Proceedings of the ICM2010 Satellite Conference International Workshop on Harmonic and Quasiconformal Mappings (HQM2010) Editors: D. Minda, S. Ponnusamy, and N. Shanmugalingam J. Analysis Volume 18 (2010), 233–238

Pluripolarity of Graphs of Quasianalytic Functions of Several Variables in the Sense of Gonchar

Sevdiyor A. Imomkulov and Zafar Sh. Ibragimov

Abstract. In this paper we prove pluripolarity of graphs of quasianalytic functions of several variables in the sense of Gonchar.

Keywords. Pluripolar sets, quasianalytic functions.

2010 MSC. Primary 32U15.

1. Introduction

Let f be a function, defined and continuous on a compact set K of complex space \mathbb{C}^n , and let $\rho_n(f)$ be the least deviation of K from the rational functions of degree less than or equal to n:

$$\rho_n(f) = \inf_{r_n} \|f - r_n\|_K,$$

where $\|\cdot\|_{K}$ is the uniform norm and the infimum is taken over all rational functions of the form

$$r_m(z) = \frac{\sum\limits_{|\alpha| \le m} a_\alpha z^\alpha}{\sum\limits_{|\alpha| \le m} b_\alpha z^\alpha}.$$

Here $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ is a multi-index.

As usual, we denote by $e_m(f)$ the least deviation of on K from its polynomials approximation of degree less or equal to m. Obviously, $\rho_m(f) \leq e_m(f)$ for every m=1,2,3,... In papers ([1, 2]) Gonchar proved in the one dimensional case that the class of functions

$$R(K) = \{ f \in C(K) : \lim_{m \to \infty} \sqrt[m]{\rho_m(f)} < 1 \}$$

possess one of the most important property of analytic functions. Namely, if

$$\lim_{m \to \infty} \sqrt[m]{\rho_m(f)} < 1$$

ISSN 0971-3611 © 2010

and f(z) = 0 on the set $E \subset K \subset \mathbb{C}$ of positive logarithm capacity, then $f(z) \equiv 0, z \in K$.

By analogy with class,

$$B(K) = \{ f \in C(K) : \lim_{m \to \infty} \sqrt[m]{e_m(f)} < 1 \},$$

which is called the class of quasianalytic functions of Bernstein (see [3, 4, 5]), we call R(K) the class of quasianalytic functions of Gonchar. It is known that functions that are analytic on K can be characterized by condition (Bernstein's theorem)

$$\overline{\lim_{m \to \infty}} \sqrt[m]{e_m(f)} < 1.$$

2. Main Theorem

In paper ([6]) K. Diederich and J.E. Fornaess constructed examples of smooth functions, whose graphs are not pluripolar in \mathbb{C}^2 . In recent work ([4]) D. Coman, N. Levenberg and E.A. Poletsky have proved that if $f \in B(K)$, $K = [a, b] \subset \mathbb{R}$, then its graph Γ_f is not pluripolar in \mathbb{C}^2 .

In this paper we prove following more general theorem.

Theorem 2.1. If $f \in R(K)$, $K \subset \mathbb{C}^n$, then its graph Γ_f pluripolar in \mathbb{C}^{n+1} .

Proof. According to the hypothesis of the theorem there exists a sequence of natural numbers m_k and a corresponding sequence of rational functions

$$r_{m_k} = \frac{p_{m_k}}{q_{m_k}}$$

such that

$$\rho_{m_k}(f) = \left\| f - r_{m_k} \right\|_K \le \alpha^{m_k}$$

where α : $0 < \alpha < 1$ is some fixed number. Without loss of generality we can assume that

$$||f||_{K} \leq \frac{1}{2}, ||p_{m_{k}}||_{K} \leq 1 ||q_{m_{k}}||_{K} = 1$$

According to Bernstein-Walsh inequality (see [8]),

$$|p_{m_k}(z)| \le e^{m_k V^*(z,K)}$$
 and $|q_{m_k}(z)| \le e^{m_k V^*(z,K)}$

for any $z \in \mathbb{C}^n$ and $k \in \mathbb{N}$. Put

$$V^*(z, K) = \overline{\lim_{z' \to z}} V(z, K),$$

where

$$V(z, K) = \sup\{\frac{1}{m}\ln|p_m(z')| : \|p_m\|_K \le 1\}$$

is the extremal function of Green. We introduce the following auxiliary sequence of plurisubharmonic functions

$$u_k(z,w) = \frac{1}{m_k} \ln |q_{m_k}(z) \cdot w - p_{m_k}(z)|, \ (z,w) \in \mathbb{C}^{n+1}.$$

