. This completes the proof.

Similarly we can prove:

Lemma 2.9. If q = (qmn) ∈ l2∞, and p = (pmn) not necessarily in l2∞, then
c20(X, λ, q) ⊂ c20(X, λ, p) if and only if

(2.10) lim
m+n→∞

sup
qmn

pmn

< ∞.
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On combining Lemmas 2.7 and 2.9 we easily get :

Theorem 2.11. For p = (pmn), q = (qm,n) ∈ l2∞, c20(X, λ, p) = c20(X, λ, q) if and
only if

(2.12) 0 < lim
m+n→∞

inf
qmn

pmn

≤ lim
m+n→∞

sup
qmn

pmn

< ∞.

Theorem 2.13. (a) c20(X, λ, p) ⊂ c20(X, µ, q) if and only if (2.2) and (2.8) hold.
(b) c20(X, µ, q) ⊂ c20(X, λ, p) if and only if (2.4) and (2.10) hold.

Proof. Proof easily follows by Lemmas 2.1, 2.3, 2.7, and 2.9.

Under the given conditions the containment in Theorem 2.13 (a) or (b) may
be strict. We give below an example for the part (a), similar construction can
be made for part (b).

Example 2.14. Take z ∈ X and g
V

∈ D such that g
V
(z) = 1 and define a

sequence in X such that xmn = (m + n)−(m+n)z for all m, n ≥ 1. Now take
pmn = (m + n)−1, if m + n is odd integer, pmn = (m + n)−2, if m + n is even
integer, qmn = (m+n)−1, λmn = 3(m+n) and µmn = 2(m+n) for all m and n. Thus
for any g

U
∈ D and m,n ≥ 1

(g
U
(µmnxmn))

qmn ≤ 2(m+ n)−1A[(g
U
(z))]

implies that x = (xmn) ∈ c20(X, µ, q) but for even integers m+ n

(g
V
(λmnxmn))

pmn = 31/(m+n)(m+ n)−1/(m+n)

implies that x = (xmn) /∈ c20(X, λ, p), however the conditions (i) and (ii) of
Theorem 2.13 (a) are satisfied.

Lemma 2.15. If for a sequence x = (xmn) there exits l ∈ X such that

(2.16) (g
U
(λmnxmn − l))pmn → 0 as m+ n → ∞, for each g

U
∈ D,

then l is unique.

Proof. If (2.16) holds for l1, l2 ∈ X then from

(g
U
(l1 − l2))

pmn/M ≤ (g
U
(λmnxmn − l1))

pmn/M + (g
U
(λmnxmn − l2))

pmn/M

it follows that (g
U
(l1 − l2))

pmn/M → 0 as m+ n → ∞. Thus, g
U
(l1 − l2) = 0, for

each g
U
∈ D and X is Hausdorff therefore, l1 = l2. This completes the proof.

Lemma 2.17. If p = (pmn) ∈ l2∞ and q = (qmn), not necessarily in l2∞, then
c2(X, λ, p) ⊂ c2(X, λ, q) if and only if (2.8) holds.
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Proof. Proof of sufficient part is straightforward hence omitted. For necessity
suppose that c2(X, λ, p) ⊂ c2(X, λ, q) but limm+n→∞ inf qmn

pmn
= 0. Then there

exist sequences (m(k)) and (n(k)) of integers such that kqm(k)n(k) < pm(k)n(k) for
all k ≥ 1. Now choose z ∈ X and g

V
∈ D such that g

V
(z) = 1 and consider the

sequence x = (xmn) defined by

xmn = λ−1
mnk

−1/pmnz + λ−1
mnl, for m = m(k), n = n(k), k ≥ 1, and

= λ−1
mn l otherwise,

where l ∈ X . Then we easily see that x = (xmn) ∈ c2(X, λ, p). Now,

(g
V
(λm(k)n(k)xm(k)n(k) − l))qm(k)n(k) = (g

V
(k−1/pm(k)n(k)z))qm(k)n(k) > k−k > e1/2

for each k ≥ 1, shows that (g
V
(λmnxmn − l))pmn → 0 as m+ n → ∞. Moreover,

if possible, suppose that for l1 6= l, (g
U
(λmnxmn − l1))

qmn → 0, as m + n → ∞
for each g

U
∈ D. Then for 0 < ǫ < 1 and g

U
∈ D

(g
U
(λm(k)n(k)xm(k)n(k) − l1))

qm(k)n(k) < ǫM(p), for all sufficiently large k.

