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Abstract. This is a survey article about the regularity of solutions to the p-
Laplace equation on Euclidean spaces. Such functions can be characterized as
minimizers to certain non-linear energy functionals. The methods presented
here, originally due to DeGiorgi, show that Harnack’s inequality and Hölder
continuity follow solely from this minimization property.

These methods also extend to a large class of metric spaces, specifically
those supporting doubling measures and Poincaré inequalities. In this setting
we discuss the basic theory and survey recent results.
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1. Introduction

This is an introduction to p-harmonic functions and their regularity theory.
For smooth domains in Rn with p > 1, such functions correspond to solutions to
a certain non-linear partial differential equation, called the p-Laplace equation:

(1.1) 0 = ∆pu := div
(

|∇u|p−2∇u
)

=

n
∑

i=1

∂

∂xi

[

|∇u|p−2 ∂u

∂xi

]

.

For p = 2, these are the usual harmonic functions.

Surprisingly there are well-defined analogues of these functions in the setting of
metric measure spaces: that is, metric spaces (X, d) equipped with Borel regular
measures µ. The generality of our perspective is motivated by its connections to
analysis, partial differential equations, geometry (both smooth and non-smooth),
and even subjects outside of mathematics.

As a first example, Coifman and Weiss [9], [10] discovered that many facts
from harmonic analysis can be generalized from Euclidean spaces to metric spaces
supporting doubling measures (or spaces of homogeneous type). This includes
good analogues of Riesz potentials, the Lebesgue differentiation theorem, as well
as the theory of Hardy spaces Hp and the well-known duality between H1 and
BMO, the class of functions of bounded mean oscillation [19].

Later, Grigor’yan [23] and Saloff-Coste [43] have separately shown that several
hypotheses of a metric space nature — namely, the volume doubling condition
and a Poincaré inequality — are crucial in developing tools for partial differential
equations on Riemannian manifolds. Colding and Minicozzi [11] later used these
tools in their solution of Yau’s conjecture [47], a generalized Liouville theorem for
harmonic functions on Riemannian manifolds with non-negative Ricci curvature.

Using similar ideas for p-harmonic functions, Cheeger [6] proved the existence
of generalized differentiable structures for metric spaces satisfying analogues of
the above hypotheses. In later work by Cheeger and Kleiner [7] and by Lee and
Naor [35], such structures have led to counter-examples to the Goemans-Linial
conjecture in theoretical computer science!

Regularity in our context refers only to “zeroth-order” behavior, such as con-
tinuity and growth properties of p-harmonic functions. Specifically, our approach
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avoids the explicit geometry of Euclidean spaces, as well as special properties of
functions defined on them. This includes the usual notion of weak or distribu-
tional derivative, as discussed in [18] or in [48].

One may ask further questions of C1,α-regularity (i.e. the modulus of continu-
ity for derivatives) and the case for Euclidean spaces is well-established; see [36],
[14] for details. As of now, however, there is no robust theory of higher-order
derivatives for general metric measure spaces, except in certain special cases, such
as sub-Riemannian manifolds. For more about the geometry of such spaces, see
[1] and [24] and the corresponding regularity theory can be found in [4], [5], [17],
and [39].

Remark 1.1. As another direction of interest, one could generalize the equations
instead. For example, we may consider second-order partial differential equations
similar to Equation (1.1), but where the terms |∇u|p−2∇u are replaced by more
general vector fields A(x, u(x),∇u(x)), where A : Ω × R × Rn → Rn satisfies
certain ellipticity conditions. We could also consider equations with additional
non-homogeneous terms:

(1.2) div[A(x, u(x),∇u(x))] + B(x, u(x),∇u(x)) = 0.

Here B : Ω×R×Rn → R also obeys certain structure conditions, which we will
not specify here. For references, see the classical work of Ladyžhenskaya and
Uralt’seva [34] as well as the book of Giusti [21].

The article is outlined as follows. We begin with the case of Rn and the
remainder of Section §1 is devoted to identifying p-harmonic functions as mini-
mizers to certain energy functionals. We then introduce Harnack’s inequality, the
main result of this survey, and discuss its immediate consequences for regularity.

Section §2 is about the celebrated De Giorgi approach to regularity. Our intent
is to discuss the main ideas of the theory and the heuristics behind technical
arguments of proof. Occasionally we will make simplifying assumptions or treat
specific elementary cases in order to clarify the nature of these ideas. The most
general cases will not be treated here. As the discussion progresses, we instead
direct the reader to more substantial references in the literature.

Lastly, in Section §3 we formulate p-harmonic functions in greater generality,
and indicate how the tools of the previous section generalize to a large class of
metric measure spaces. We then formulate the corresponding regularity results,
as discussed in [32] and indicate a few open problems in this setting.

Notation and Conventions. For a set S and a function u : S → R, its
truncations are denoted by u+ := max(u, 0) and u− := −min(u, 0).

On a metric space (X, d) equipped with a Borel measure, let Lp(X, µ) denote
the class of p-integrable functions on X with respect to µ. For a ball B ⊂ X the
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mean value of a (locally) integrable function over B is

uB := −
∫

B

u dµ :=
1

µ(B)

∫

B

u dµ.

If X = Ω is a domain in Rn, then we write Lp(Ω) = Lp(Ω, dx), where dx is the
Lebesgue measure, and we write |A| for the Lebesgue measure of a measurable
set A ⊂ Rn. For a domain Ω in Rn, we denote by C∞

c (Ω) the space of smooth,
real-valued functions with compact support in Ω.

As a convention in this paper, the symbol C denotes a non-negative constant
that depends only on given parameters. Its exact value may change, even from
line to line within a single estimate.

We will always assume 1 < p < n, where n is the dimension of the Euclidean
space. Because the issues discussed here are local in nature, Hölder’s inequality
gives W 1,q(B) ⊂ W 1,p(B) for higher exponents q ≥ n > p and for balls B ⊂ Rn,
so there is no loss of generality.

1.1. From p-harmonic functions to energy minimizers. For partial dif-
ferential equations and variational problems, it is crucial to work in a suitable
class of functions with good properties, such as compactness, from which one
can prove the existence and uniqueness of solutions. This leads us to study the
Sobolev spaces W 1,p(Ω), where Ω is a fixed domain in Rn.

We begin by defining a norm on the class of smooth, Lebesgue p-integrable
functions f : Ω → R whose gradients are also p-integrable:

‖f‖1,p :=
{

∫

Ω

|f |p dx
}

1
p

+
{

∫

Ω

|∇f |p dx
}

1
p

We define the Sobolev space W 1,p(Ω) as the completion of this class of functions
under this norm: that is,

(1.3) W 1,p(Ω) :=
({

f ∈ C∞(Ω) : ‖f‖1,p < ∞
}

, ‖ · ‖1,p
)

.

Moreover, W 1,p
0 (Ω) is defined as the norm-closure of C∞

0 (Ω), the class of com-
pactly supported smooth functions on Ω.

Looking ahead, an arbitrary metric space has little a priori structure, so the
notion of a derivative may not be well-defined. We will later consider, however,
an analogue of the norm of the gradient which gives rise to energy functionals.

Motivated by this, we now show that p-harmonic functions, for p > 1, are
equivalently local minimizers of the p-energy integral

(1.4) u 7→
∫

Ω′

|∇u|p dx.
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where the integral is tested over all domains Ω′ compactly contained in Ω. As
a related notion we also consider quasi-minimizers, as first studied by Giaquinta
and Giusti [20].

Definition 1.2. Let u ∈ W 1,p(Ω). We call u a (p-)energy minimizer if
∫

Ω′∩{u 6=v}

|∇u|p dx ≤
∫

Ω′∩{u 6=v}

|∇v|p dx

holds for all bounded sub-domains Ω′ ⊂ Ω and all functions v ∈ W 1,p(Ω′) with
u− v ∈ W 1,p

0 (Ω). If there exists K ≥ 1 so that
∫

Ω∩{u 6=v}

|∇u|p dx ≤ K
{

∫

Ω∩{u 6=v}

|∇v|p dx
}

holds for all Ω′ and v as before, then we call u a (K-)quasi-minimizer.

A word of caution is in order: solutions to (1.1) are a priori more regular
than energy minimizers, because the p-Laplace equation requires second deriva-
tives. To interpolate between the two notions, we recall the integration by parts
formula: for a domain Ω ⊂ Rn, every smooth function u : Ω → R satisfies

(1.5)

∫

Ω

∂u

∂xi
ϕdx = −

∫

Ω

u
∂ϕ

∂xi
dx

for all ϕ ∈ C∞
0 (Ω). In fact, one can define the classes W 1,p(Ω) as

W 1,p(Ω) :=
{

f ∈ Lp(Ω) : ∃ {∂if}ni=1 ⊂ Lp(Ω), ∀ϕ ∈ C∞
c (Ω), Eq. (1.5) holds

}

and it is well-known that the notions are equivalent [38].

Using the integration by parts formalism, we now define weak solutions of
(1.1) as those functions u ∈ W 1,p(Ω) so that the identity

∫

Ω

|∇u|p−2∇u · ∇ϕdx = 0

holds for all ϕ ∈ C∞
c (Ω). In the case when u is C2-smooth, this agrees with the

usual (pointwise) notion of solution. For details, see [18] and [48].

We now turn to the correspondence between p-harmonic functions and p-
energy minimizers.

