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Abstract. This is an expository account on quasiconformal mappings and µ-
conformal homeomorphisms with an emphasis on the role played by the mod-
ulus of an annulus or a semiannulus. In order that the reader gets acquainted
with modulus techniques, we give proofs for some of typical and important re-
sults. We also include several recent results on µ-conformal homeomorphisms.
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1. Introduction

In geometric function theory, the (conformal) modulus of a ring (an annulus)
is a key notion to analyze local behaviour of mappings. For instance, as we will
see later, quasiconformal mappings can be characterized in terms of the moduli
of annuli. In this survey, we exhibit techniques to derive useful properties of the
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mappings by observing the modulus change of annuli under homeomorphisms of
a certain kind.

Basically, the same technique can be used in higher dimensions. We, how-
ever, restrict ourselves to the case of plane mappings for the sake of simplic-
ity. The reader can consult a nice monograph [4] by Anderson, Vamanamurthy
and Vuorinen for the information in higher dimensions. See also Ahlfors [1] and
Lehto-Virtanen [25] for quasiconformal mappings, [6], [21], [22] for modern treat-
ments of (possibly degenerate) Beltrami equations, and [26] for more recent and
detailed information about modulus techniques.

A doubly connected domain D in the Riemann sphere Ĉ = C∪{∞} is called a
ring (domain) or an annulus. That is to say, a ring B is a connected open subset

of Ĉ such that the complement of the complement Ĉ \B of B consists of exactly
two connected components, say, E1 and E2. We will say that B separates z1
from z2 when z1 ∈ E1 and z2 ∈ E2. To avoid an exceptional case, we will always
assume that B is not a twice-punctured sphere (i.e., at least one of E1 and E2 is
not a singleton). Then, B is known to be conformally equivalent to a round ring
of the form AR = {z ∈ C : 1 < |z| < R} for some 1 < R ≤ +∞. Note that the
number R is uniquely determined for a given B. The quantity logR ∈ (0,+∞] is
called the (conformal) modulus of the ring B and will be denoted by modB. (It
may be more natural to define the modulus to be 1

2π
logR. In the present survey,

however, we will not adopt this so that some results will take simpler forms.)

It is, however, not necessarily easy to evaluate or even estimate modB because
a conformal mapping between B and AR cannot be given explicitly except for
annuli of very special types. Therefore, it is desirable to have another expression
of the modulus. Ahlfors and Beurling [3] introduced the concept of extremal
length for a curve family. See also [1] or [2, Chap. 4] for details. As we will see
below, this is quite a useful device to estimate the modulus of a ring.

Let Γ be a curve family in a Borel subset Ω of Ĉ, that is, a collection of curves
in Ω. (A curve is allowed to be broken into at most countable pieces in the most
general situation. In the present survey, however, a curve will mean a continuous

map from an interval into Ĉ for simplicity.) For a non-negative Borel function ρ
on Ω, we consider the two quantities

L(Γ, ρ) = inf
γ∈Γ

∫

γ

ρ(z)|dz|

and

Area(ρ) =

∫∫

Ω

ρ(z)2dxdy,

where z = x + iy. Here, we define
∫
γ
ρ(z)|dz| to be +∞ when the integral

cannot be computed appropriately (for instance, when the curve γ is not locally
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rectifiable whereas ρ is nonzero on it). See [27] or [30] for more precise definition.
The extremal length of Γ, denoted by λ(Γ), is defined by

λ(Γ) = sup
0<Area(ρ)<+∞

L(Γ, ρ)2

Area(ρ)
.

A function ρ for which the supremum is attained in the above will be called
an extremal metric for the family Γ. Note that λ(Γ) does not depend on the
set Ω. In particular, we can take all non-negative Borel functions ρ on C with
0 < Area(ρ) < ∞ in the above definition. It should be noted that λ(Γ′) ≥ λ(Γ)
when Γ′ ⊂ Γ.

The most important property of extremal length is conformal invariance. Let
f : Ω → Ω′ be a conformal homeomorphism and set f(Γ) = {f(γ) : γ ∈ Γ}. Then
we have λ(f(Γ)) = λ(Γ). This will be seen as a special case of a more general
result (see Theorem 2.8 below).

For a ring B, we denote by ΓB the collection of those closed curves in B whose
winding number is ±1 about the two components E1 and E2. In other words,
choosing two points ζ1 ∈ E1 and ζ2 ∈ E2, a closed (oriented) curve γ in B is in
ΓB if and only if

1

2πi

∫

γ

z − ζ2
z − ζ1

dz = ±1.

Also, we denote by Γ′
B the collection of open arcs in B joining the two boundary

components of B. That is to say, an open arc γ in B is in Γ′
B if and only if

E1 ∪ γ ∪ E2 is a closed connected set. Then we have the following (cf. Example
3 in Chapter 3D of [1]). Since it is a good exercise to check it as a warming-up,
we include its proof here.

Lemma 1.1. For a ring B in Ĉ,

modB =
2π

λ(ΓB)
= 2πλ(Γ′

B).

Proof. By the conformal invariance, we may assume that B is a round ring of
the form AR = {1 < |z| < R} for some R > 1.

Let ρ be a non-negative Borel function on B. For the circle γr : θ 7→ reiθ (1 <
r < R), by the Cauchy-Schwarz inequality, we have

L(ΓB, ρ)
2 ≤

(∫

γr

ρ(z)|dz|
)2

=

(∫ 2π

0

ρ(z)rdθ

)2

≤
∫ 2π

0

rdθ ·
∫ 2π

0

ρ(z)2rdθ = 2πr

∫ 2π

0

ρ(z)2rdθ.
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We now divide the above by r and then integrate in 1 < r < R to get

L(ΓB, ρ)
2 logR ≤ 2π

∫ R

1

∫ 2π

0

ρ(z)2rdθdr = 2πArea(ρ),

and hence,
L(ΓB, ρ)

2

Area(ρ)
≤ 2π

logR
.

Taking the supremum in ρ with 0 < Area(ρ) < +∞, we have

λ(ΓB) ≤
2π

logR
.

We next show the reverse inequality. Define ρ0 by ρ0(z) = 1/|z| if z ∈ B and
ρ0(z) = 0 otherwise. Since each γ ∈ ΓB has winding number 1 or -1 about the
origin, writing z = reiθ, we have

2π =

∣∣∣∣
∫

γ

d arg z

∣∣∣∣ ≤
∣∣∣∣
∫

γ

dz

z

∣∣∣∣ ≤
∫

γ

|dz|
|z| =

∫

γ

ρ0(z)|dz|.

Hence, L(ΓB, ρ0) ≥ 2π. Since Area(ρ0) = 2π logR, we have

λ(ΓB) ≥
L(ΓB, ρ0)

2

Area(ρ0)
≥ 2π

logR
.