and so for sufficiently large k

(g
U
(λm(k)n(k)xm(k)n(k) − l1))

pm(k)n(k) < (g
U
(λm(k)n(k)xm(k)n(k) − l1))

kqm(k)n(k)

< ǫkM(p) < ǫM(p).

Moreover, (g
U
(λmnxmn − l))pmn → 0 as m+ n → ∞ and therefore

(g
U
(λm(k)n(k)xm(k)n(k) − l))pm(k)n(k) < ǫM(p)

for all sufficiently large k. Thus,

(g
U
(l − l1))

pm(k)n(k)/M(p) < 2ǫ,

for all sufficiently large k, which leads to g
U
(l− l1) = 0 for each g

U
∈ D or l = l1,

a contradiction. Hence x = (xmn) /∈ c2(X, λ, q), a contradiction. This completes
the proof.

Similarly, we can prove :

Lemma 2.18. If q = (qmn) ∈ l2∞ and p = (pmn), not necessarily in l2∞, then
c2(X, λ, q) ⊂ c2(X, λ, p) if and only if (2.10) holds.

On combining Lemmas 2.3.10 and 2.3.11 we have :

Theorem 2.19. c2(X, λ, p) = c2(X, λ, q) if and only if (2.12) holds.

Proof of the following results (Lemma 2.20 to Theorem 2.26) connected with
l2∞(X, λ, p) can easily be disposed of by proceeding along the case of c20(X, λ, p)
discussed above :

Lemma 2.20. l2∞(X, λ, p) ⊂ l2∞(X, µ, p) if and only if (2.2) holds.
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Lemma 2.21. l2∞(X, µ, p) ⊂ l2∞(X, λ, p) if and only if (2.4) holds.

On combining Lemmas 2.20 and 2.21 we get:

Theorem 2.22. l2∞(X, λ, p) = l2∞(X, µ, p) if and only if (2.6) holds.

Lemma 2.23. If p = (pmn) ∈ l2∞ and q = (qmn) not necessarily in l2∞, then
l2∞(X, λ, p) ⊂ l2∞(X, λ, q) if and only if (2.10) holds.

Lemma 2.24. If q = (qmn) ∈ l2∞ and p = (pmn) is not necessarily in l2∞ then
l2∞(X, λ, q) ⊂ l2∞(X, λ, p) if and only if (2.8) holds.

On combining Lemmas 2.23 and 2.24 we get the following theorem:

Theorem 2.25. If p = (pmn), q = (qmn) ∈ l2∞ then l2∞(X, λ, p) = l2∞(X, λ, q) if
and only if (2.12) holds.

Theorem 2.26. For p = (pmn) ∈ l2∞ and q = (qmn) ∈ l2∞ we have

(a) l2∞(X, λ, p) ⊂ l2∞(X, µ, q) if and only if (2.2) and (2.10) hold, and
(b) l2∞(X, µ, q) ⊂ l2∞(X, λ, p) if and only if (2.4) and (2.8) hold.

Moreover examples (similar to Example 2.14) can be constructed to illustrate
that under the mentioned conditions the containment in Theorem 2.26 may be
strict.

3. Topological Structure

Throughout this section we take p = (pmn) ∈ l2∞. If x = (xmn) and y =
(ymn) ∈ c20(X, λ, p) then x+ y = (xmn + ymn) ∈ c20(X, λ, p) follows from

(g
U
(λmn(xmn + ymn)))

pmn/M ≤ (g
U
(λmnxmn))

pmn/M + (g
U
(λmnymn))

pmn/M ,

gU ∈ D. Moreover for scalar α

(g
U
(αλmnxmn))

pmn/M ≤ A[α](g
U
(λmnxmn))

pmn/M , g
U
∈ D,

implies that αx = (αxmn) ∈ c20(X, λ, p). Thus c20(X, λ, p) is a linear space over
the field of complex numbers with respect to coordinate-wise addition and scalar
multiplication. θ = (ymn), where ymn = θ for all m,n ≥ 1, is the zero vector of
c20(X, λ, p). Similarly c2(X, λ, p) and l2∞(X, λ, p) are also linear spaces over the
field of complex numbers. Further for each U ∈ U , we define

G
U
(x) = sup

m,n
(g

U
(λmnxmn))

pmn/M and d
U
(x, y) = G

U
(x− y).

