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1. Introduction

Let f be a function, defined and continuous on a compact set K of complex
space Cn, and let ρn(f) be the least deviation of K from the rational functions
of degree less than or equal to n:

ρn(f) = inf
rn

‖f − rn‖K ,

where ‖·‖K is the uniform norm and the infimum is taken over all rational func-
tions of the form

rm(z) =

∑

|α|≤m

aαz
α

∑

|α|≤m

bαzα
.

Here α = (α1, α2, ..., αn) is a multi-index.

As usual, we denote by em(f) the least deviation of on K from its polynomials
approximation of degree less or equal to m. Obviously, ρm(f) ≤ em(f) for every
m=1,2,3,. . . In papers ([1, 2]) Gonchar proved in the one dimensional case that
the class of functions

R(K) = {f ∈ C(K) : lim
m→∞

m

√

ρm(f) < 1}

possess one of the most important property of analytic functions. Namely, if

lim
m→∞

m

√

ρm(f) < 1
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and f(z) = 0 on the set E ⊂ K ⊂ C of positive logarithm capacity, then
f(z) ≡ 0, z ∈ K.

By analogy with class,

B(K) = {f ∈ C(K) : lim
m→∞

m

√

em(f) < 1},

which is called the class of quasianalytic functions of Bernstein (see [3, 4, 5]),
we call R(K) the class of quasianalytic functions of Gonchar. It is known that
functions that are analytic on K can be characterized by condition (Bernstein’s
theorem)

lim
m→∞

m

√

em(f) < 1.

2. Main Theorem

In paper ([6]) K. Diederich and J.E. Fornaess constructed examples of smooth
functions, whose graphs are not pluripolar in C2. In recent work ([4]) D. Coman,
N. Levenberg and E.A. Poletsky have proved that if f ∈ B(K), K = [a, b] ⊂ R,
then its graph Γf is not pluripolar in C2.

In this paper we prove following more general theorem.

Theorem 2.1. If f ∈ R(K), K ⊂ Cn, then its graph Γf pluripolar in Cn+1.

Proof. According to the hypothesis of the theorem there exists a sequence of
natural numbers mk and a corresponding sequence of rational functions

rmk
=

pmk

qmk

such that
ρmk

(f) =
∥

∥f − rmk

∥

∥

K
≤ αmk ,

where α : 0 < α < 1 is some fixed number. Without loss of generality we can
assume that

‖f‖K ≤
1

2
,
∥

∥pmk

∥

∥

K
≤ 1

∥

∥qmk

∥

∥

K
= 1 .

According to Bernstein-Walsh inequality (see [8]),
∣

∣pmk
(z)

∣

∣ ≤ emkV
∗(z,K) and

∣

∣qmk
(z)

∣

∣ ≤ emkV
∗(z,K)

for any z ∈ Cn and k ∈ N. Put

V ∗(z, K) = lim
z′→z

V (z,K),

where

V (z, K) = sup{
1

m
ln |pm(z

′)| : ‖pm‖K ≤ 1}
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is the extremal function of Green. We introduce the following auxiliary sequence
of plurisubharmonic functions

uk(z, w) =
1

mk
ln
∣

∣qmk
(z) · w − pmk

(z)
∣

∣, (z, w) ∈ C
n+1.

For (z, w) ∈ C
n+1 we have

1

mk

ln |qmk
(z) · w−pmk

(z)| ≤
1

mk

ln(|qmk
(z) · w|+ |pmk

(z)|)

≤ max{
1

mk
ln 2|pmk

(z)|,
1

mk
ln 2|qmk

(z) · w|}

= max{
1

mk
ln |pmk

(z)|,
1

mk
ln |qmk

(z)|+
1

mk
ln |w|}+

ln 2

mk
.

From here we obtain the following estimate

uk(z, w) ≤ max{V ∗(z, K), V ∗(z, K) +
1

mk
ln |w|} +

ln 2

mk
.

Consequently, the sequence of plurisubharmonic functions uk(z, w) is locally uni-
formly bounded from above.

Let

u(z, w) = lim
k→∞

uk(z, w).

The function u(z, w) is also locally bounded from above, i.e.,

u(z, w) ≤ V ∗(z,K).