We have now proved that λ(ΓB) = 2π/ logR = 2π/modB.

Similarly, we can show the second formula. Indeed, for an admissible ρ and
the radial segment δθ : r 7→ reiθ, we have

L(Γ′
B, ρ)

2 ≤
(∫

δθ

ρ(z)|dz|
)2

=

(∫ R

1

ρ(reiθ)dr

)2

≤
∫ R

1

dr

r
·
∫ R

1

ρ(reiθ)2rdr.

Integrating in 0 < θ < 2π, we obtain

2πL(Γ′
B, ρ)

2 ≤ logR ·
∫ 2π

0

∫ R

1

ρ(reiθ)2rdrdθ = logR · Area(ρ),

and hence,

λ(Γ′
B) ≤

logR

2π
.

Also, since |dz|/|z| ≥ dr/r for z = reiθ, we have for the above ρ0, the inequality
∫

γ

ρ0(z)|dz| ≥
∫

γ

dr

r
= logR
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holds for each γ ∈ Γ′
B. Therefore, L(Γ

′
B, ρ0) ≥ logR and

λ(Γ′
B) ≥

L(Γ′
B, ρ0)

2

Area(ρ0)
≥ logR

2π
.

We now complete the proof of λ(Γ′
B) =

1
2π

logR = 1
2π

modB.

The above estimations are typical cases of the so-called length-area method.

2. Differential calculus

We summarize very basics on differential calculus necessary for developments
of the theory of quasiconformal mappings or (degenerate) Beltrami equations.

For simplicity, we may assume, for a while, that f is smooth enough on an
open set in C. However, definitions below may be extended for more general f
as long as they make sense.

Complex partial derivatives of a (complex-valued) function f are defined by

fz = ∂f =
1

2
(fx − ify) and fz̄ = ∂̄f =

1

2
(fx + ify),

where fx = ∂f/∂x and fy = ∂f/∂y for z = x+ iy.

The Jacobian Jf of f = u+ iv can be expressed by

Jf = uxvy − uyvx = |fz|2 − |fz̄|2.
Note that, if Jf(z0) 6= 0, f is locally univalent at z0 and, if Jf (z0) > 0 in addition,
f is orientation-preserving at z0. We also note that Jf(z0) > 0 is equivalent to
|fz̄(z0)| < |fz(z0)|.

The complex dilatation µf of f is defined by

µf =
fz̄
fz
.

Note that |µf | < 1 if f is an orientation-preserving (local) diffeomorphism. It is
often convenient to use the related quantity

Kf(z) =
1 + |µf(z)|
1− |µf(z)|

,

which is sometimes called the pointwise maximal dilatation of f. In applications,
it is important to notice the formula

µϕ◦f◦ψ = µf ◦ ψ · ψ
′

ψ′

and, in particular, |µϕ◦f◦ψ| = |µf | ◦ ψ and Kϕ◦f◦ψ = Kf ◦ ψ, for non-constant
holomorphic functions ϕ and ψ with ψ′(z) 6= 0. The quantity Kf is obtained by
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discarding the information about the argument of µf . Therefore, it is sometimes
necessary to look at a more refined quantity. Andreian Cazacu [5] introduced
the notion of directional dilatations, which were effectively used by Reich and
Walczak [29], Lehto [23] and later by Brakalova and Jenkins [8], [13], Brakalova
[10], [11], Gutlyanskĭı, Martio, Vuorinen and the author [17], [18]. We now give
a definition of it. Let µ be a (Borel measurable, complex-valued) function on an
open set Ω in C with |µ| < 1 and fix a point z0 ∈ C (not necessarily in Ω). Then,
we set

Dµ,z0(z) =

∣∣∣1− µ(z) z̄−z̄0
z−z0

∣∣∣
2

1− |µ(z)|2 =
|1− e−2iθµ(z)|2
1− |µ(z)|2

for z ∈ Ω, where θ = arg(z − z0). It is easy to check the inequalities

1

Kµ(z)
≤ Dµ,z0(z) ≤ Kµ(z), z ∈ Ω,

for Kµ = (1 + |µ|)/(1− |µ|).
Let f be a function with fz(z) 6= 0 on an open set Ω and µ = µf . For a fixed

point z0 ∈ Ω, we write z = z0 + reiθ in polar coordinates. Then, by the chain
rule, the partial derivatives of f with respect to θ and r are computed as

fθ =
∂z

∂θ
fz +

∂z̄

∂θ
fz̄ = ireiθfz − ire−iθfz̄,

fr =
∂z

∂r
fz +

∂z̄

∂r
fz̄ = eiθfz + e−iθfz̄.

It is easy to verify the following formulae:

(2.1) |fθ(z)|2 = r2Dµ,z0(z)Jf (z)

and

|fr(z)|2 = D−µ,z0(z)Jf (z).

Hence, Dµ,z0 and D−µ,z0 are sometimes called the angular dilatation and the
radial dilatation of f (or µ) at z0, respectively.

When the theory of quasiconformal mappings was initiated by Grötzsch and
Teichmüller, only smooth ones were considered. Later, however, it was recog-
nized that we need to relax the smoothness (regularity) assumption to guarantee
a normality of the class of (suitably normalized) K-quasiconformal mappings.
Nowadays, it is standard to use a Sobolev space setting for that.

For C1 functions f on an open set Ω in C, the Sobolev norm with exponent
p ≥ 1 is defined to be

‖f‖W 1,p(Ω) = ‖f‖Lp(Ω) + ‖fx‖Lp(Ω) + ‖fy‖Lp(Ω).
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The completion of the set {f ∈ C1(Ω) : ‖f‖W 1,p < ∞} with respect to this
norm is called the Sobolev space with exponent p and denoted by W 1,p(Ω). We
remark that the completion is realized in the Lebesgue space Lp(Ω) and the
partial derivatives are understood in the sense of distributions. We also denote
by W 1,p

loc (Ω) the set of measurable functions f on Ω such that f |Ω0
∈ W 1,p(Ω0)

for every relatively compact, open subset Ω0 of Ω.

Here is another relating concept. A continuous function f on an open set
Ω ⊂ C is called ACL (Absolutely Continuous on Lines) if for every closed rec-
tangle R = {x + iy : a ≤ x ≤ b, c ≤ y ≤ d} in Ω, the function f(x + iy) is
absolutely continuous in a ≤ x ≤ b for almost every y ∈ [c, d] (with respect to
the 1-dimensional Lebesgue measure) and absolutely continuous in c ≤ y ≤ d
for almost every x ∈ [a, b]. We note that for such a function f we can define
the partial derivatives fx, fy and, therefore, fz, fz̄ as well, as Borel measurable
functions a.e. on Ω. The definition of ACL functions seems to depend strongly
on the coordinates. For instance, it is not clear that f(eiθ(x+ iy)) is again ACL
for an ACL function f. However, we do not need to worry about it, when partial
derivatives are locally integrable in Ω. For the proof of the next result, the reader
is referred, for instance, to [16, §4.9.2] or [32, Theorem 2.1.4].