Theorem 3.1. (i) (c20(X, λ, p), G
U
) is a paranormed space, and
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(ii) (c2(X, λ, p), d
U
) and (l2∞(X, λ, p), d

U
) are topological (pseudometric) groups,

in which the mapping (α, x) → αx is continuous at α = 0 and x = θ.

However, (c2(X, λ, p), G
U
) and (l2∞(X, λ, p), G

U
) are paranormed spaces if

and only if inf
m,n

pmn > 0.

Proof. (i) For G
U
to be a paranorm we prove the continuity of scalar multi-

plication only, other conditions are straight forward.
(a) Let αk → 0 as k → ∞ and G

U
(xk − x) → 0 as k → ∞. Suppose

|αk| ≤ 1 for all k ≥ 1, then we have

(3.2) G
U
(αk x

k) ≤ G
U
(xk − x) +G

U
(αk x).

Let ǫ > 0. Since x ∈ c20(X, λ, p) so there exists N such that

(g
U
(λmnxmn))

pmn/M < ǫ for all m+ n > N.

Also since αk → 0 therefore there exists K such that

(g
U
(αkλmnxmn))

pmn/M = |αk|
pmn/M (g

U
(λmnxmn))

pmn/M < ǫ

for all k ≥ K and 2 ≤ m + n ≤ N . Hence (g
U
(αkλmnxmn))

pmn/M < ǫ
for all m,n ≥ 1 and for all k ≥ K or G

U
(αk x) < ǫ for all k ≥ K, i.e.,

G
U
(αk x) → 0 as k → ∞. Thus from (3.2) we get that G

U
(αk x

k) → 0
as k → ∞.

(b) Let α be a scalar and G
U
(xk) → 0 as k → ∞. Then we have

G
U
(αxk) ≤ A[α]G

U
(xk), which implies that G

U
(αxk) → 0, as k → ∞.

Thus, (a) and (b) together give continuity of scalar multiplication [16, see
p. 17].

(ii) In view of definition of d
U
it is straight forward to verify that l2∞(X, λ, p) is

a pseudometric group. Further from G
U
(αx) ≤ A[α]G

U
(x) the continuity

of (α, x) → α x at α = 0 and x = θ follows easily.
Let infm,n pmn = 0, 0 < |α| < 1, x ∈ X such that g

U
(x) = 1. Then

x = (xmn) defined by xmn = λ−1
mnx, m,n ≥ 1, is in l2∞(X, λ, p) but

G
U
(αx) = sup

m,n
|α|pmn/M(g

U
(x))pmn/M = 1

shows that the mapping α → αx is not continuous, hence G
U
fails to be a

paranorm on l2∞(X, λ, p).
Now suppose that infm,n pmn = l > 0 then for any x ∈ l2∞(X, λ, p)

G
U
(αx) = sup

m,n
|α|pmn/M(g

U
(λmnxmn))

pmn/M

≤ max(|α|, |α|l/M)G
U
(x)
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and hence the mapping α → αx is continuous. Thus if infm,n pmn > 0 and
we proceed along the lines of proof of (i) above we can easily show that G

U

is a paranorm on l2∞(X, λ, p).

Similarly the case of c2(X, λ, p) can be disposed of. This completes the proof
of the theorem.

We now observe that the collection G = {G
U
: U ∈ U} of all paranorms

G
U
on c20(X, λ, p) defines a linear topology σG on c20(X, λ, p) where we say that

the net x → θ in σG if and only if the net x → θ with respect to each G
U
∈ G

[16, p. 38]. We shall denote this topological vector space by (c20(X, λ, p), σG).
Similarly if we take infm,n pmn > 0 then (c2(X, λ, p), σG) and (l2∞(X, λ, p), σG)
are also topological vector spaces.