Theorem 1.3. Let Ω be a domain in Rn. For every u ∈ W 1,p(Ω), the following
conditions are equivalent:

1. u is p-harmonic: i.e. u is a weak solution of Equation (1.1);
2. u is a p-energy minimizer in the sense of Definition 1.2.
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So by studying p-energy minimizers on metric spaces, our conclusions will also
hold in more regular settings, such as smooth manifolds, where the p-Laplace
equation (1.1) is well-defined.

Proof. (1) ⇒ (2). Let Ω′ be any bounded domain in Ω and let v ∈ W 1,p(Ω′)
satisfy u − v ∈ W 1,p

0 (Ω′). By approximation, assume that u − v is smooth and
compactly supported in Ω, so we may extend it to a smooth, compactly supported
function on Rn. For simplicity, we denote the extension by u− v as well.

Since u is a solution of (1.1), the integration by parts formula gives

0 = −
∫

Ω′

|∇u|p−2∇u · ∇(u− v) dx

∫

Ω′

|∇u|p dx =

∫

Ω′

|∇u|p−2(∇u · ∇u) dx

from which it follows, by Hölder’s inequality with |∇u|p−1 ∈ L
p

p−1 (Ω) and by
Young’s inequality ab ≤ ap

p
+ bq

q
, that

∫

Ω′

|∇u|p dx =

∫

Ω′

|∇u|p−2(∇u · ∇v) dx ≤
∫

Ω′

|∇u|p−1|∇v| dx

≤
(

∫

Ω′

|∇u|p dx
)

p−1

p
(

∫

Ω′

|∇v|p dx
)

1
p

≤
(p− 1

p

)

∫

Ω′

|∇u|p dx +
1

p

∫

Ω′

|∇v|p dx,

so

∫

Ω′

|∇u|p dx ≤
∫

Ω′

|∇v|p dx.

(2) ⇒ (1). For a bounded sub-domain Ω′ ⊂ Ω, let ϕ ∈ C∞
c (Ω′) and define a

function E : R → R by the formula

E(t) :=

∫

Ω

|∇u + t∇ϕ|p dx.

For v := u−ϕ we have u−v ∈ W 1,p
0 (Ω′). It is easy to check that E is C1-smooth,

and it follows from (2) that E has a minimum at t = 0. By “differentiating under
the integral sign” and integrating by parts, we obtain

0 =
d

dt
E(t)

∣

∣

∣

t=0
=

∫

Ω

d

dt
|∇u + t∇ϕ|p

∣

∣

∣

t=0
dx =

∫

Ω

|∇u|p−2∇u · ∇ϕdx,

so u is a weak solution of Equation (1.1).
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Remark 1.4. For equations of the form (1.2) where A and B satisfy certain
structure and growth conditions similar to (1.1), it is a general fact that solutions
are quasi-minimizers of modified energy functionals

u 7→ F(x, u,∇u; Ω) :=

∫

Ω

F
(

x, u(x),∇u(x)
)

dx

where F depends on the previous data A and B. For details, see [21].

1.2. Harnack’s inequality: a first look. For the linear case (p = 2) it is well-
known that harmonic functions are characterized by the mean value property, as
stated below. Here σ denotes the surface area measure on a (n− 1)-dimensional
submanifold in Rn.

Theorem 1.5. For u ∈ W 1,2(Ω), we have ∆u = 0 if and only if

(1.6) u(x0) = −
∫

∂B

u(ω) dσ(ω) = −
∫

B

u(x) dx.

holds for all balls B = B(x0, r0) ⊂ Ω.

Idea of the Proof. For any C2-smooth function u : Ω → R, the function

f(r) := −
∫

∂B(x0,r)

u(ω) dσ(ω) = −
∫

∂B(0,1)

u(x0 + rθ) dσ(θ)

is also C2-smooth on [0, r0). “Differentiating under the integral sign” gives

f ′(r) = −
∫

∂B(0,1)

Du(x0 + rθ) · θ dσ(θ)

= −
∫

∂B(x0,r)

Du(ω) · ω − x0

r
dσ(ω) = −

∫

∂B

∂u

∂ν
(ω) dσ(ω)

where ∂u
∂ν

is the derivative of u in the direction of the (outward) unit normal ν.
Applying Green’s theorem, we see that

(1.7) f ′(r) = −
∫

∂B(x0,r)

∂u

∂ν
(ω) dσ(ω) =

1

Area(∂B(x0, r))

∫

B(x0,r)

∆u(x) dx.

So if u is harmonic, then f ′(r)|(0,r0) = 0, so f is constant on [0, r0] with

−
∫

∂B(x0,r0)

u(ω) dσ(ω) = f(r0) = lim
rց0

f(r) = u(x0),

which is the mean value property.

On the contrary, suppose that ∆u(x0) 6= 0 for some x0 ∈ Ω; without loss,
∆u(x0) > 0. This means there is a r > 0 so that B(x0, 2r) ⊂ Ω and ∆u|B(x0,r) >
0, so the previous function f cannot be constant on [0, 2r], and therefore the
mean value property fails for u.
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Now let u ∈ W 1,2(Ω). For each ǫ > 0, let ηǫ ∈ C∞
c (Ω) be supported on a ball

B(x0, ǫ) and so that x 7→ ηǫ(x− x0) is radially-symmetric on B(0, ǫ). We claim
that if u is a weak solution to (1.1), then ∆[u ∗ ηǫ] = 0, for all ǫ > 0. Indeed, a
change of variables argument shows that

∫

Ω

ϕ∆[u ∗ ηǫ] dx = −
∫

Ω

[(∇u) ∗ ηǫ] · ∇ϕdx = −
∫

Ω

∇u · ∇[ϕ ∗ ηǫ] dx

for all ϕ ∈ C∞
c (Ω). Similarly, if u has the mean value property, then so does u∗ηǫ

for all ǫ > 0, so the argument reduces to the previous case of C2-smoothness.

Returning to the general case of 1 < p < n, we now discuss the main result of
this survey.

Theorem 1.6 (Harnack’s inequality). Let Ω be a domain in Rn. There exists a
constant C = C(n, p,Ω) ≥ 1 so that for every positive-valued p-energy minimizer
u ∈ W 1,p(Ω) and for all balls B(x, 2R) ⊂ Ω, we have

sup
B(x,R)

u ≤ C
{

inf
B(x,R)

u
}

.

The proof for Theorem 1.6 is split into two steps.

Theorem 1.7 (Local boundedness). There exists C = C(p, n,Ω) > 0 so that

(1.8) sup
B(x0,

1
2
R)

u ≤ C
{

−
∫

B(x0,R)

|u|p dx
}

1
p

holds for all p-energy minimizers u : Ω → R and all balls B(x0, R) ⊂ Ω.

Theorem 1.8 (Weak Harnack). There exists C ′ = C ′(p, n,Ω) ≥ 0 so that

(1.9) C ′
{

−
∫

B(x0,R)

up dx
}

1
p ≤ inf

B(x0,2R)
u

holds, for all balls B(x0, 2R) ⊂ Ω and all p-energy minimizers u : Ω → R that
are positive on B(x0, 2R).

One can therefore interpret Harnack’s inequality as a generalized mean value
property: if u is a positive p-energy minimizer, then its values at x0 ∈ Ω are
comparable to its p-integral averages over balls centered at x0:

u(x0) ≈
{

−
∫

B(x0,R)

up dx
}

1
p

.

(Here ≈ refers to the previous uniform constants that are independent of x0.)
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Remark 1.9. To clarify, we interpret Theorems 1.7 and 1.8 to mean that p-
energy minimizers have a.e. representatives that satisfy the above inequalities.

Indeed, in regularity theory we begin with a minimizer of the energy functional
(1.4), which is known, a priori, to be p-integrable and have locally finite p-energy.
The point is to show that it has good pointwise a.e. properties.

Related to this, we note that Harnack’s inequality implies additional fine
properties for energy minimizers. The first is the strong maximum principle
for p-harmonic functions. We postpone the proof to §2.3.

Corollary 1.10 (Strong Maximum Principle). Let Ω be a domain in Rn, let
p > 1, and let u : Ω → R be a p-energy minimizer. If u attains its maximum or
minimum in Ω, then u is constant on Ω.

The next consequence was first observed by Moser [40]. To fix terminology,
we denote the oscillation of a function u : Ω → R on a subset A ⊂ Ω as

osc
A

u := sup
A

u− inf
A

u.

Corollary 1.11 (Hölder continuity). Let Ω be a domain in Rn. There exist
constants C = C(n, p,Ω) ≥ 1 and α = α(n, p) > 0 so that for every p-energy
minimizer u ∈ W 1,p(Ω) and for all balls B(x, r) ⊂ B(x,R) ⊂ Ω, we have

osc
B(x,r)

u ≤ C
{

osc
B(x,R)

u
}( r

R

)α

In particular, every p-energy minimizer has an a.e. representative that is locally
Hölder continuous, with exponent α.

Proof of Corollary 1.11. Assuming Theorem 1.7 through Corollary 1.10 for
now, let u ∈ W 1,p(Ω) be a p-energy minimizer and let B(x, 2r) ⊂ Ω. Putting

M := sup
B(x,2r)

u and m := inf
B(x,2r)

u,

note that M − u and u −m are non-negative p-energy minimizers. Since their
infima are zero, Corollary 1.10 implies that both functions are strictly positive
on Ω, so Harnack’s inequality applies. Clearly we have

M − inf
B(x,r)

u = sup
B(x,r)

(M − u) ≤ C inf
B(x,r)

(M − u) = C
{

M − sup
B(x,r)

u
}

{

sup
B(x,r)

u
}

−m = sup
B(x,r)

(u−m) ≤ C inf
B(x,r)

(u−m) = C
({

inf
B(x,r)

u
}

−m
)
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and adding the inequalities gives

osc
B(x,r)

u + osc
B(x,2r)

u ≤ C
{

osc
B(x,2r)

u− osc
B(x,r)

u
}

so osc
B(x,r)

u ≤ C − 1

C + 1
osc

B(x,2r)
u

For arbitrary R > r, interpolating by powers of two — that is, 2kr < R ≤ 2k+1r
for some k ∈ Z — and iterating the previous inequality gives the result.