Lemma 2.2. Let f be a continuous function on an open set Ω ⊂ C. If f is
ACL and the partial derivatives of f are integrable in Ω, then f ∈ W 1,1

loc (Ω).

Conversely, every function f in W 1,1
loc (Ω) is ACL in Ω. Moreover, their partial

derivatives as ACL functions are same as distributional derivatives.

The following property was discovered by Gehring and Lehto (cf. [1] or [25])
and often very useful.

Lemma 2.3. Let f be a continuous open mapping of a domain Ω into C. Sup-
pose that f has the partial derivatives fx and fy a.e. in Ω. Then f is totally
differentiable at almost every point in Ω.

We recall here that f is called totally differentiable at z0 if

f(z0 + z) = f(z0) + Ax+By + o(|z|)
as z = x+ iy → 0 for some constants A,B ∈ C.

We are now ready to give an analytical definition of quasiconformal mappings.

Definition 2.4. Let Ω and Ω′ be domains in the Riemann sphere Ĉ = C∪{∞}
and let K ≥ 1 be a constant. A homeomorphism f : Ω → Ω′ is called K-
quasiconformal if f ∈ W 1,1

loc (Ω \ {∞, f−1(∞)}) and
|fz̄| ≤ k|fz| a.e. in Ω,
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where k = (K − 1)/(K + 1).

If we do not care about K, the mapping f is simply called quasiconformal.
The next result is fundamental in the study of quasiconformal mappings.

Theorem 2.5 (The measurable Riemann mapping theorem). Let µ be a
complex-valued measurable function on C with ‖µ‖∞ < 1. Then there exists a

quasiconformal mapping f : Ĉ → Ĉ satisfying

(2.6) fz̄ = µfz

a.e. in C. Moreover, such an f is unique up to post-composition with a Möbius
transformation.

The equation in (2.6) is called the Beltrami equation. The condition ‖µ‖∞ < 1
implies a uniform ellipticity of the equation. It is, however, occasionally necessary
to consider the degenerate case when |µ| < 1 a.e. but ‖µ‖∞ = 1. Such a case
occurs, for instance, in the study of planar harmonic mappings, transonic gas
dynamics and parabolic bifurcations of a complex dynamics.

A measurable function µ on Ω is called a Beltrami coefficient if |µ| < 1 a.e. on
Ω. For such a µ, a homeomorphism f : Ω → Ω′ is called µ-conformal if f ∈
W 1,1

loc (Ω) and fz̄ = µfz a.e. in Ω. In the degenerate case, we should note that
a homeomorphic solution might not exist and, even if it exists, the uniqueness
assertion (the Stöılow property) might not be true.

We also have the following result concerning quasiconformal mappings.

Lemma 2.7. Let f be a quasiconformal mapping of a domain Ω. Then fz(z) 6= 0
a.e. in Ω.

Therefore, we can define the complex dilatation µf = fz̄/fz as a Borel measur-
able function on Ω for a quasiconformal mapping of Ω and K-quasiconformality
is characterized by Kf = (1 + |µf |)/(1− |µf |) ≤ K a.e. in Ω.

The extremal length is important in connection with quasiconformal map-
pings.

Theorem 2.8. Let f : Ω → Ω′ be a K-quasiconformal mapping and Γ be a curve
family in Ω. Then

λ(Γ)

K
≤ λ(f(Γ)) ≤ Kλ(Γ).

Proof. For a non-negative Borel function ρ on Ω, we define ρ′ so that the formula

ρ = ρ′ ◦ f · (|fz| − |fz̄|)
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is valid on Ω. If we write w = f(z), then we have dw = fzdz + fz̄ z̄ so that
|dw| ≥ (|fz| − |fz̄|)|dz|. Thus, for any γ ∈ Γ, we have

∫

γ

ρ(z)|dz| =
∫

γ

ρ′(w)(|fz| − |fz̄|)|dz| ≤
∫

f(γ)

ρ′(w)|dw|.

Hence,
L(Γ, ρ) ≤ L(f(Γ), ρ′).

On the other hand, by using the inequality

Jf = Kf · (|fz| − |fz̄|)2 ≤ K(|fz| − |fz̄|)2,
we observe

Area(ρ) =

∫∫

Ω

ρ′(f)2(|fz| − |fz̄|)2dxdy

≥ 1

K

∫∫

Ω

ρ′(f)2Jfdxdy

=
1

K

∫∫

Ω′

ρ′(w)2dudy =
Area(ρ′)

K
.

Thus,
L(Γ, ρ)

Area(ρ)
≤ K · L(f(Γ), ρ

′)

Area(ρ′)
.

Taking the supremum in ρ, we get λ(Γ) ≤ λ(f(Γ)). The other inequality can be
obtained by applying f−1 to the first one.

Corollary 2.9. The extremal length is conformally invariant.

We end this section by summarizing basic properties of quasiconformal map-
pings.

Lemma 2.10.

(1) 1-quasiconformal mapping is nothing but a conformal mapping.
(2) The inverse mapping of a K-quasiconformal mapping is againK-quasiconformal.
(3) The composition of a K-quasiconformal mapping with a K ′-quasiconformal

mapping is a KK ′-quasiconformal mapping.
(4) Let f and g be quasiconformal mappings of a domain Ω. If µf = µg on Ω

then g = ϕ ◦ f for a conformal mapping ϕ : f(Ω) → g(Ω) (the Stöılow
property).

(5) If a sequence of K-quasiconformal mappings fn of a domain Ω converges
locally uniformly on Ω to a homeomorphism f of Ω, then f is also K-
quasiconformal.
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3. Round rings

A subset B0 of a ring B is called a subring when B0 is a ring with ΓB0
⊂ ΓB.

Then, by the monotonicity of extremal length, λ(ΓB) ≤ λ(ΓB0
). Therefore, we

have modB0 ≤ modB. It is also possible to show that the inequality is strict
unless B0 = B.

For z0 ∈ Ĉ and 0 < r1 < r2 < +∞, we set

A(z0; r1, r2) = {z ∈ C : r1 < |z − z0| < r2}
if z0 ∈ C and

A(∞; r1, r2) = A(0, 1/r2, 1/r1)

if z0 = ∞. A ring is said to be round (and centered at z0) if it is of the form
A(z0; r1, r2).