For $(z, w) \in \mathbb{C}^{n+1}$ we have

$$\begin{aligned} \frac{1}{m_k} \ln |q_{m_k}(z) \cdot w - p_{m_k}(z)| &\leq \frac{1}{m_k} \ln(|q_{m_k}(z) \cdot w| + |p_{m_k}(z)|) \\ &\leq \max\{\frac{1}{m_k} \ln 2|p_{m_k}(z)|, \frac{1}{m_k} \ln 2|q_{m_k}(z) \cdot w|\} \\ &= \max\{\frac{1}{m_k} \ln |p_{m_k}(z)|, \frac{1}{m_k} \ln |q_{m_k}(z)| + \frac{1}{m_k} \ln |w|\} + \frac{\ln 2}{m_k}. \end{aligned}$$

From here we obtain the following estimate

$$u_k(z, w) \le \max\{V^*(z, K), V^*(z, K) + \frac{1}{m_k} \ln |w|\} + \frac{\ln 2}{m_k}.$$

Consequently, the sequence of plurisubharmonic functions $u_k(z, w)$ is locally uniformly bounded from above.

Let

$$u(z,w) = \overline{\lim_{k \to \infty}} u_k(z,w).$$

The function u(z, w) is also locally bounded from above, i.e.,

$$u(z,w) \le V^*(z,K).$$

We denote by

$$u^*(z,w) = \overline{\lim_{(z',w')\to(z,w)}} u(z',w')$$

the regularization of function u(z, w). The set

$$E = \{(z, w) \in \mathbb{C}^{n+1} : u(z, w) < u^*(z, w)\}$$

is pluripolar in \mathbb{C}^{n+1} (see [7, 8]).

Let now $(z, w) \in \Gamma_f$ be a fixed point. (Note that $q_m(z) \neq 0$ for $z \in K$). Then

$$u(z,w) = \overline{\lim_{k \to \infty}} \ln |q_{m_k}(z)|^{\frac{1}{m_k}} \left| w - \frac{p_{m_k}(z)}{q_{m_k}(z)} \right|^{\frac{1}{m_k}} \le \overline{\lim_{k \to \infty}} \ln \alpha |q_{m_k}(z)|^{\frac{1}{m_k}}$$
$$= \ln \alpha + \overline{\lim_{k \to \infty}} |q_{m_k}(z)|^{\frac{1}{m_k}}.$$

If $(z, w) \in (K \times \mathbb{C}) \setminus \Gamma_f$, then

$$u(z,w) = \overline{\lim_{k \to \infty} \frac{1}{m_k} \ln |q_{m_k}(z)w - p_{m_k}(z)|} = \overline{\lim_{k \to \infty} \ln |q_{m_k}(z)|^{\frac{1}{m_k}} |w - \frac{p_{m_k}(z)}{q_{m_k}(z)}|^{\frac{1}{m_k}}}$$
$$= \overline{\lim_{k \to \infty} \ln |q_{m_k}(z)|^{\frac{1}{m_k}}}.$$

It follows that

$$\overline{\lim_{k \to \infty}} |q_{m_k}(z)|^{\frac{1}{m_k}} \neq 0$$

at a point $z \in K$, then (z, f(z)) belongs to the pluripolar set E. Therefore, to complete the proof of the theorem it is enough to show that the set

$$A = \left\{ z \in K : \, \overline{\lim_{k \to \infty}} \, |q_{m_k}(z)|^{\frac{1}{m_k}} = 0 \right\} = \left\{ z \in K : \, \lim_{k \to \infty} |q_{m_k}(z)|^{\frac{1}{m_k}} = 0 \right\}$$

is pluripolar.

Assume that A is not pluripolar, i.e., plurisubharmonic capacity cap(A) > 0. We consider the following sequence of subharmonic functions

$$\vartheta_k^*(z) = \overline{\lim_{z' \to z}} \vartheta_k(z'), \ z \in \mathbb{C}^n,$$

where

$$\vartheta_k(z) = \sup_{s \ge k} |q_{m_s}(z)|^{1/m_s}$$

It is clear that the sequence $\vartheta_k^*(z)$ is locally uniformly bounded, $0 \leq \vartheta_k^*(z) \leq e^{V^*(z,K)}$, and is not monotonically increasing. In addition, $\vartheta_k^*(z) \to 0$ on A except for the pluripolar set

$$F = \bigcup_{k=1}^{\infty} \{ z \in \mathbb{C}^n : \vartheta_k(z) < \vartheta_k^*(z) \}$$

since by definition the sequence $\vartheta_k(z)$ tends to zero on A.