With these motivations in mind, we now turn to the proof of Harnack’s in-
equality.

2. De Giorgi’s approach to regularity

At the heart of the De Giorgi method [13] are ideas from geometric measure
theory. As we will see, good pointwise properties of energy minimizers u : Ω → R

will follow from estimating the density of their super-level sets {x : u(x) > λ}.

Similarly to Moser’s approach [40], the basic tools here consist of iteration
arguments that arise from Sobolev-type inequalities. On one hand, the Sobolev
embedding theorem indicates that the growth of a function is controlled by its
gradient, whereas energy minimizers actually satisfy a partial converse: when
truncated, such functions control the growth of their gradients!

Combining these facts, this provides an initial “recurrence relation” that al-
lows us to compare densities at different levels of the function and at different
scales of space. This provides the starting point for the aforementioned iteration
arguments. As a consequence, we will prove the local boundedness and the weak
Harnack inequality for energy minimizers.

2.1. Preliminaries: Sobolev spaces on Rn. Here we emphasize properties
of W 1,p(Ω) that avoid the linear structure of Euclidean spaces, as well as the
theory of distributions. Indeed, the integration by parts formula (as well as
distributions) relies crucially on the Fundamental Theorem of Calculus, which is
a property that is lacking in the metric space setting.

The first fact to discuss is the Sobolev embedding theorem; see [18] or [48] as
references. To fix notation, we write the Sobolev conjugate exponent of p ≥ 1 as

p∗ =
np

n− p
.
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Theorem 2.1 (Sobolev embedding). Let p ∈ [1, n). There exists C = C(n, p,Ω) ≥
0 so that for all f ∈ W 1,p(Ω) with compact support in Ω, we have

{

∫

Ω

|f |p∗ dx
}1/p∗

≤ C
{

∫

Ω

|∇f |p dx
}1/p

.

In short, the Lp-norm of a Sobolev function is controlled by the Lp-norm of
its gradient. In the case of balls Ω = B(x0, R), taking averages gives

(2.1)
{

−
∫

B(x0,R)

|f |p∗ dx
}1/p∗

≤ CR
{

−
∫

B(x0,R)

|∇f |p dx
}1/p

.

Remark 2.2. Note that the function x 7→ |∇f(x)| does not require linearity
from the gradient. In §3 we discuss “upper gradients,” which are generalizations
of such functions and which lead to analogues of the Sobolev spaces W 1,p(Ω).

We now recall three more facts about Sobolev functions. The first is a charac-
terization of Sobolev functions in terms of a measurable modulus of continuity.
For a proof, we refer the reader to [25, Thm 2.2].

Lemma 2.3 (Haj lasz). Let Ω be a smooth domain in Rn and let 1 < p < ∞.
For each function u ∈ Lp(Ω), the following conditions are equivalent:

1. u ∈ W 1,p(Ω);
2. there exists g ∈ Lp(Ω) with g ≥ 0 and so that for a.e. x, y ∈ Ω, we have

|u(y) − u(x)| ≤ |x− y|
(

g(y) + g(x)
)

Moreover, there exists C = C(n, p; Ω) ≥ 1 so that

1

C
inf
g
‖g‖Lp(Ω) ≤ ‖∇u‖Lp(Ω) ≤ C inf

g
‖g‖Lp(Ω)

where the infima are taken over all functions g ∈ Lp(Ω) that satisfy Condition
(2) with respect to u.

The next two facts are used in the proof of Harnack’s inequality. The next
fact is a modified Sobolev embedding theorem: instead of compact support, we
require that a Sobolev function satisfy an appropriate density condition on balls.

Lemma 2.4. Let Ω be a domain in Rn and let p ∈ [1, n). If u ∈ W 1,p(Ω) satisfies

|{|u| > 0} ∩ B| ≤ γ|B|
for some γ ∈ (0, 1) and B(x0, R) ⊂ Ω, then there exists C ′ = C ′(n, p, γ) > 0 so
that for each q ∈ (1, p] and each t ∈ (1, q∗], we have

(

−
∫

B(x0,R)

|u|t dx
)

1
t ≤ C ′R

(

−
∫

B(x0,R)

|∇u|q dx
)

1
q

.
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This lemma is proved in [32], where it is used as a substitute for De Giorgi’s
“discrete isoperimetric inequality” [13].

The last fact is a “local clustering” phenomenon for positive Sobolev functions
as observed by DiBenedetto, Gianazza, and Vespri [16]. Roughly speaking, once
a super-level set has sufficiently large density on a fixed ball, then all other
density values are achieved by super-level sets on smaller balls, with lower levels.

To fix notation, we write Q(x0, R) for the cube centered at a point x0, with
edge length 2R, and with sides parallel to the coordinate planes.

Lemma 2.5 (Local Clustering). If u ∈ W 1,p
(

Q(x0, R)
)

satisfies

|{u > 1} ∩Q(x0, R)| ≥ θ0|Q(x0, R)|(2.2)
∫

Q(x0,R)

|∇u|p dx ≤ γRn−p(2.3)

for some constants γ > 0 and θ0 ∈ (0, 1), then for each λ, θ ∈ (0, 1), there exist
x ∈ Q(x0, R) and ǫ = ǫ(θ0, θ, γ, n) > 0 so that

(2.4) |{u > λ} ∩Q(x0, ǫR)| ≥ θ|Q(x0, ǫR)|.
Remark 2.6. (A) Lemma 2.5 also holds for balls. Clearly we have

Q
(

x0, n
−1/2R

)

⊂ B(x0, R) ⊂ Q(x0, R),

so the following density condition for balls

θ0|B(x0, R)| ≤ |{u > 1} ∩B(x0, R)|
implies hypothesis (2.2), with n−n/2θ0 in place of θ0. Lemma 2.5 then implies

|{u > λ} ∩B(x0, ǫR)| ≥ n−n/2θ|B(x0, ǫR)|.
(B) In the lemma above, the energy estimate (2.3) ensures that the constant ǫ
depends only on the parameters θ0, θ, n, and p. If instead we allowed ǫ to depend
on the function u, then (2.3) is unnecessary and the conclusion (2.4) would follow
from the Lebesgue differentiation theorem.

For expository reasons we give an alternative proof to the ones found in [16]
and [15]. Specifically, we use the previous characterization (Lemma 2.3) in place
of polar coordinate integration over balls.

We proceed in two steps: one first divides Q(x0, R) into subsets and shows
that the number of these subsets with initial density θ0 is sufficiently large. One
next shows, on such subsets, that (2.3) implies (2.4): if the density of a new
super-level set is small, then the gradient of the function must be large.
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Proof. Step 1: Sub-cubes with good density. For each N ∈ N we partition Q =
Q(x0, R) into sub-cubes of edge length R

N
and with pairwise-disjoint interiors.

We now sort the sub-cubes into two disjoint collections:

Qj ∈ Qgood ⇐⇒ |{u > 1} ∩Qj | >
θ0
2
|Qj |

Qj ∈ Qbad ⇐⇒ |{u > 1} ∩Qj | ≤ θ0
2
|Qj|.

so Nn = #(Qgood) + #(Qbad). It follows that
{

∑

Qj∈Qgood

|{u > 1} ∩Qj |
|Qj|

+
∑

Qi∈Qbad

|{u > 1} ∩Qi|
|Qi|

}

< (#Qgood) +
θ0
2

(#Qbad)

≤ (#Qgood) +
θ0
2

(

mn − #Qgood

)

=
2 − θ0

2
(#Qgood) +

θ0N
n

2

On the other hand, each Qj has measure |Qj | = N−n|Q|, so the density hypoth-
esis (2.2) and sub-additivity gives

∑

Qj∈Qgood

|{u > 1} ∩Qj |
|Qj|

+
∑

Qi∈Qbad

|{u > 1} ∩Qi|
|Qi|

≥ θ0
|Q|

N−n|Q| = θ0N
n.

Combining the above inequalities, we obtain an upper bound of

(2.5) #(Qgood) ≥ θ0
2 − θ0

Nn.

Step 2: Persistence of good density. For fixed θ, λ ∈ (0, 1), we now claim that
there is a choice of N = N(θ0, θ, λ, n, γ) ∈ N so that

(2.6) |{u > λ} ∩Qj | ≥ θ|Qj |

holds for some Qj ∈ Qgood; by taking B(x,R′) in Qj with R′ ≈ diamQj ≈ R
N

,

the lemma follows with ǫ = 1
N

.

Arguing by contradiction, if Qj ∈ Qgood does not satisfy (2.6), then

|{u ≤ λ} ∩Qj | ≥ (1 − θ)|Qj |.

On the other hand, by definition Qj satisfies

∣

∣

∣

{

u >
1 + λ

2

}

∩Qj

∣

∣

∣
≥ |{u > 1} ∩Qj| ≥ θ0

2
|Qj|.
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Since u ≥ 0 by hypothesis, we apply Lemma 2.3 to points x ∈ {u ≤ λ}∩Qj and
y ∈ {u > 1+λ

2
} ∩Qj , which gives

1 − λ

2
≤ u(y) − u(x) ≤ |x− y|

(

g(x) + g(y)
)

≤ 2R

N

(

g(x) + g(y)
)

.