Obviously, a ring does not necessarily contain a round subring. However, this
is true if the modulus is large enough. This sort of result was first proved by
Teichmüller. A prototype of the following result was shown by Herron-Liu-Minda
[20]. Avkhadiev and Wirths finally obtained the following sharp form.

Lemma 3.1 (Avkhadiev-Wirths [7]). Let B be a ring in C with modB > π
which separates a given point z0 ∈ C from ∞. Then there is a round subring A
of B centered at z0 such that modA ≥ modB − π. The constant π cannot be
replaced by any smaller number.

For convenience of the reader, we give an outline of the proof.

Proof. Let E1 and E2 be the connected components of Ĉ \ B with z0 ∈ E1

and ∞ ∈ E2. We take a point z1 ∈ E1 so that |z1 − z0| = maxz∈E1
|z − z0|.

We may assume that z0 = 0 and z1 = −1. We claim now that A(0; 1, R) ⊂ B
for R = exp(modB − π). Suppose, to the contrary, that A(0; 1, R) \ B 6= ∅.
Since E1 ⊂ {|z| ≤ 1}, E2 must intersect A(0; 1, R). Therefore, we can take a
point w0 ∈ E2 so that |w0| = R. Then, Teichmüller’s lemma (cf. [1]) implies that
modB ≤ modDR, where DR is the Teichmüller ring C \ ([−1, 0] ∪ [R,+∞)).
We now use the inequality modDR < logR + π (see [7]) to obtain

modB ≤ modDR < logR + π = modB,

which is impossible. The sharpness can be seen at the extremal example B0 =
C\ ([−1, 0]∪ [1,+∞)), which satisfies modB0 = π (see Corollary in §4.11 of [2]).
Thus we are done.

Remark 3.2. The authors of [18] wrote that the Herron-Liu-Minda theorem
can read the constant π−1 log 2(1+

√
2) = 0.50118 . . . works in the above lemma
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instead of π. But, this was not very correct because there was confusion with the
definition of the modulus of a ring. The constant should be 2 log 2(1 +

√
2) =

3.1490 . . . and the point z0 should be taken in ∂B. See also [31] for related
estimates.

As a consequence of the last lemma, we get information about the size of the
bounded connected component of a ring in C.

Corollary 3.3. Let B be a ring in C and E1 be the bounded component of C\B.
Then

diamE1 ≤ eπ−modBdiamB.

Proof. If modB ≤ π, then the inequality clearly holds. Thus we can assume
that modB > π. Take a round subring A = A(z0; r1, r2) of B so that modA ≥
modB − π. Then

diamE1 ≤ 2r1 =
r1
r2

· 2r2 = e−modAdiamA ≤ eπ−modBdiamB.

In a similar way, we can prove the following form (cf. [18, Lemm 2.8]).

Lemma 3.4 ([19, Theorem 2.8]). Let B be a ring in C and let E1 and E2

be the bounded and unbounded connected components of C \ B, respectively. If
modB > π, then the inequality

sup
z∈E1

|z − z0| ≤ dist(z0, E2) exp(π −modS)

holds for any point z0 ∈ E1.

These results fit Euclidean geometry and the point at infinity plays a special
role. It may be sometimes useful to have a spherical variant, where the point at
infinity is no longer special. The spherical (chordal) distance is defined by

d♯(z, w) =
|z − w|√

(1 + |z|2)(1 + |w|2)

for z, w ∈ Ĉ and the spherical diameter of a set E will be denoted by diam♯E.
Similarly, the spherical distance between two sets E1, E2 will be denoted by
dist♯(E1, E2).
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Let B be a ring with E1 and E2 as the connected components of its comple-
ment. Then the inequality

min{diam♯E1, diam
♯E2} ≤ π√

2modB

holds (Lehto-Virtanen [25, Lemma I.6.1]). When modB is large, however, the
following result (see [18]) gives a better bound.

Lemma 3.5. Let B be a ring in Ĉ and let E1 and E2 be the connected components

of Ĉ \B. Then the inequality

min{diam♯E1, diam
♯E2} ≤ C1e

− 1

2
modB

holds, where C1 is an absolute constant.

We remark that the constant can be taken as C1 = 2eπ/2 = 9.6209 . . . . As
we noted above, the value of C1 given in [18, Lemma 2.6] is not correct. This
lemma follows from the next elementary result [18, Lemma 2.7]. Here, a circular

domain means a simply connected domain in Ĉ bounded by a circle or a line.

Lemma 3.6. Let A be a ring in Ĉ whose complement consists of disjoint closed
circular domains E1 and E2. Then

min{diam♯E1, diam
♯E2} ≤ 1

cosh(1
2
modA)

.

Equality holds if and only if diam♯E1 = diam♯E2 and if the spherical centers of
E1 and E2 are antipodal.

4. Length-area method

Reich and Walczak [29] gave an efficient method to estimate the modulus of
the image of a ring under quasiconformal mappings in terms of its directional
dilatations. The following variant of Reich-Walczak inequality can be found, for
example, in [18].

Theorem 4.1. Let µ be a Beltrami coefficient on a domain Ω in C and f : Ω →
Ω′ be a µ-conformal homeomorphism. Suppose that Dµ,z0(z) is locally integrable
in a round ring A = A(z0; r1, r2) ⊂ Ω. Then

(4.2)

∫ r2

r1

dr

rψµ(r, z0)
≤ mod f(A),

where

ψµ(r, z0) =
1

2π

∫ 2π

0

Dµ,z0(z0 + reiθ)dθ.
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Proof. We may assume that z0 = 0 and Ω = A = A(0; 1, R). By post-composing
a conformal mapping, we may further assume that A′ = f(A) = A(0; 1, R′).
Since ∫∫

E

Jf(z)dxdy ≤
∫∫

f(E)

dudv < +∞

for a compact subset E of A, we have Jf ∈ L1
loc(A). (In the classical case, indeed

equality holds. For a detailed proof, see [1] or [25].)

Denote by γr the circle |z| = r. Then the assumption f ∈ W 1,1
loc (A) together

with the Gehring-Lehto theorem (Lemma 2.3) implies that, for almost all r ∈
(1, R), f is absolutely continuous on γr and totally differentiable at every point
in γr except for a set of linear measure 0. By Fubini’s theorem, we observe that
Dµ,0 and Jf are integrable on γr for almost all r ∈ (1, R). For such an r, we have

2π ≤
∫

γr

|d arg f | ≤
∫

γr

|df(z)|
|f(z)| =

∫ 2π

0

|fθ(reiθ)|
|f(reiθ)| dθ.