Since $\vartheta_k^*(z)$ is monotonic, for every $\varepsilon : 0 < \varepsilon < cap(A)$ there exists an open set U_{ε} , $cap(U_{\varepsilon}) < \varepsilon$, such that the sequence $\vartheta_k^*(z)$ converges uniformly on the set $A_{\varepsilon} = A \setminus U_{\varepsilon}$ (see, for example, [7]). It follows that there exists a compact set $A_0 \subset A_{\varepsilon}$, $cap(A_0) > 0$ such that the sequence of subharmonic functions $\vartheta_k^*(z)$ converges uniformly to zero on the set A_0 . Consequently, the sequence $|q_{m_k}(z)|^{1/m_k}$ also converges uniformly to zero on the compact set A_0 .

Now, we use the so-called τ - capacity, introduced by A. Sadullaev (see [7]). Let K be compact set from some polydisk $U \subset \mathbb{C}^n$. We consider a polynomial $T_m(z)$, deg $T_m(z) \leq m$, normalized by the condition $||T_m||_U = 1$, for which the norm $||T_m||_K$ is minimal among all such polynomials. Then the limit

(2.2)
$$\lim_{m \to \infty} \|T_m\|_K^{\frac{1}{m}} = \tau(K, U)$$

236

exists and, in fact,

(2.3)
$$||T_m||_K^{\frac{1}{m}} \ge \tau(K, U)$$

for every $m \in \mathbf{N}$. Moreover,

(2.4)
$$\tau(K,U) = \exp\{-\sup_{z \in U} V^*(z,K)\}.$$

It follows from (2.2), (2.3) and (2.4) that

(2.5)
$$\|q_{m_k}\|_{A_0}^{\frac{1}{m_k}} \ge \|T_{m_k}\|_{K}^{\frac{1}{m_k}} \ge \tau(K, U) > 0,$$

where $U \supset K$, as $\|q_{m_k}\|_K = 1$ and $\|q_{m_k}\|_U \ge 1$. It follows from inequality (4) that the sequence $|q_{m_k}(z)|^{\frac{1}{m_k}}$ does not converges uniformly to zero on the set A_0 . We arrived at a contradiction. Hence the set A is pluripolar, completing the proof.

References

- A.A. GONCHAR, On best approximations by rational functions, *Dokl. Akad. Nauk SSSR*, 100(1955), 205–208, (Russian).
- [2] A.A. GONCHAR, Quasianalytic class of functions, connected with best approximated by rational functions, *Izv. of the Academy of Sciences Armenia SSR*, VI, no. 2-3, (1971), 148–159.
- [3] W. PLESNIAK, Quasianalytic functions of several complex variables, Zeszyty Nauk. Uniw. Jagiell, 15(1971), 135–145.
- [4] D. COMAN, N. LEVENBERG and E.A. POLETSKY, Quasianalyticity and Pluripolarity, J. Amer. Math. Soc., 18(2005), no. 2, 9–16.
- [5] A.F. TIMAN, Theory of approximation of functions of a real variable, Pergaon Press, McMillian, New York, 1963.
- [6] K. DIEDERICH and J.E. FORNASS, A smooth curve in C² which is not a pluripolar set, Duke Math. J., 49(1982), 931–936.
- [7] A. SADULLAEV, Rational approximation and pluripolar sets, Mat. Sb. 119, no. 1 (1982), 96–118; English transl. in Math. USSR-Sb. 47(1984).
- [8] A. SADULLAEV, Plurisubharmonic functions, Sovrem. Probl. Mat. Fund. Naprav, 8, (VINITI, Moscow), (1985), 65–113; English transl. in Encyclopaedia Math. Sci., 8 [Several complex variables II], Springer-Verlag, Berlin, 1984.

HQM2010

E-MAIL: sevdi@rambler.ru

Sevdiyor A. Imomkulov ADDRESS: Department of Mathematics Navoi State Pedagogical Institute 45 Ibn Sino st., Navoi city, 706800 Navoi region, Uzbekistan

Zafar Sh. Ibragimov ADDRESS: Department of Mathematics Urgench State University 14 H. Olimjan st., Urgench city, 220100 Khorezm, Uzbekistan E-MAIL: z.ibragim@gmail.com

238