Integrating in x gives

1 − λ

2
(1 − θ) ≤ 1 − λ

2

|{u < λ} ∩Qj |
|Qj |

≤ 2R

N

1

|Qj|

∫

{u<λ}∩Qj

(

g(y) + g(x)
)

dx

≤ 2R

N

[

g(x) + −
∫

Qj

g(y) dy
]

≤ 2R

N

[

g(y) +
(

−
∫

Qj

gp dx
)

1
p
]

≤ 2CR

N

[

g(y) +
(R

N

)−n
p
(

∫

Qj

|∇u|p dx
)

1
p
]

.

Similarly, integrating further in y gives

θ0(1 − λ)(1 − θ)

4
≤ 2CR

N

(R

N

)−n
p
[(

∫

Qj

|∇u|p dy
)

1
p

+
(

∫

Qj

|∇u|p dx
)

1
p
]

≤ 4C
(R

N

)
p−n

p
(

∫

Qj

|∇u|p dx
)

1
p

from which it follows that

(2.7) c0

(R

N

)n−p

:=
[θ0(1 − λ)(1 − θ)

16C

]p(R

N

)n−p

≤
∫

Qj

|∇u|p dx.

In particular, we have c0 = c0(θ0, θ, λ, n, p) > 0.

Now suppose that condition (2.6) fails for every sub-cube Qj in Qgood. Sum-
ming over all j, we therefore apply inequalities (2.3), (2.5), and (2.7) to obtain

c0θ0
2 − θ0

Rn−pNp ≤
(

#Qgood

)

· c0
(R

N

)n−p

≤
∑

Qj∈Qgood

∫

Qj

|∇u|p dx ≤ ‖u‖pW 1,p(Q) ≤ γRn−p.

So by choosing N > [(c0θ0)
−1γ(2 − θ0)]

1
p , we arrive at a contradiction. We

therefore obtain the desired conclusion for the previous choice of ǫ = 1
N

and with
the constant c0 := (16C)−p[θ0(1 − λ)(1 − θ)]p.
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2.2. Local boundedness and Caccioppoli inequalities. We now turn to
the first part of Harnack’s inequality (Theorem 1.7). We first motivate the ideas.

A function u : Ω → R, p-harmonic or not, will have an essential supremum
h ∈ R on a fixed ball B(x0, R) ⊂ Ω if and only if the super-level set

{x ∈ B(x0, R) : u(x) > h}

has zero measure, or equivalently, (u− h)+ := max{u− h, 0} satisfies
∫

B(x0,R)

(u− h)p+ dx = 0.

So to find an upper bound h ∈ R for u, we seek increasing sequences {hk}∞k=1 ⊂ R

converging to h and so that the truncations (u− hk)+ satisfy

lim
k→∞

∫

B(x0,R)

(u− hk)p+ dx = 0.

To this end, we turn to a lemma from elementary real analysis [21].

Lemma 2.7. Let b > 1, C0 ≥ 1, and σ > 0 be given. If {Yk}∞k=0 is a sequence
in [0,∞) whose terms satisfy the inequalities

Yk+1 ≤ C0b
nY 1+σ

k(2.8)

Y0 ≤ b−1/σ2

C
−1/σ
0(2.9)

then Yk → 0 as k → ∞.

So to prove Theorem 1.7, it suffices to verify the hypotheses of Lemma 2.7 for
the sequence of integral averages

Yk := −
∫

B(x0,R)

(u− hk)p+ dx.

In particular, inequality (2.8) requires that we compare the integral averages of
truncations of varying levels, with the levels {kn} yet to be determined.

Once again we split the desired inequality into two parts. Already we know
from Theorem 2.1 that the Lp-norms of Sobolev functions are controlled by the
norms of their gradients. As suggested earlier, energy minimizers obey a partial
converse, called the Caccioppoli inequality, from which the desired recurrence
(2.8) follows. Indeed, the Lp-norms of truncations (u−h)+ control the Lp-norms
of their gradients. The proof uses Widman’s “hole-filling” trick [46].
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Lemma 2.8 (Caccioppoli inequality). There exists C = C(n, p) ≥ 0 so that
every p-energy minimizer u ∈ W 1,p(Ω) satisfies

∫

B(x0,r)

|∇(u− h)+|p dx ≤ C

(R− r)p

∫

B(x0,R)

(u− h)p+ dx

∫

B(x0,r)

|∇(u− h)−|p dx ≤ C

(R− r)p

∫

B(x0,R)

(u− h)p− dx

for all B(x, r) ( B(x,R) ⊂ Ω and all h ∈ R.

Proof of Lemma 2.8. If u is an energy minimizer, then so is −u, and from

(u− h)− = −min(u− h, 0) = max(−u + h, 0) = (−u + h)+.

It follows that the cases for (u−h)+ and (u−h)− are symmetric, so without loss
of generality, we show the first case. To this end, we show an initial inequality
for intermediate radii, and then proceed by an iteration argument.

Fix ρ′, ρ ∈ (r, R) with ρ′ < ρ and fix a smooth function η : Rn → [0,∞) with
support B̄(x0, ρ) and satisfies η|B(x0,ρ′) ≡ 1 and ‖∇η‖∞ ≤ c(ρ − ρ′)−1 for some
c ≥ 1. Note that whenever u(x) > h, the function v = u− (u− h)+η satisfies

v(x) = u(x) −
(

u(x) − h
)

+
η(x) =

(

1 − η(x)
)(

u(x) − h
)

+ h

so the product rule gives, at the same points x, the estimate

|∇v(x)| ≤
(

1 − η(x)
)

|∇u(x)| + |∇η(x)|
(

u(x) − h
)

.

As a shorthand, put B = B(x0, ρ)∩{u > h} and B′ = B(x0, ρ
′)∩{u > h}. Since

u− v ∈ W 1,p
0

(

B(x0, R)
)

, the minimizing property of u implies that
∫

B′

|∇u|p dx ≤ −
∫

B

|∇v|p dx(2.10)

≤
∫

B

(1 − η)p|∇u|p dx +

∫

B′

|∇η|p(u− h)p+ dx

≤
∫

B\B′

|∇u|p dx +

∫

B′

cp(u− h)p+
(ρ′ − ρ)p

dx(2.11)

and adding
∫

B′
|∇(u− h)+|pdx to both sides, the inequality becomes

(2.12)

∫

B′

|∇u|p dx ≤ 1

2

{
∫

B

|∇u|p dx +

∫

B′

cp(u− h)p+
(ρ′ − ρ)p

dx

}

.

Fix λ > 0 so that λp ∈ (1
2
, 1). We now define a sequence of radii recursively by

ρ0 = r

ρn+1 − ρn = (1 − λ)λn(R− r)
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and write Bn := B(x0, ρn). By iterating inequality (2.12), we obtain
∫

B0

|∇u|p dx ≤ 1

2

{
∫

B1

|∇u|p dx +

∫

B1

cp(u− h)p+
(ρ2 − ρ1)p

dx

}

=
1

2

∫

B1

|∇u|p dx +
1

2λp

cp

(1 − λ)p

∫

B1

(u− h)p+
(R− r)p

dx

≤ 1

2n

∫

Bn

|∇u|p dx +

n
∑

i=1

1

(2λp)n
cp

(1 − λ)p

∫

Bn

(u− h)p+
(R− r)p

dx.

Taking limits as n → ∞, we obtain ρn → R. The lemma follows.

Remark 2.9. Note that the quasi-minimizing condition from Definition 1.2 can
be used instead in estimate (2.10). For K ≥ 1, inequality (2.12) then becomes

∫

B′

|∇u|p dx ≤ K

K + 1

{
∫

B

|∇u|p dx +

∫

B′

cp(u− h)p+
(ρ′ − ρ)p

dx

}

and the iteration proceeds, with different constants in the final estimate. We
therefore conclude that Lemma 2.8 also holds true for quasi-minimizers.

We now give a rigorous proof of the local boundedness property (Theorem
1.7) using iteration (Lemma 2.7).

Proof of Theorem 1.7. We begin by comparing integral averages of different
levels. Fix ρ′, ρ ∈ (r, R) with ρ′ ∈ (ρ

2
, ρ) and put B = B(x0, ρ) and B′ = B(x0, ρ

′).
For l < h, we have (u− h)+ ≤ (u− l)+, so Hölder’s inequality implies that

−
∫

B′

(u− h)p+ dx ≤
{

−
∫

B′

(u− h)p
∗

+ dx
}

p

p∗
( |B′ ∩ {u > h}|

|B′|
)1− p

p∗

≤
{

−
∫

B′

(u− h)p
∗

+ dx
}

p

p∗
( 1

|B′|

∫

B′∩{u>h}

(h− l)p

(h− l)p
dx

)1− p

p∗

≤
{

−
∫

B′

(u− h)p
∗

+ dx
}

p

p∗

(

−
∫

B′

(u− l)p+
(h− l)p

dx

)
p

n

From our choice of radii, we obtain |B| ≤ 2n|B′|, from which it follows that

(2.13) −
∫

B′

(u− h)p+ dx ≤
{

−
∫

B′

(u− h)p
∗

+ dx
}

p

p∗

(

2n−
∫

B

(u− l)p+
(h− l)p

dx

)
p

n

.