We use the Cauchy-Schwarz inequality and (2.1) to obtain

(2π)2 ≤ r2
∫ 2π

0

Dµ,0(re
iθ)dθ

∫ 2π

0

Jf
|f |2 (re

iθ)dθ,

and hence
2π

rψµ(r)
≤ r

∫ 2π

0

Jf
|f |2 (re

iθ)dθ

for almost all r ∈ (1, R), where ψµ(r) = ψµ(r, 0). Integrating both sides with
respect to r from 1 to R, we obtain

2π

∫ R

1

dr

rψµ(r)
≤

∫ R

1

∫ 2π

0

Jf
|f |2rdθdr =

∫∫

A

Jfdxdy

|f |2

≤
∫∫

A′

dudv

|w|2 = 2π logR′ = 2π mod A′

and thus arrive at the required inequality in (4.2).

The next inequality can also be proved by replacing the curve family of circles
by that of radial segments joining the two boundary components of A in the
above proof.

Theorem 4.3. Let µ be a Beltrami coefficient on a domain Ω in C and f : Ω →
Ω′ be a µ-conformal homeomorphism. Suppose that D−µ,z0(z) is locally integrable
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in a round ring A = A(z0; r1, r2) ⊂ Ω Then

(4.4) mod f(A) ≤
[∫ 2π

0

dθ

ϕµ(θ, z0)

]−1

,

where

ϕµ(θ, z0) =

∫ r2

r1

D−µ,z0(z0 + reiθ)
dr

r
.

5. Application to modulus of continuity

As a special case of Theorem 2.8, we have the inequalities

(5.1)
1

K
modB ≤ mod f(B) ≤ KmodB

for a K-quasiconformal mapping f of a domain Ω and a ring B in Ω. It is
a remarkable fact that the converse is also true. In other words, if a sense-
preserving homeomorphism f : Ω → Ω′ satisfies (5.1) for any ring B ⊂ Ω, then
f is K-quasiconformal (see [25]).

As a simple application of results in the previous section, let us see that (5.1)
leads to the well-known (local) Hölder continuity of aK-quasiconformal mapping.

Since we are dealing with local property, we may assume that f is a K-
quasiconformal mapping of the unit disk D = {z ∈ C : |z| < 1} into itself.
Take two points z0, z1 in the smaller disk |z| < 1/2 and consider the round ring
A = A(z0; r,

1
2
) ⊂ D for 0 < r < 1/2. Then, by (5.1), we have

(5.2) mod f(A) ≥ modA

K
=

1

K
log

1

2r
.

Then, by Corollary 3.3, we have

diamE1 ≤ eπ−mod f(A)diam f(A),

where E1 is the bounded component of C\f(A). Since diam f(A) ≤ diamD = 2,
the above inequality together with (5.2) implies

diamE1 ≤ 2eπ+(log 2r)/K = Cr1/K ,

where C = 21+1/Keπ. When |z1 − z0| < 1/2, we take r = |z1 − z0| to obtain

|f(z1)− f(z0)| ≤ C|z1 − z0|1/K .

If we estimate mod f(A(z0; r, r0)) from below in terms of r, then we could
obtain a modulus of continuity estimate for f at z0 in the same way.
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For a function f defined in a neighbourhood of a point z0 ∈ C, its modulus of
continuity at z0 is defined by

δf (z0; r) = sup
|z−z0|≤r

|f(z)− f(z0)|

for a sufficiently small r > 0. For instance, f is continuous at z0 if and only if
δf (z0; r) → 0 as r → 0+ and f is Hölder continuous with exponent α at z0 if and
only if δf(z0; r) = O(rα).

We now have the following, whose proof can be done in the same way as above.

Theorem 5.3. Let f be an injective continuous map of the disk D(z0, r0) into
the disk |w| < M and h is a non-negative function on (0,+∞). If the inequality
mod f(A) ≥ h(modA) holds for a ring A of the form A(z0; r, r0), 0 < r < r0,
then

δf(z0; r) ≤ 2M exp
(
π − h(log r0

r
)
)
.

An estimate of mod f(A) can be obtained by the Reich-Walczak theorem as
stated in the previous section. We also have a spherical variant of this sort of
result by using Lemma 3.5 instead of Corollary 3.3.

Finally, we state a normality criterion for a family of homeomorphisms of the
Riemann sphere described by a modulus condition as in the following. This sort
of result was used by Lehto [24] and played an important role in the proof of
existence theorems of solutions of degenerate Beltrami equations in Brakalova-
Jenkins [12] and Gutlyanskĭı-Martio-Sugawa-Vuorinen [18]. The following form
is found in [18].

Theorem 5.4. Let ρ(z, r, R) be a non-negative function in (z, r, R) ∈ Ĉ ×
(0,+∞)× (0,+∞) with r < R such that ρ(z, r, R) → +∞ as r → 0+ for fixed z

and R. Then the set Hρ of orientation-preserving self-homeomorphisms f of Ĉ
satisfying f(0) = 0, f(1) = 1, f(∞) = ∞ and

mod f(A(z0; r, R)) ≥ ρ(z0, r, R)

for every (z0, r, R) ∈ Ĉ × (0,+∞) × (0,+∞) with r < R, is compact in the
topology of uniform convergence with respect to the spherical metric. Moreover,
for each R > 0, there exists a constant C = C(R, ρ) > 0 depending only on R
and ρ such that

|f(z1)− f(z2)| ≤ C exp(−ρ(z0, r1, r2)), z1, z2 ∈ D(z0, r1)

for |z0| ≤ R and 0 < r1 < r2 < R.

Here, D(a, r) = {z ∈ C : |z − a| < r}.
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6. Modulus of semiannulus

It is well known that a quasiconformal map of the unit disk onto itself has a
homeomorphic extension to the boundary. But, this is no longer true for general
homeomorphisms of the unit disk.

Let Θ(r) be a real-valued continuous function in 0 < r < 1 which has no finite
limit as r → 1− . Then the mapping f : D → D defined by

(6.1) f(reiθ) = rei(Θ(r)+θ)

is homeomorphic but has no continuous extension to the boundary. In the next
section, we give a characterization of self-homeomorphisms of the unit disk which
has a homeomorphic extension to the boundary. To control the boundary be-
haviour, we need a notion corresponding to the “half” of a ring. In order to
distinguish the genuin boundary, which is part of the boundary of the original
ring, from the new boundary, which is the relative boundary in the original ring,
we adopt a tactical definition for that. Thus, we use a different term from “ring”.

A subset S of Ĉ is called a semiannulus if it is homeomorphic to

TR = {z ∈ C : 1 ≤ |z| ≤ R, Im z > 0}
for some R ∈ (1,+∞). The two simple arcs in the boundary of S which corre-
spond to {|z| = 1, Im z > 0} and {|z| = R, Im z > 0} are called the sides of S.
A basic account of semiannulus is given in [19]. Here, we give a more detailed
account of it to complement the paper [19].