We denote by

u∗(z, w) = lim
(z′,w′)→(z,w)

u(z′, w′)

the regularization of function u(z, w). The set

E = {(z, w) ∈ C
n+1 : u(z, w) < u∗(z, w)}

is pluripolar in Cn+1(see [7, 8]).

Let now (z, w) ∈ Γf be a fixed point. (Note that qm(z) 6= 0 for z ∈ K). Then

u(z, w) = lim
k→∞

ln |qmk
(z)|

1
mk

∣

∣

∣
w −

pm
k
(z)

qm
k
(z)

∣

∣

∣

1
mk ≤ lim

k→∞
lnα|qmk

(z)|
1
mk

= lnα + lim
k→∞

|qmk
(z)|

1

m
k .
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If (z, w) ∈ (K × C)\Γf , then

u(z, w) = lim
k→∞

1
mk

ln |qmk
(z)w − pmk

(z)| = lim
k→∞

ln |qmk
(z)|

1
mk

∣

∣

∣
w −

pm
k
(z)

qm
k
(z)

∣

∣

∣

1
mk

= lim
k→∞

ln |qmk
(z)|

1
mk .

It follows that

lim
k→∞

|qmk
(z)|

1
mk 6= 0

at a point z ∈ K, then (z, f(z)) belongs to the pluripolar set E. Therefore, to
complete the proof of the theorem it is enough to show that the set

A =

{

z ∈ K : lim
k→∞

|qmk
(z)|

1
mk = 0

}

=

{

z ∈ K : lim
k→∞

|qmk
(z)|

1
mk = 0

}

is pluripolar.

Assume that A is not pluripolar, i.e., plurisubharmonic capacity cap(A) > 0.
We consider the following sequence of subharmonic functions

ϑ∗
k(z) = lim

z′→z
ϑk(z

′), z ∈ C
n,

where
ϑk(z) = sup

s≥k
|qms

(z)|1/ms .

It is clear that the sequence ϑ∗
k(z) is locally uniformly bounded, 0 ≤ ϑ∗

k(z) ≤
eV

∗(z,K), and is not monotonically increasing. In addition, ϑ∗
k(z) → 0 on A

except for the pluripolar set

F =
∞
∪
k=1

{z ∈ C
n : ϑk(z) < ϑ∗

k(z)}

since by definition the sequence ϑk(z) tends to zero on A.

Since ϑ∗
k(z) is monotonic, for every ε : 0 < ε < cap(A) there exists an open

set Uε, cap(Uε) < ε, such that the sequence ϑ∗
k(z) converges uniformly on the

set Aε = A\Uε (see, for example, [7]). It follows that there exists a compact
set A0 ⊂ Aε , cap(A0) > 0 such that the sequence of subharmonic functions
ϑ∗
k(z) converges uniformly to zero on the set A0. Consequently, the sequence

|qmk
(z)|1/mk also converges uniformly to zero on the compact set A0.

Now, we use the so-called τ - capacity, introduced by A. Sadullaev (see [7]).
Let K be compact set from some polydisk U ⊂ Cn. We consider a polynomial
Tm(z), deg Tm(z) ≤ m, normalized by the condition ‖Tm‖U = 1, for which the
norm ‖Tm‖K is minimal among all such polynomials. Then the limit

(2.2) lim
m→∞

‖Tm‖
1
m
K = τ(K,U)
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exists and, in fact,

(2.3) ‖Tm‖
1
m
K ≥ τ(K,U)

for every m ∈ N. Moreover,

(2.4) τ(K,U) = exp{−sup
z∈U

V ∗(z,K)}.

It follows from (2.2), (2.3) and (2.4) that

(2.5) ‖qmk
‖

1
mk

A0
≥ ‖Tmk

‖
1
mk

K ≥ τ(K,U) > 0,

where U ⊃⊃ K, as ‖qmk
‖K = 1 and ‖qmk

‖U ≥ 1. It follows from inequality (4)

that the sequence |qmk
(z)|

1
mk does not converges uniformly to zero on the set

A0. We arrived at a contradiction. Hence the set A is pluripolar, completing the
proof.
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