Now let η : Rn → [0,∞) be a smooth cut-off function as in the proof of Lemma
2.8. For each h ∈ R, the Sobolev function w = (u − h)+η has compact support
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in B(x0, R), so by the Sobolev embedding theorem (2.1), the product rule, and
the Caccioppoli inequality (Lemma 2.8), we obtain

(

−
∫

B′

(u− h)p
∗

+ dx
)

p

p∗ ≤
(

−
∫

B

(

(u− h)+η
)p∗

dx
)

p

p∗ ≤ Cρp−
∫

B

∣

∣∇[(u− h)+η]
∣

∣

p
dx

≤ Cρp
{

−
∫

B

|∇(u− h)+|p dx + −
∫

B

(u− h)p+
(ρ− ρ′)p

dx
}

≤ Cρp

(ρ− ρ′)p
−
∫

B

(u− h)p+ dx

We now combine (2.13) and the above inequality to obtain

−
∫

B′

(u− h)p+ dx ≤
{

−
∫

B′

(u− h)p
∗

+ dx
}

p

p∗

(

2n−
∫

B

(u− l)p+
(h− l)p

dx

)
p

n

≤ Cρp

(ρ− ρ′)p

(

−
∫

B

(u− h)p+ dx
)

(

2n−
∫

B

(u− l)p+
(h− l)p

dx

)
p

n

from which we further obtain

(2.14)
(

−
∫

B′

(u− h)p+ dx
)

1
p ≤ Cρ

ρ− ρ′

(

−
∫

B

(u− l)p+ dx

)
1
p
(1+ p

n
)

(h− l)−
p

n .

We are now ready to run the iteration. Choose radii and levels

ρk :=
R

2
(1 + 2−k) and hk := d(1 − 2−k),

where d > 0 is to be determined later. Now consider the sequence

Yk :=
(

−
∫

Bk

(u− hk)
p
+ dx

)
1
p

where Bk := B(x0, ρk). Using balls Bk and Bk+1 in place of B′ and B, and levels
hk+1 and hk in place of l and h, respectively, we rewrite inequality (2.14) as

Yk ≤ 2k+1Y
1+ p

n

k+1

(

2−(k+1)d
)− p

n ≤ Cd−
p

n 2nY
1+ p

n

n+1 .

Put b = 2 and σ = p
n
, and choose d so that inequality (2.9) holds; it suffices that

d = C
n
p b

1

σ2 Y0 = C
(

−
∫

B0

(u− 0)p+ dx
)

1
p

= C
(

−
∫

B0

up
+ dx

)
1
p

.

So by Lemma 2.7, we conclude that the limit is

0 = lim
k→∞

Yk =
(

−
∫

B(x0,R)

(u− d)p+ dx
)

1
p



p-Harmonic Functions on Metric Spaces 179

and as a result, for a.e. x ∈ B(x0, R), we have the inequality

u(x) ≤ d = C
(

−
∫

B

up
+ dx

)
1
p

.

The next result will be used to prove Corollary 1.10.

Corollary 2.10. Let u : Ω → R be a p-energy minimizer, and fix B(x0, R) ⊂ Ω
and τ > 0. There exists λ0 = λ0(p, n,Ω) ∈ (0, 1) so that if

|{u < τ} ∩ B(x0, R)| ≤ λ0|B(x0, R)|
holds, then we have

inf
B(x, 1

2
R)
u ≥ τ

2
.

Proof. Put B = B(x0, R) and B′ = B(x0,
R
2
). By substituting −u + τ for u in

the proof of Theorem 1.7, we obtain the inequality

sup
B′

(−u) ≤ −τ + C
(

−
∫

B

(−u + τ)p+dx
)

1
p

and from the elementary inequality (τ − u)+ ≤ τ , a further estimate gives

inf
B′

u ≥ τ − C
( 1

|B|

∫

B

(τ − u)p+dx
)

1
p ≥ τ − Cτ

( |{u < τ} ∩ B|
|B|

)
1
p

.

So for λ0 = (2C)−p, the result follows from the hypothesis.

2.3. Expansion of Positivity and its Consequences. In the last section we
used an iteration argument to show that p-energy minimizers are locally bounded.
This means that their oscillations

osc
B

u = sup
x,y∈B

|u(y) − u(x)| = sup
B

u− inf
B

u

are also a.e. locally finite. We now prove the weak Harnack inequality (Theorem
1.8) by using similar iteration techniques. The argument requires several steps:

1. To intermediate between the function values of an energy minimizer, we
incorporate oscillations into the levels.

2. We show that energy minimizers satisfy an “expansion of positivity” prop-
erty. Roughly speaking, this means that if the minimizer is positive on a
large percentage of a ball, then it must also be positive (with a smaller
lower bound) on a large percentage of successively larger balls.

3. By expanding finitely many times (where the number of expansions depends
only on n, p, and Ω), we show that the minimizer must be controlled by a
similar factor of its minimum.
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The first step is given as a lemma. For a ball B = B(x0, R), we use the shorthand

M := sup
B

u and m := inf
B

u and ω := M −m.

Lemma 2.11. Let Ω be a domain in Rn, let p > 1, and let a ∈ (0, 1). There
exists a constant ν = ν(n, p, a; Ω) > 0 such that for every ball B(x0, 2R) in Ω,

1. if a p-energy minimizer u ∈ W 1,p(Ω) satisfies the density condition
∣

∣{u > M − ξω} ∩B(x0, R)
∣

∣ ≤ ν
∣

∣B(x0, R)
∣

∣

then for a.e. x ∈ B(x0,
R
2

) we have the inequality

u(x) ≤ M − aξω.

2. if a p-energy minimizer u ∈ W 1,p(Ω) satisfies the density condition
∣

∣{u < m + ξω} ∩ B(x0, R)
∣

∣ ≤ ν
∣

∣B(x0, R)
∣

∣

then for a.e. x ∈ B(x0,
R
2

) we have the inequality

u(x) ≥ m + aξω.

Idea of proof. From the identities

{u < m + ξω} = {−u > −m− ξω} and sup
B

(−u) = − inf
B

u = −m,

we note that (2) follows from (1) by using −u and −m in place of u and M ,
respectively.

The proof of (1) uses iteration again, so for radii ρk := R
2

(1 − 2k) and levels

hk := (M − aξω) − 2−k(1 − a)ξω

we see that the following identities hold:

hk+1 − hk = 2−(k+1)(1 − a)ξω

ρk − ρk+1 = 2−(k+2)R.

Hence, for the sequence of integrals

Yk := h−p
0 −
∫

Bk

(u− hk)p+ dx

the result follows from a similar proof as in Theorem 1.7. For details, see [15,
Chapter 10].

The next step is a standard but technical “telescoping” argument. For expo-
sitional reasons we divide it into two steps.
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Theorem 2.12 (Expansion of Positivity). Let p > 1 and let B(x0, 8R) ⊂ Ω.
There exists σ ∈ (0, 1) so that if u ∈ W 1,p(Ω) is a positive p-energy minimizer
that satisfies the density condition

|{u > h} ∩ B(x0, R))| ≥ 1

2
|B(x0, R)|

for some h > 0, then for a.e. x ∈ B(x0, 2R), we have

u(x) ≥ σh.

Proof. Step 1 of 2: Preliminary estimates. Write Bk = B(x0, kR), for k ∈ N.
We first adjust the density condition into one for sub-level sets:

|B4| = 4n|B1| ≤ 2 · 4n|{u > h} ∩B1| ≤ 2 · 4n|{u > h} ∩B4|

|{u < h} ∩B4| ≤
(

1 − 1

2 · 4n

)

|B4|(2.15)

For levels 0 < l < L < h, we first show the estimate

(2.16) (L− l)
∣

∣{u < l} ∩ B4

∣

∣ ≤ CL
∣

∣{l < u ≤ L} ∩ B4

∣

∣

1
q
− 1

p |B4|1−
1
q
+ 1

p .

Indeed, consider the non-negative auxiliary function

v := (u− L)− − (u− l)− = −min(u− L, 0) + min(u− l, 0)

= −min(u, L) + min(u, l) + (L− l)

which lies in W 1,p(Ω) and satisfies the identities

{|v| > 0} = {u < L} ⊂ {u < h},
v|{u>l} = (u− L)−|{u>l}.

So the density condition (2.15) implies a density condition for v:

|{|v| > 0} ∩ B4| ≤ |{u < h} ∩B4| ≤
(

1 − 1

2 · 4n

)

|B4|.

For a fixed q ∈ (1, p) and t = q, Hölder’s inequality and Lemma 2.4 implies that

(L− l)|{u < l} ∩B4| =

∫

{u<l}∩B4

(L− l) dx =

∫

{u<l}∩B4

v dx

≤
∫

B4

|v| dx ≤ |B4|
q−1

q

(

∫

B4

|v|q dx
)

1
q

≤ 4C ′R|B4|
q−1

q

(

∫

B4

|∇v|q dx
)

1
q

= 4C ′R|B4|1−
1
q

(

∫

{l<u≤L}∩B4

|∇v|q dx
)

1
q
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where the last identity follows from the fact that v is constant on {u < l} and

{u > L}. Applying Hölder’s inequality for |∇v|q ∈ L
p

q (B4) once again, we obtain

(L− l)
|{u < l} ∩B4|

|B4|1−
1
q

≤ 4C ′R
∣

∣{l < u ≤ L} ∩B4

∣

∣

1
q
− 1

p

(

∫

{l<u≤L}∩B4

|∇v|p dx
)

1
p

.