A semiannulus S in a plane domain D is said to be properly embedded in D if
S ∩K is compact whenever K is a compact subset of D. When D is simply con-
nected, D\S consists of exactly two connected components (cf. [28, Prop. 2.12]).

Unlike the case of rings, a semiannulus is not necessarily mapped to the stan-
dard one TR conformally inside. Therefore, in order to define the modulus of a
semiannulus S, we should take another way. Let ΓS be the collection of open
arcs in Int S dividing the two sides of S and Γ′

S be that of closed arcs in S joining
the two sides of S. We define the modulus of S by

modS =
π

λ(ΓS)

so that modTR = logR (see Lemma 6.5 below).

First, we give a topological criterion for a semiannulus to have a positive
modulus. Let us recall the notion of prime ends due to C. Carathéodory (see
[28] for details).

Let Ω be a simply connected hyperbolic domain. A simple open arc γ is called
a crosscut of Ω if γ ⊂ Ω and if γ has an endpoint in ∂Ω in both directions. Then
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it is known that Ω \ γ consists of exactly two connected components (Proposi-
tion 2.12 in [28]). A sequence of crosscuts Cn (n = 0, 1, 2, . . . ) of Ω is called a
nullchain if Cn ∩ Cn+1 = ∅ for n = 0, 1, 2, . . . , if Cn separates C0 from Cn+1 in
Ω for n = 1, 2, 3, . . . and if diam♯Cn → 0 as n → ∞. Two nullchains Cn, C

′
n are

defined to be equivalent if for a sufficiently large m, there is an n such that Cm
separates C ′

n from C ′
0 and C ′

m separates Cn from C0 in Ω. The equivalence class
of a nullchain of crosscuts is called a prime end of Ω. Let P (Ω) denote the set
of all the prime ends of Ω. Note that P (Ω) is endowed with a natural topology.
Carathéodory’s main theorem asserts that a conformal homeomorphism between
simply connected hyperbolic domains Ω and Ω′ gives rise to a one-to-one cor-
respondence (indeed a homeomorphism) between P (Ω) and P (Ω′) in a natural
way. Obviously, P (D) can be identified with the topological boundary ∂D of the
unit disk D. In particular, P (Ω) is homeomorphic to the circle.

Let S be a semiannulus. Then Int S is a simply connected hyperbolic domain
and thus the Riemann mapping theorem gives us a conformal homeomorphism
h : IntS → D. The sides σ1 and σ2 of S correspond to disjoint open circular
arcs O1 and O2 in ∂D under the mapping h and h extends to a homeomorphism
of S onto S ′ = D ∪ (O1 ∪ O1). Let C1 and C2 be the connected components of
∂D \ (O1 ∪ O2). We now observe that h(Γ′

S) is the collection of closed curves
joining O1 and O2 in S ′, in other words, h(Γ′

S) = Γ′
S′. In the same way, we

can show that h(ΓS) = ΓS′. It is well known that λ(ΓS′) = +∞ if and only if
λ(Γ′

S′) = 0 if and only if one of C1 and C2 reduces to a point. The last condition
is equivalent to that one of the ends of S consists of one prime end. In this way,
we can show the following criterion [19, Lemma 2.1].

Lemma 6.2. Let S be a semiannulus. Then modS = 0 if and only if there
exists a sequence of simple closed arcs γn(n = 0, 1, 2, . . . ) joining the sides of S
such that diam♯γn → 0 as n→ ∞.

In particular, if dist♯(σ1, σ2) > 0 then modS > 0. The converse is, however,
not true in general. For example, let S = {z : |z| < 3,Re z ≥ 0, , |z − 1| > 1, z 6=
0}. Then the sides consists of the two segments σ1 = (0, 3i) and σ2 = (0,−3i)
and thus dist♯(σ1, σ2) = dist(σ1, σ2) = 0. On the other hand, clearly modS > 0.

In a special but typical situation, the converse is also true.

Lemma 6.3. Let S be a semiannulus embedded in a disk or a half-plane and let
σ1 and σ2 be its sides. Then modS > 0 if and only if dist♯(σ1, σ2) > 0.

Proof. The “if” part is immediate from Lemma 6.2. To show the “only if” part,
we suppose that dist♯(σ1, σ2) = 0. Let ∆ be the disk or half-plane in which S
is properly embedded. We now take a sequence of open spherical geodesics γn
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with endpoints zn ∈ σ1 and z′n ∈ σ2 such that γn ∩ (σ1 ∪ σ2) = ∅ and that
diam♯γn → 0 as n → ∞. Since ∆ is convex in spherical geometry, γn ⊂ ∆, and
thus, γn ∩ ∂∆ = ∅. Therefore, γn ∩ ∂S = ∅, which implies γn ⊂ Int S. We now
apply Lemma 6.2 to obtain modS = 0.

Let U1 and U2 be the two connected components D \ S for a semiannulus
properly embedded in the unit disk D. Let σ1 and σ2 be the sides of S with
σj ⊂ Uj , j = 1, 2. Then, by Lemma 6.3, if modS > 0, then dist(U1, U2) =
dist(U1, U2) = dist(σ1, σ2) > 0. Therefore, setting βj = Uj ∩ ∂D (j = 1, 2), one
can see that dist(β1, β2) > 0. In particular, ∂D \ (β1 ∪ β2) consists of exactly two
non-empty open circular arcs α1, α2.

Let S be a semiannulus properly embedded in the unit disk D and f : TR → S
be a homeomorphism. For a sufficiently small ε > 0, we set Wε = {z ∈ TR :
Im z ≤ ε} and consider a sort of cluster sets

IS =
⋂

ε>0

f(Wε ∩ ∂TR) and JS =
⋂

ε>0

f(Wε).

Note that IS and JS do not depend on the particular choice of R and f. For
instance, IS is indeed the limit sets of the sides of S and JS is the image of the
two ends of S. By definition, it is clear that JS is a (not necessarily disjoint)
union of two closed intervals (possibly singletons) in ∂D, and JS \ IS is a union
of two open (possibly empty) intervals. As a pathological example, we consider
the semiannulus S = f({z ∈ D : |Re z| ≤ 1/2}) for a function given in (6.1) with
lim supr→1−Θ(r) = +∞. Then S is properly embedded in D and IS = JS = ∂D.
It is evident that JS\IS = α1∪α2 when modS > 0. Conversely, when modS = 0,
one of the ends must be degenerate by Lemma 6.3 and therefore, the set JS \ IS
cannot have more than one connected component. Thus, we have shown the
following.