Moreover X is Hausdorff therefore these spaces are also Hausdorff. For
instance if x = (xmn) ∈ c20(X, λ, p) and x 6= θ then there exists some xmn 6= θ.
Since X is Hausdorff therefore there exists a g

U
∈ D such that g

U
(xmn) 6= 0 and

so G
U
(x) 6= 0, i.e., (c20(X, λ, p), σG) is Hausdorff.

In the following we denote by σd the topology such that a net xi → x in σd
if and only if d

U
(xi, x) → 0 for each U ∈ U .

Theorem 3.3. If X is complete then

(i) (c20(X, λ, p), σG) is complete (topological vector space), and
(ii) (c2(X, λ, p), σd) and (l2∞(X, λ, p), σd) are complete (topological groups).

Proof. (i) For the completeness of (c20(X, λ, p), σG), let {xi} be a Cauchy net
in (c20(X, λ, p), σG) over the directed set I and ǫ > 0. Then for each G

U

there exists i0 ∈ I such that

(3.4) G
U
(xi − xj) < ǫ for all i, j ≥ i0.

This implies that sup
m,n

(g
U
(λmn(x

i
mn − xj

mn))
pmn/M < ǫ. Thus for each

m,n ≥ 1, (xi
mn) is a Cauchy net in X . Since X is complete so for each

m,n ≥ 1 there exists xmn in X and hence x = (xmn) such that when the
limit is taken over j in (3.4) we get G

U
(xi − x) ≤ ǫ for i ≥ i0 and for each

U ∈ U . Thus xi → x in σG. Now if we take an i ≥ i0 then we have

(g
U
(λmn xmn))

pmn/M ≤ G
U
(xi − x) + (g

U
(λmn x

i
mn))

pmn/M < 2ǫ

for all sufficiently large m and n, whence (g
U
(λmn xmn))

pmn/M → 0 as
m,n → ∞. Thus x ∈ c20(X, λ, p).

(ii) Completeness of c2(X, λ, p) and l2∞(X, λ, p) can easily be proved on the
lines of (i).

This completes the proof.
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Theorem 3.5. (i) (c20(X, λ, p), σG) is a GK-, GAD-, GAK- and GC-space;
and

(ii) if inf
m,n

pmn > 0 then (c2(X, λ, p), σG) and (l2∞(X, λ, p), σG) are GK- and GC-

spaces.

Proof. (i) For each m,n ≥ 1, the continuity of linear map Fmn : c20(X, λ, p) →
X where Fmn(x) = xmn follows from

g
U
(Fmn(x)) = g

U
(xmn) ≤ |λmn|

−1 [G
U
(x)]M/pmn.

Thus c20(X, λ, p) is a GK-space.
Let x = (xmn) ∈ c20(X, λ, p), ǫ > 0 and G

U
∈ G. Then there exists N

such that (g
U
(λmn xmn))

pmn/M < ǫ for all m + n > N . Clearly y = (ymn)
defined by

ymn =

{

xmn, m+ n ≤ N
θ, otherwise,

is in Φ2(X) and G
U
(x− y) < ǫ. Hence Φ2(X) is dense in c20(X, λ, p). This

proves that c20(X, λ, p) is a GAD- space.
Now, (g

U
(λmn xmn))

pmn/M < ǫ for all m + n > N implies that G
U
(x −

SN(x)) < ǫ. Thus SN(x) → x as N → ∞ with respect to each G
U
, and

hence c20(X, λ, p) is a GAK-space.
Further for each m,n ≥ 1 the continuity of Rmn : X → c20(X, λ, p),

Rmn(x) = δmn(x), follows from

G
U
(Rmn(x)) = |λmn|

pmn/M (g
U
(x))pmn/M , G

U
∈ G.

Hence (c20(X, λ, p), σG) is a GC-space.

Proof of (ii) is similar hence omitted. This completes the proof.
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