Using the Caccioppoli inequality (Lemma 2.8) with B4 and B8, we now estimate
∫

{l<u≤L}∩B4

|∇v|p dx ≤
∫

{l<u}∩B4

|∇v|p dx

=

∫

{l<u}∩B4

|∇(u− L)−|p dx ≤
∫

B4

|∇(u− L)−|p dx

≤ C(4R)−p

∫

B8

(u− L)p− dx ≤ C(4R)−p

∫

B8

Lp dx

≤ C(4R)−pLp|B8| = C(4R)−p2nLp|B4|
and combining the above inequalities, we obtain (2.16):

(L− l)
|{u < l} ∩B4|

|B4|1−
1
q

≤ 4C ′R
∣

∣{l < u ≤ L} ∩ B4

∣

∣

1
q
− 1

p

(

C(4R)−p2nLp|B4|
)

1
p

= CL
∣

∣{l < u ≤ L} ∩ B4

∣

∣

1
q
− 1

p |B4|
1
p

where in the last line, C ′C
1
p is replaced by C.

Step 2 of 2: Telescoping sums. We now take levels lk := 2−kh and lk+1 in
place of L and l, respectively. For each k ∈ N, we clearly have lk < h and

lk − lk+1 =
h

2k+1
=

1

2
lk,

so inequality (2.16) can be rewritten as

h

2k+1

∣

∣

∣

{

u <
h

2k+1

}

∩B4

∣

∣

∣
≤ 2Ch

2k

∣

∣

∣

{ h

2k+1
< u ≤ h

2k

}

∩ B4

∣

∣

∣

1
q
− 1

p |B4|1−
1
q
+ 1

p ,

hence
|{u < h

2k+1} ∩ B4|
|B4|

≤ C
|{ h

2k+1 < u ≤ h
2k
} ∩ B4|

1
q
− 1

p

|B4|
1
q
− 1

p

.

As a result, for each N ∈ N and each integer 0 ≤ k ≤ N , we obtain
( |{u < h

2N+1} ∩ B4|
|B4|

)
pq

p−q

≤
( |{u < h

2k+1} ∩ B4|
|B4|

)
pq

p−q

≤ C

|B4|
∣

∣

∣

{ h

2k+1
< u ≤ h

2k

}

∩B4

∣

∣

∣
.
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Summing the right hand side of the above inequality for k = 0, 1, 2, . . .N , we
observe that the sum is telescoping, so

( |{u < h
2N+1} ∩B4|
|B4|

)
pq

p−q

≤ C

N

N
∑

k=0

|{ h
2k+1 < u ≤ h

2k
} ∩B4|

|B4|

=
C

N

|{ h
2N+1 < u ≤ h} ∩ B4|

|B4|
≤ C

N
,

that is,

(2.17)
∣

∣

∣

{

u <
h

2N+1

}

∩ B4

∣

∣

∣
≤ CN

1
p
− 1

q |B4|.

We note that the proof of Lemma 2.11 uses M , m, and ω only as numerical
parameters, so letting ν be as in Lemma 2.11, choose N ∈ N sufficiently large so

that CN
1
p
− 1

q ≤ ν. With m = 0 and ω = 2h, Lemma 2.11 implies that

u(x) ≥ σh

holds for a.e. x ∈ B(x0, 2R), where σ = 2−(N+1).

We are now ready to prove the weak Harnack inequality. The basic idea is
to fix a ball and show an initial density estimate in a smaller ball. Using the
previous theorem, we expand the validity of the estimate to the original ball.

Moreover, the number of expansions will depend only on n, p, and Ω. This
motivates the use of an auxiliary function N(r) to replace “radial supremum
functions” M(r).

Proof of Theorem 1.8. Step 1 of 2: Initial density estimate. Define functions

M(r) := sup
B(x0,r)

u and N(r) := u(x0)
(

1 − r

R

)−β

,

where β ∈ (0, 1) is to be chosen later. Clearly we have

N(0) = u(x0) ≤ M(0).

By Theorem 1.7, M(r) is bounded on [0, R], whereas N(r) is unbounded, so
there must be a largest root R0 ∈ [0, R) for which M(R0) = N(R0). Putting

M∗ := 2βN(R0) and r∗ :=
R− R0

4
and R∗ :=

R + R0

2
,

the Triangle inequality implies each x ∈ B(x0, R0) satisfies B(x, 2r∗) ⊂ B(x0, R∗).

We claim that for ξ :=
√

1 − 2−(β+1), there is a point x ∈ B(x0, R0) so that

(2.18) |{u > M∗ − ξM∗} ∩ B(x, r∗)| ≥ ν|B(x, r∗)|,
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where a = ξ and where ν ∈ (0, 1) is chosen as in the proof of Lemma 2.11.
Supposing otherwise, for each x ∈ B(x0, R0) we apply Lemma 2.11, with ω = M∗,
and conclude that for a.e. y ∈ B(x, r∗

2
) we have

u(y) ≤ M∗ − aξM∗ = (1 − ξ2)M∗ =
(

1 − (1 − 2−(β+1))
)

2βN(R0) =
N(R0)

2
.

This is a contradiction, since M(R0) = N(R0) is a supremum. The claim follows.

By hypothesis, u is an energy minimizer with u = u+; the same applies to the
function v = (M∗ − ξM∗)

−1u. Note also that v ≤ (2β(1 − ξ))−1 and that

|{v > 1} ∩B(x, r∗)| ≥ ν|B(x, r∗)|.
Applying Lemma 2.8 with h = 0 and balls B(x, r∗) and B(x, 2r∗), we have

∫

B(x,r∗)

|∇v|p dx ≤ C

rp∗

∫

B(x,2r∗)

vp dx ≤ C|B(x, 2r∗)|
2βrp∗(1 − ξ)

=
C2n−β

1 − ξ
rn−p
∗ .

Applying Remark 2.6 with θ = 1
2

and λ = [2β(1 − ξ)]−1, it follows that

λ(M∗ − ξM∗) = N(R0)

and therefore the following density condition holds:
∣

∣{u > N(R0)} ∩ B(x, ǫr∗)
∣

∣ = |{v > λ} ∩B(x, ǫr∗)| ≥ 1

2
|B(x, ǫr∗)|.

Step 2 of 2: Expanding to all of B(x0, R). Applying Theorem 2.12 to the previous
inequality, it follows that for a.e. y ∈ B(x, 2ǫr∗), we have

u(y) ≥ σN(R0)

so trivially, u satisfies the density estimate
∣

∣{u > σN(R0)} ∩ B(x, 2ǫr∗)
∣

∣ ≥ 1

2
|B(x, 2ǫr∗)|.

We now choose the number of iterations K ∈ N so that

2Kǫr∗ = 2Kǫ
R− R0

4
≥ 2R

and therefore K iterations of Theorem 2.12 implies that for a.e. y ∈ B(x, 2Nǫr∗),
and hence a.e. y ∈ B(x0, R), the following estimate holds:

u(y) ≥ σKN(R0) = σKu(x)
(

1 − R0

R

)β

=: Cu(x).

Taking infima in y, the weak Harnack inequality follows.

Remark 2.13. It is possible to select β, σ, and R0 to depend only on the
parameters n, p, and Ω. We refer the interested reader to [15, Chapter 10, §9.3].

We now prove the Strong Maximum Principle (Corollary 1.10).
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Proof of Corollary 1.10. Suppose on the contrary that u is non-constant, and
fix a ball B = B(x, r) ⊂ Ω. By adding a constant, we may assume that u ≥ 0.
For τ := maxB u, there exists λ ∈ (0, 1) so that

|{u < τ} ∩B| ≤ λ|B|.

We now run a similar argument to the proof of Theorem 2.12 with the above
density condition in place of (2.15), with B in place of B4, and with λ in place
of the density value 1/2. An analogue of (2.17) follows: for 1 < q < p and for
sufficiently large N ∈ N, we have

|{u < 2−(N+1)τ} ∩B| ≤ λ0|B|

where λ0 ∈ (0, 1) is as in Corollary 2.10. The same Corollary 2.10 therefore gives

u(x) ≥ 2−(N+2)τ > 0

for all x ∈ B, which is a contradiction.

2.4. Summary and Generalizations. As observed in this section, the De
Giorgi method is technical in nature, but its basis rests on a few tools: the
Caccioppoli inequality (Lemma 2.8) and various Sobolev inequalities.

It is interesting to note that the regularity theory for the p-energy integral
(1.4) is stable in the sense that the fine properties enjoyed by minimizers also
extend to similar functions. As observed in Remark 2.9, quasi-minimizers also
satisfy the Caccioppoli inequality, with constants depending on the comparison
constant K. As a result, Harnack’s inequality (and local Hölder continuity)
follow for quasi-minimizers, again with appropriate constants.

In another direction, one could consider a larger class of functionals and
the regularity theory of their corresponding minimizers. A general discussion
is treated in [21]; here we consider the simple case of

u 7→ F [u] :=

∫

Ω

( |∇u|p
p

+ uF
)

dx,

where the non-homogeneous data is F ∈ Ls(Ω) with s ≥ p
p−1

. We define mini-

mizers similarly, with F [u] replacing the p-energy integrals in Definition 1.2.