Lemma 6.4. Let S be a semiannulus properly embedded in D. Then modS > 0
if and only if JS \ IS is a disjoint union of two non-empty open intervals in ∂D.

A semiannulus S is said to be conformally equivalent to TR if there is a home-
omorphism f : S → TR which is conformal in Int S. Then, a counterpart of
Lemma 1.1 can be given in the following form.

Lemma 6.5. Let S be a semiannulus and R > 1. Then S is conformally
equivalent to the semiannulus TR if and only if modS = logR. Moreover,
λ(ΓS) = 1/λ(Γ′

S).
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When S is properly embedded in D and modS > 0, we can construct a ring
by reflecting S in the circle |z| = 1. More concretely, let

Ŝ = IntS ∪ (α1 ∪ α2) ∪ {1/z̄ : z ∈ IntS},
where α1 and α2 are defined above. By the symmetry principle (see [1, Chap. 1.E]),

we have λ(Γ′
Ŝ
) = λ(Γ′

S)/2 and therefore modS = mod Ŝ. In this way, the theory
of semiannulli can be reduced to that of rings.

A subset S0 of a semiannulus S is called a subsemiannulus of S if S0 is a
semiannulus satisfying ΓS0

⊂ ΓS. By definition, we have modS0 ≤ modS.

For ζ1, ζ2 ∈ ∂D we consider the Möbius transformation

Lζ1,ζ2(z) =
ζ2 + z

ζ2 − z
− ζ2 + ζ1
ζ2 − ζ1

=
2ζ2(z − ζ1)

(ζ1 − ζ2)(z − ζ2)
.

Note that L = Lζ1,ζ2 maps D onto the right half-plane H = {w ∈ C : Rew > 0}
in such a way that L(ζ1) = 0 and L(ζ2) = ∞. For 0 < r1 < r2 < +∞, we set

T (ζ1, ζ2; r1, r2) = D ∩ L−1
ζ1,ζ2

(A(0, r1, r2)).

A semiannulus in D of this form will be called canonical. Note that

modT (ζ1, ζ2; r1, r2) = mod T̂ (ζ1, ζ2; r1, r2) = log
r2
r1
.

We also set

T (ζ ; r1, r2) = T (ζ,−ζ ; r1, r2).
By using the reflection technique, we can immediately deduce the following

from Lemma 3.1.

Lemma 6.6. Let S be a semiannulus properly embedded in D with modB >
π and U1 and U2 be the two connected components of D \ S. For given points
ζj ∈ ∂D ∩ ∂Uj (j = 1, 2), there exists numbers 0 < r1 < r2 < +∞ such that
T = T (ζ1, ζ2; r1, r2) is a subsemiannulus of S and modT ≥ modS − π.

We also have the following analog to Corollary 3.3.

Theorem 6.7. Let S be a semiannulus properly embedded in D and U1 and U2

be the two connected components of D \ S. Then
min{diamU1, diamU2} ≤ C exp(−1

2
modS),

where C = 4eπ/2.

For the proof, we prepare a result which is a hyperbolic analog of Lemma 3.6
(cf. [19, Lemma 2.7]).
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Lemma 6.8. Let T be a canonical semiannulus properly embedded in D and let
V1 and V2 be the connected components of its complement in D. Then

min{diamV1, diamV2} ≤ 2

cosh(1
2
modT )

.

Equality holds if and only if T is of the form T (ζ ; r, 1/r) for some ζ ∈ ∂D and
0 < r < 1.

Proof. We denote by dΩ the hyperbolic distance on a hyperbolic domain. Suppose
that T is of the form T (ζ1, ζ2; r1, r2). Let L = Lζ1,ζ2 : D → H. Then the hyperbolic
distance of the hyperbolic half-planes V1 and V2 in D can be computed by

δ := dD(V1, V2) = dH(L(V1), L(V2)) =

∫ r2

r1

dx

2x
=

1

2
log

r2
r1

=
1

2
modT.

Thus the problem now reduces to finding a configuration of two hyperbolic half-
planes with a fixed hyperbolic distance such that the minimum of their Euclidean
diameters is maximal (namely, the worst case). Such a configuration is attained
obviously by the situation that V2 = −V1. By a suitable rotation, we may assume
that ζ1 = 1, ζ2 = −1. Let a > 0 be the number determined by V1 ∩ R = (a, 1).
Since 0 is the midpoint of the hyperbolic geodesic [−a, a] joining V1 and V2, we
have δ/2 = dD(0, a) = arctanh a and a = tanh(δ/2). The disk automorphism
(hyperbolic isometry) g(z) = (z + a)/(1 + az) maps the hyperbolic half-plane
{z ∈ D : Re z > 0} onto V1. Therefore, we see that g(i) and g(−i) are the tips
of V1 and thus diamV1 = |g(i)− g(−i)| = 2(1− a2)/(1 + a2). Finally, we get the
estimate in this case

diamVj = 2
1− tanh(δ/2)2

1 + tanh(δ/2)2
=

2

cosh δ
.

Since δ = 1
2
modT, the estimate is now shown. The equality case is obvious from

the above argument.

Proof of Theorem 6.7. When modS ≤ π, the assertion trivially holds. We
now suppose that modS > π. Then, by Lemma 6.6, we can take a canonical
subsemiannulus T of S. Let V1, V2 be the two components of D \ T so that
Uj ⊂ Vj (j = 1, 2). Since the boundary circular arc D ∩ ∂Vj is perpendicular
to ∂D, at least one of Vj ’s, say, V1 is contained in the half-plane of the form
Re eiθw > 0. Then, as is easily checked, diamV1 = |ξ− η|, where ξ and η are the
endpoints of the arc D ∩ ∂V1. Since ξ, η ∈ T , by the last lemma, we have

min{diamU1, diamU2} ≤ diamU1 ≤ diamV1 ≤
2

cosh(1
2
modT )

< 4 exp(−1
2
modT ).
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7. Application to boundary extension

We are now in a position to state a criterion of extendibility of a homeomor-
phism of D to a boundary point (cf. [19, Prop. 3.1]).

Proposition 7.1. Let f : D → D be a homeomorphism and let ζ ∈ ∂D. The
mapping f extends continuously to ζ if

lim
r→0+

mod f(T (ζ, ζ ′; r, R)) = +∞

for some ζ ′ ∈ ∂ with ζ ′ 6= ζ and R > 0.

Proof. Let Ur be the connected component of D\T (ζ, ζ ′; r, R) containing ζ in the
boundary for 0 < r < R and let VR be the other one, which does not depend on
r. Then the family of the sets Ur, 0 < r < R, constitutes a fundamental system
of neighbourhoods of ζ. Theorem 6.7 now yields

min{diam f(Ur), diam f(VR)} ≤ C exp(−1
2
mod f((T (ζ, ζ ′; r, R)))).