In this setting, one estimates the non-homogeneous term using the measure
of a super-level set. More specifically, for s > n

p
one chooses q ∈ (1, p) so that

the Sobolev conjugate q∗ = nq
n−q

satisfies 1
s

+ 1
q∗

= 1. With the test function
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v = u− (u− h)+η as before, the Hölder and Sobolev inequalities give
∫

B

(u− v)F dx =

∫

B

(u− h)+ηF dx

≤ ‖F‖Ls(B)

∥

∥(u− h)+η
∥

∥

Lq∗(B)

≤ ‖F‖Ls(B)

∥

∥∇[(u− h)+η]
∥

∥

Lq(B)

≤ ‖F‖Ls(B)

∥

∥∇[(u− h)+η]
∥

∥

Lp(B)

∣

∣{u > h} ∩B
∣

∣

1
q
− 1

p

and the remaining steps — the product rule, Young’s inequality, etc — is similar
in form. The Caccioppoli inequality (for minimizers) therefore reads as follows:

∫

B(x,r)

|∇(u− h)+|p dx ≤
∫

B(x,R)

(u− h)p+
(R− r)p

dx + γ
∣

∣

∣
{u > h} ∩ B(x,R)

∣

∣

∣

1+δ

,

for additional parameters δ = δ(n, p, s) ∈ (0, 1) and γ = γ(‖F‖Ls(B)) ≥ 0.

One can further show that the minimizers associated to F also satisfy an
analogous Harnack inequality. The main technical point lies in treating the rate
of iteration: this is determined by the exponents δ and n

p
, the latter induced by

the p-energy integral (as in the proof of Theorem 1.7). For further details, see
[21], [15], or [22].

3. Energy minimizers on metric measure spaces

3.1. Motivations: Sobolev inequalities and doubling measures. In §2.4
we revisited the tools of proof for Harnack’s inequality. Among the functional
inequalities we used were:

1. various Sobolev embedding theorems (Theorem 2.1, Lemma 2.4) and as a
consequence, the Caccioppoli inequality (Lemma 2.8);

2. the characterization of W 1,p(Ω) via modulus of continuity (Lemma 2.3) and
its consequence, the local clustering property (Lemma 2.5).

More tacitly, additional properties of the “norm gradient” map f 7→ |∇f | include

(3) the product rule, as an inequality: |∇(fg)| ≤ |f | |∇g| + |g| |∇f |;
(4) locality, in the sense that |∇f | = 0 holds on sets where f is constant.

We now discuss a framework that provides analogues of Sobolev functions in the
setting of metric measure spaces. Moreover, we narrow our focus to spaces satis-
fying two key hypotheses — the doubling condition for measures and a Poincaré
inequality, to be specific — and analyze how the corresponding geometric and
functional analytic structures allow for similar tools of proof.
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What follows is a survey of this subject and many details are omitted. In the
area of analysis on metric spaces, we invite the reader to consult the articles [26],
[29], [27], [25], and [28], and for topics specific to regularity theory, see [32], [2],
and [3].

We begin with the geometry induced by the measure. A Radon measure µ on
a metric space (X, d) — that is, a Borel regular measure that assigns positive,
finite measure to compact sets — suffices for the usual integration theory. In the
case of Lebesgue measure on Rn, however, two properties were crucial:

1. scaling: in iteration arguments we often used, for 0 < r < R, the property

(3.1) |B(x,R)| =
(R

r

)n

|B(x, r)|.

2. dyadic decompositions: for the local clustering property (Lemma 2.5) it was
crucial to take smaller sub-cubes that possess comparable (same) measures
and that partition a given cube.

On a metric space, we therefore consider measures with a fixed rate of growth.
As first examined by Coifman and Weiss [9], [10], we require that the measure
of a ball is controlled by the measure of smaller balls contained in it.

Definition 3.1. Let cµ ≥ 1. A Borel measure µ on X is said to be (cµ)-doubling
if every ball B(x, r) in X with r > 0 has positive, finite µ-measure and satisfies

(3.2) µ
(

B(x, 2r)
)

≤ cµ µ
(

B(x, r)
)

and we define the doubling exponent of X to be Q := log2(cµ).

By inspecting the proofs in §2, one sees that exact scaling, as in (3.1), is not
essential. It suffices instead that balls and their sub-balls are comparable in
measure, as in (3.2).

The doubling exponent plays the analogous role of dimension on metric mea-
sure spaces, and for p ∈ (1, Q) we define (Sobolev) conjugate exponents as

p∗ :=
Qp

Q− p
.

For connected metric spaces, the doubling property (3.2) implies that locally,
the µ-measures of balls are controlled by powers of their radii. As in Euclidean
spaces, this provides useful comparisons between length and volume. We omit
the proofs here; for details, see [27].

Lemma 3.2. Let X be a metric space and let µ a doubling measure on X with
doubling exponent Q. For each ball B0 = B(x0, r0) in X, with 0 < r0 < ∞,
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1. there exists c = c(cµ, B0) > 0 so that, for all x ∈ B0 and all r ∈ (0, r0),

c
( r

r0

)Q

≤ µ(B(x, r))

µ(B0)

2. If X is connected, there exist A′ = A′(cµ, B0) > 0 and Q′ = Q′(cµ, B0) > 0
so that, for all x ∈ B0 and all r ∈ (0, r0),

µ(B(x, r))

µ(B0)
≤ A′

( r

r0

)Q′

Metric spaces admitting a doubling measure are also spaces of homogeneous
type, as introduced by Coifman and Weiss [9], [10] in their work in harmonic
analysis. In terms of measure, the condition ensures that the space has good
scaling properties, from which we obtain a rich theory of ‘zeroth order’ calculus.

In addition, Christ [8] proved that spaces X supporting a doubling measure
allow a generalized dyadic decompositions {Qk

a ⊂ X : k ∈ Z, a ∈ Ik}, of scale δk,
ratio λ0, and constants C1, C2, η ∈ (0,∞) with the following properties:

• measurable partition: µ(X \⋃aQ
k
a) = 0;

• partial ordering: if l > k then either Ql
b ⊂ Qk

a or Ql
b ∩Qk

a = ∅;
• nesting: for each (k, a) and l < k there is a unique b so that Qk

a ⊂ Ql
b;

• scaling: the diameter of Qk
a is at most C1δ

k;
• roundness: each Qk

a contains some ball B(zka , λ0δ
k);

• annuli have comparable measure as their interior balls, in the sense that

µ
(

{x ∈ Qk
a : d(x,X \Qk

a) < tδk}
)

< C2t
ηµ(Qk

a).

So from the viewpoint of regularity theory, we therefore recover all necessary
geometric properties for this class of measures.

3.2. Upper gradients, Poincaré inequalities and Newtonian spaces. We
now consider analogues of the Sobolev spaces W 1,p(Ω). As indicated before, the
distributional derivatives of a function may not be well-defined in this setting.
To overcome this, one uses instead upper gradients, which are defined using line
integrals and a Fundamental Theorem of Calculus, treated as an inequality.

Specifically, if u : X → R is a Borel function, then we say that a Borel function
g : X → [0,∞] is an upper gradient of u if the inequality

(3.3) |u(γ(b)) − u(γ(a))| ≤
∫

γ

g ds :=

∫ b

a

g(γ(t)) dt

holds for all rectifiable curves γ : [a, b] → X parametrized by arc-length.

For technical reasons, we require a less restrictive notion of upper gradient,
which in turn requires a means of measuring families of rectifiable curves. To
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this end, let Γ be a collection of non-constant rectifiable curves on X . For p ≥ 1,
the p-modulus of Γ is defined as

modp(Γ) := inf
ρ

∫

X

ρp dµ,

where the infimum is taken over all Borel functions ρ : X → [0,∞] that satisfy
∫

γ

ρ dx ≥ 1.

It is well-known that p-modulus is an outer measure on M, the family of all
rectifiable curves on X ; for details, see [27, Chapter 7].

Definition 3.3. We say that a Borel function g : X → [0,∞] is a (p-)weak upper
gradient of u : X → R if Equation (3.3) holds for p-modulus a.e. curve γ ∈ M.
More precisely, this means that for the subcollection of curves Γ in M for which
Equation (3.3) fails, we have modp(Γ) = 0.

Example. If u : X → R is Lipschitz — that is, if u satisfies the condition

Lip(u) := sup

{ |f(x) − f(y)|
d(x, y)

: x, y ∈ X, x 6= y

}

< ∞

then Lip(u), called the Lipschitz constant of u, is an upper gradient of u.

In either definition, the notion of an upper gradient is meaningful only when
the space X is rectifiably connected, that is: every pair of points can be joined
by a rectifiable curve.

We now define an analogue of the Sobolev space W 1,p(Rn) on metric spaces,
which is similar to the approach in Equation (1.3). For other formulations, see
[6], [27], and [25].

Definition 3.4. Let p ≥ 1. We say that a function u : X → R lies in Ñ1,p(X)
if and only if u ∈ Lp(X) and the quantity

‖u‖1,p := ‖u‖p + inf
g
‖g‖p

is finite, where the infimum is taken over all weak upper gradients g of u.

The Newtonian space N1,p(X) consists of equivalence classes of functions in
Ñ1,p(X). Here, two functions u, v ∈ Ñ1,p(X) are equivalent if u = v µ-a.e.

As defined in Definition 3.4, ‖ · ‖1,p is a norm and N1,p(X) is a Banach space
with respect to this norm [44, Thm 3.7].
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Remark 3.5. (A) Since there is no well-defined notion of “smooth function” on
a metric space, the definition of the test function class N1,p

0 (U) requires care.
Roughly speaking, N1,p

0 (U) is a similar space of equivalence classes, where the
original functions are defined to have appropriate extensions of N1,p(X). For
details, see [44].

(B) For each u ∈ N1,p(X), there exists a weak upper gradient gu, called the
minimal upper gradient of u, so that the infimum in ‖u‖1,p is attained [25, Thm
7.16]. Indeed, it is a fact that gu = |∇u| on X = Rn. We refer the details to [44].

Moreover, we have the following Leibniz product rule [45, Lemma 2.14]:

Lemma 3.6. If u ∈ N1,p(X) and if f : X → R is a bounded Lipschitz function,
then uf ∈ N1,p(X) and its minimal upper gradient satisfy

guf ≤ gu |f | + |u| Lip(f).