By assumption, the last term tends to 0 as r → 0+ . Since diam f(VR) is a fixed

number, this implies that diam f(Ur) → 0 as r → 0. Therefore, the intersection⋂
0<r<R f(Ur) consists of a single point. We can now assign this point as the

extended value of f at ζ so that f has a continuous extension to ζ.

We remark that the converse is not true in the last proposition. Indeed,
consider the homeomorphism f : D → D determined by f(z̄) = f(z), z ∈ D and

f(reiθ) = r exp(i(θ/π)− log(1−r)), 0 ≤ θ ≤ π, 0 < r < 1.

Then, by construction, f extends to 1 continuously by setting f(1) = 1. However,
since f(reiθ) → 1 as r → 1− for any fixed θ with |θ| < π, the converse of the
proposition does not hold (see the proof of the next theorem).

If the assumption of the last proposition is true for every point ζ ∈ ∂D, then
the converse actually holds. The next theorem is due to Brakalova [9], though her
formulation is slightly different. Note that, earlier than it, Jixiu Chen, Zhiguo
Chen and Chengqi He [14] proved a similar result in a special situation (see also
the proof of Lemma 2.3 in [15]).

Theorem 7.2 (Brakalova [9]). A homeomorphism f : D → D admits a homeo-
morphic extension to D if and only if for each ζ ∈ ∂D,

lim
r→0+

mod f(T (ζ, ζ ′; r, R)) = +∞
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for some ζ ′ ∈ ∂D, ζ ′ 6= ζ and R = R(ζ) > 0.

Proof. By Proposition 7.1, f can be extended continuously to every boundary
point. It is almost immediate to see that the extended mapping f̃ : D → D is
indeed continuous.

We next show that f̃ is injective. Suppose, to the contrary, that f̃(ζ1) and

f̃(ζ2) are the same point, say, ω0, for some ζ1, ζ2 ∈ ∂D with ζ1 6= ζ2. We may
assume that ζ̄1 = ζ2. Consider the semiannulus T = T (1,−1; r, R), 0 < r < R,
where R = |(ζ1 − 1)/(ζ1 + 1)|. Then, the outer side σ of T lands at ζ1 and
ζ2. By assumption, f(z) tends to the point ω0 when z approaches ζj (j = 1, 2)
along σ in both directions. In particular, f(T ) is enclosed by the Jordan curve
f(σ) ∪ {ω0}. Therefore, IT = JT = {ω0} and so JT \ IT = ∅. Lemma 6.4 now
implies that mod f(T ) = 0 for any 0 < r < R, which contradicts the assumption

of the theorem. Thus, we have shown that f̃ is injective.

Since D is a compact Hausdorff space, the inverse mapping f̃−1 is also contin-
uous. Therefore, f̃ : D → D is a homeomorphism.

From the proof, obviously we can replace “some ζ ′ ∈ ∂D, ζ ′ 6= ζ” by “every
ζ ′ ∈ ∂D, ζ ′ 6= ζ” in Theorem 7.2. Choosing ζ ′ = −ζ and performing the Möbius
transformation L(z) = i(1+ z)/(1− z), we can translate the above theorem into
a result on the upper half-plane.

Theorem 7.3. A homeomorphism f of the upper half-plane H admits a home-
omorphic extension to H if and only if for each a ∈ ∂H = R ∪ {∞},

lim
r→0+

mod f(A(a, r, R) ∩H) = +∞

for some R = R(a) > 0.

We recall that A(∞; r, R) is defined to be A(0; 1/R, 1/r).

Brakalova and Jenkins [13] proved the following.

Theorem 7.4 (Brakalova-Jenkins [13]). Let f be a sense-preserving self-
homeomorphism of the upper half-plane H and satisfies the equation fz̄ = µfz
a.e. Suppose that f(z) → ∞ if and only if z → ∞ in H and that

∫∫

A(t;r,R)∩H

|µ(z)|2 + |Re z̄−t
z−t
µ(z)|

1− |µ(z)|2
dxdy

|z − t|2

has a finite limit as r → 0+ for every t ∈ R and some R = R(t) > 0. Then f
extends to a homeomorphism of H in such a way that the boundary function f(t)
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is differentiable and

f ′(t) = lim
z→a in H

f(z)− f(t)

z − t
> 0, t ∈ R.

Moreover if the convergence in the above is locally uniform for t ∈ R, then f ′ is
continuous on R.

In this theorem, the behaviour of the function at ∞ is assumed. It may be,
however, more natural to describe the assumptions in terms of µ only. Gutlyan-
skĭı, Sakan and the author [19] refined this result in the following form. To state
it, we introduce the quantity (cf. [17])

Qµ(r, R) =
1

π log(R/r)

∫∫

A(0;r,R)∩H

Dµ,0(z)

|z|2 dxdy,

which is regarded as the average of Dµ,0 over A(0; r, R) ∩ H with respect to the
measure |z|−2dxdy.

Theorem 7.5 ([19]). Let µ be a measurable function on the upper half-plane
H with |µ| < 1 a.e. Assume that the following conditions are satisfied for some
positive constants M and R0 :

1. lim
R→+∞

Qµ(r, R)

logR
= 0,

2.

∫∫

A(t;r,R0)∩H

|µ(z)|2
1− |µ(z)|2

dxdy

|z − t|2 converges as r → 0+ for each t ∈ R, and

3. Re

∫∫

A(t;r,R0)∩H

µ(z)

(z − t)2
dxdy

1− |µ(z)|2 converges as r → 0+ for t ∈ R locally

uniformly.

Suppose that there exists a µ-conformal self-homeomorphism f of H. Then it
extends to a homeomorphism of H onto itself. Furthermore, if we normalize f so
that f(∞) = ∞, then the boundary function f(t) has a non-vanishing continuous
derivative on R.

For the proof, we need the following fundamental estimates of the modulus
change of semiannuli under a µ-conformal homeomorphism f.

modT

Qµ(r, R)
≤ mod f(T ),

where T = A(0; r, R) ∩H and

−1

π

∫∫

T

D−µ,t(z)− 1

|z − t|2 dxdy ≤ modT − mod f(T ) ≤ 1

π

∫∫

T

Dµ,t(z)− 1

|z − t|2 dxdy,



396 T. Sugawa HQM2010

where T = A(t; r, R) ∩ H, t ∈ R. The first one is a semiannulus version of the
inequality (2.5) in [17] and the second one is a sort of distortion estimate of the
modulus (cf. Corollary 2.13 in [17]). See [19] for details.
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Rep. Univ. Jyväskylä 83(2001), 91–108.
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