We now formulate our second main hypothesis — the validity of a Poincaré
inequality — in terms of weak upper gradients. Together with the doubling
property (3.2), such inequalities determine a rich theory of first-order calculus
on the underlying spaces.

Definition 3.7. We say that a metric measure space (X, d, µ) supports a (weak)1

(1, p)-Poincaré inequality if µ is doubling and there exist C ≥ 0, Λ ≥ 1 so that

(3.4) −
∫

B

|u− uB| dµ ≤ C r
(

−
∫

ΛB

gpu dµ
)

1
p

holds for all u ∈ N1,p
loc (X) and for all balls B centered in X .

We now list several consequences of the Poincaré inequality on a metric mea-
sure space (X, d, µ):

1. It is easy to see from Definition 3.3 that gu satisfies the locality property, as
suggested before in §3.1: for a set A ⊂ X of positive µ-measure, if gu = 0
holds on every ball in A, then u is constant on A.

2. Such spaces X are c-quasiconvex; that is, every pair of points x, y ∈ X can
be joined by a curve in X whose length is at most c · d(x, y). (Here c > 0
depends only on the parameters of the hypotheses; see [12] or [6, Sect 17].)
In particular, such spaces are connected, so the estimates of Lemma 3.2
apply to balls in X .

1Here “weak” refers to the possibility that Λ > 1.
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3. N1,p(X) also allows a characterization in terms of modulus of continuity,
as in Lemma 2.3. In fact, one can show that an analogous inequality

|u(x) − u(y)| ≤ Cd(x, y)
(

g(x) + g(y)
)

arises precisely from taking localized maximal functions of gu on balls with
radius comparable to the distance d(x, y). For more details, see [25].

As a last consequence, we also recover a version of the Sobolev embedding
theorem [26, Thm 5.1]; see also [32, Eq (2.11)]. We recall here that Sobolev
exponents are given as q∗ = Qq/(Q− q).

Lemma 3.8. Let (X, d, µ) be a metric measure space that supports a (1, p)-
Poincaré inequality. Fix p ∈ (1, Q). Then there exists ǫ > 0 so that for p− ǫ <
q < p, there exist c > 0 and Λ′ ≥ 1 so that the inequality

(

−
∫

B

|u|t dµ
)

1
t ≤ c r

(

−
∫

ΛB

gqu dµ
)

1
q

holds for all balls B with 3B ⊂ X, all t ∈ [1, q∗], and all u ∈ N1,p
0 (3ΛB).

We note that the lemma relies on a deep theorem of Keith and Zhong [31,
Thm 1.0.1], regarding the open-endedness of (weak) (1, p)-Poincaré inequality.

3.3. Energy minimizers revisited. With the notion of (weak) upper gradi-
ents in hand, we arrive at similar notions of p-energy minimizers from Euclidean
spaces. The discussion here follows [32].

Here and in what follows, we assume that (X, d) is a metric space that sup-
ports a doubling measure µ and a (weak) (1, p)-Poincaré inequality, and that all
constants C > 0 depend only on the parameters of the previous assumptions.
Similarly to the Euclidean case, we also assume that 1 < p < Q.

Definition 3.9. Let U be a domain in X . We call u ∈ N1,p(U) a p-energy
minimizer if for all bounded subdomains U ′ ⊂ U and all functions v ∈ N1,p(U)
with u− v ∈ N1,p

0 (U), the following inequality holds:
∫

Ω′∩{u 6=v}

gpu dµ ≤
∫

Ω′∩{u 6=v}

gpv dµ.

Using now the tools of proof available in our setting, we may follow the pre-
vious approach in §2. The following facts are proven analogously.

• Caccioppoli’s inequality: there exists a constant C > 0 so that for every
p-energy minimizer u ∈ N1,p(U), every pair of balls B(x, r) ⊂ B(x,R) ⊂ U ,
and every level h ∈ R, we have

∫

B(x,r)

gp(u−h)+
dµ ≤ C

(R − r)p

∫

B(x,R)

(u− h)p+ dµ.
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• Local boundedness: there is a constant C1 > 0 so that for every p-energy
minimizer u ∈ N1,p(U) and every ball B(x, 2r) ⊂ U , we have

sup
B(x,r)

u ≤ C1

{

−
∫

B(x,2r)

up
+ dµ

}
1
p

.

• (Weak) Harnack Inequality: there exists C2 > 0 so that for every
positive p-energy minimizer u ∈ N1,p(U) and every B(x, 2r) ⊂ U , we have

C2

{

−
∫

B(x,r)

up
+ dµ

}
1
p ≤ inf

B(x,2r)
u

from which we conclude that

sup
B(x, r

2
)

u ≤ C1

C2

{

inf
B(x,2r)

u
}

.

• Maximum Principle: Let Ω be a domain in Rn, If a p-energy minimizer
u : Ω → R attains its maximum or minimum in the interior of Ω, then u is
constant on Ω.

• Hölder continuity: There exist C ≥ 1 and α > 0 so that for all p-energy
minimizers u ∈ N1,p(U) and all balls B(x, r) ⊂ B(x,R) ⊂ U , we have

osc
B(x,r)

u ≤ C
{

osc
B(x,R)

u
}( r

R

)α

.

In particular, every p-energy minimizer has an a.e. representative that is
locally Hölder continuous, with exponent α.

Lastly, we note that similar results also hold for a larger class of functionals,
with similar growth in gu. For details, see [22].

3.4. Further regularity problems. As indicated before, there is no adequate
notion of higher-order derivatives on metric measure spaces, even for the class
of spaces that support Poincaré inequalities. Q questions of C1,α-regularity are
therefore not well-posed in our setting. However, it does make sense to ask
whether p-energy minimizers are locally Lipschitz continuous. (This corresponds
to the case α = 1 in the discussion above.)

The difficulty here is that on Euclidean spaces, standard proofs of Lipschitz
continuity of p-harmonic functions (or other solutions of elliptic PDEs) require
estimates for second-order derivatives. There are honest obstructions to this
improved continuity. An example provided in [33, p. 150] shows a space that
supports a 2-Poincaré inequality and a 2-harmonic function which fails to be
locally Lipschitz continuous.

As a result, the positive results in the field are necessarily special cases. Only
a few are known, and mostly in the “linear” case of p = 2.
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• Petrunin [41] proved that 2-harmonic functions on Alexandrov spaces are
also locally Lipschitz continuous. Roughly speaking, such spaces exhibit
negative curvature in the sense of comparison with triangles, and Rajala
[42] has previously shown that such spaces also support weak (1, p)-Poincaré
inequalities.

• Koskela, Rajala, and Shanmugalingam [33] proved that if the space sup-
ports a 2-Poincaré inequality and a certain heat kernel estimate, then 2-
harmonic functions (in the weak sense) are locally Lipschitz continuous.
For the non-homogeneous case, this has recently been extended by Jiang
[30].

As a clarification, we note that Cheeger [6] has proven a generalization of
the classical Rademacher theorem — that Lipschitz functions on Rn are a.e.
differentiable — in the setting of metric spaces that support Poincaré inequalities.

In particular, there is a well-defined linear differential map f 7→ Df , with sim-
ilar properties as the Euclidean gradient and that extends uniquely to functions
in N1,p(X) as well. This leads to the formal definition of a weak solution.

Definition 3.10. Call u ∈ N1,p(U) a weak solution of the p-Laplace equation if
∫

U

|Du|p−2Du ·Dϕdµ

holds for for all Lipschitz functions ϕ : U → R with compact support in U .

Lipschitz continuity is better understood for these functions than for p-energy
minimizers. Indeed, Mäkäläinen [37] showed that for p > 1, the Lipschitz conti-
nuity of weak solutions to the p-Laplace equation is equivalent to certain growth
properties of the non-homogeneous data, in terms of nonlinear potentials.

Though nontrivial, it remains a fact that weak solutions are quasi-minimizers,
similarly defined as before, of the p-energy functional in Definition 3.9. Moreover,
the comparison constant K ≥ 1 depends on the parameters of our hypotheses;
for details, see [6]. It remains unclear if the two notions are equal.

We close this survey with the case of p-energy minimizers, which remains
open:

Question 3.11. Let p > 1. On a metric space supporting a (weak) (1, p)-
Poincaré inequality, what additional conditions are necessary or sufficient to
guarantee local Lipschitz continuity of p-energy minimizers?
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Boston, 2010.

[16] E. DiBenedetto, U. Gianazza, and V. Vespri, Local clustering of the non-zero set
of functions in W 1,1(E), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei
(9) Mat. Appl., 17(2006), 223–225.

[17] A. Domokos and J. Manfredi, C1,α–regularity for p–harmonic functions in the Heisen-
berg group for p near 2, In: The p-harmonic equation and recent advances in analysis,
Contemp. Math. 370, Amer. Math. Soc., Providence, RI, 2005, 17–23.

[18] L. Evans and R. Gariepy, Measure theory and fine properties of functions, Studies in
Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

[19] C. Fefferman and E. Stein, Hp spaces of several variables, Acta Math. 129(1972),
137–193.

[20] M. Giaquinta and E. Giusti, Quasiminima, Ann. Inst. H. Poincaré Anal. Non Linéaire,
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[46] K.-O. Widman, Hölder continuity of solutions of elliptic systems, Manuscripta Math.
5(1971), 299–308.

[47] S.-T. Yau, Nonlinear analysis in geometry, Monographies de LEnseignement
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