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1. Introduction

In this paper, we consider the quasihyperbolic metric, and its generalizations
in both the n-dimensional Euclidean space Rn, and in Banach spaces.

First we give some motivation and historical background. Quasihyperbolic
metric can be viewed as a generalization of the hyperbolic metric. We start with
an introduction to the hyperbolic metric and related results in function theory.

1.1. Hyperbolic geometry in plane and in n-dimensional Euclidean

spaces. Suppose that w = f(z) is a conformal mapping of the unit disk onto
itself. Then by Pick’s lemma we have the equality
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=
1− |w|2
1− |z|2 .

This identity can be written

|dw|
1− |w|2 =

|dz|
1− |z|2 ,
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which means that for any regular curve γ in the unit disk D = {z : |z| < 1}, and
for any conformal self mapping f of D, we have

∫

f◦γ

|dw|
1− |w|2 =

∫

γ

|dz|
1− |z|2 .

We have obtained a length function which is invariant under conformal mappings
of the unit disk onto itself. This allows us to give the following definition.

Definition 1.1. Let z1, z2 ∈ D. Then the hyperbolic distance ρ of z1, z2 is defined
by

ρD(z1, z2) = inf
γ

∫

γ

2|dz|
1− |z|2 ,

where the infimum is taken over all regular curves γ connecting z1 and z2.

Obviously, the multiplier 2 is harmless, and it is sometimes omitted. By
the conformal invariance we can define the hyperbolic distance on any simply
connected domain Ω ⊂ C by the formula

ρΩ(z1, z2) = ρD
(

f(z1), f(z2)
)

, z1, z2 ∈ Ω,

where f : Ω → D is a conformal mapping. Existence of such mapping is guaran-
teed by Riemann’s mapping theorem.

Note that Definition 1.1 makes sense also in Rn for all n ≥ 2, if we consider
instead of the unit disk D the unit ball Bn = {x : |x| < 1}. However, for n ≥ 3
we have few conformal mappings, as by the generalized Liouville theorem (see
e.g. [Vu2]), every conformal mapping of a domain Ω in the Euclidean space
Rn, n ≥ 3, is a restriction of a Möbius transformation. Thus, the domains of
interest in higher dimensions are essentially the unit ball and the upper half-
space Hn = {x : xn > 0}. Because formulas for Möbius transformations of the
unit ball Bn onto Hn are well known, we arrive to the following definitions.

Definition 1.2. The hyperbolic distance between x, y ∈ Bn is defined by

ρBn(x, y) = inf
α∈Γxy

∫

α

2|dx|
1− |x|2 ,

and between x, y ∈ Hn by

ρHn(x, y) = inf
α∈Γab

∫

α

|dx|
xn

,

where Γxy is the family of all rectifiable paths joining x and y in Bn or Hn,
respectively.

It is well-known that the hyperbolic distance ρΩ is a metric in the topological
sense, i.e., the following properties hold for d = ρΩ:
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1. d(x, y) ≥ 0,
2. d(x, y) = 0, if and only if x = y,
3. d(x, y) = d(y, x), and
4. d(x, z) ≤ d(x, y) + d(y, z),

for all x, y, z ∈ Ω. The last condition is the triangle inequality. A curve γ is
called a geodesic of the metric d if triangle inequality holds as an equality for all
points x, y, z on γ in that order.

One may show that hyperbolic metric is always geodesic: for any x, y ∈ Ω
there is a geodesic γ connecting x, y, i.e., the infimum in the integral is attained
by γ. For the ball or half-space those geodesics are always circular arcs orthogonal
to the boundary. Further calculations allow us to obtain formulas for ρBn and
ρHn in the closed form. The hyperbolic metrics in the upper half-plane H and in
the unit disk D are also given by equations

(1.3) sinh2
(1

2
ρBn(x, y)

)

=
|x− y|2

(1− |x|2)(1− |y|2) , x, y ∈ Bn,

and

(1.4) cosh ρHn(x, y) = 1 +
|x− y|2
2 xn yn

, x, y ∈ Hn.

Hyperbolic metric is topologically equivalent to the one defined by the restric-
tion of the Euclidean norm: they define the same open sets. In fact, if Ω is the
unit ball, or its image in a Möbius transformation, the hyperbolic balls

{y : ρΩ(x, y) < r}, x ∈ Ω, r > 0,

are Euclidean balls, although their hyperbolic center is not usually the same as
the Euclidean center.

There are certain results which make the hyperbolic metric particularly in-
teresting from the point of view of the geometric function theory. For example,
many classical results from the Euclidean geometry have hyperbolic analogues,
such as the following hyperbolic form of Pythagoras’ Theorem:

Proposition 1.5. [B, Theorem 7.11.1] For a hyperbolic triangle with angles
α, β, π/2 and corresponding hyperbolic opposite side lengths a, b, c, we have

cosh c = cosh a cosh b.

Here the hyperbolic triangle means the domain whose boundary consists of
the hyperbolic geodesics connecting three points in the hyperbolic space. In par-
ticular, the hyperbolic distance is very useful in complex analysis. For example,
we can prove the following version of the classical Schwarz’s lemma (see for ex-
ample [Ga, p. 268]). Interestingly, this result does also have a complete analogy
for quasiconformal mappings in Rn, n ≥ 2 (see [Vu2, 11.2]).
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Proposition 1.6. Let f : D → D be analytic. Then the following inequality holds
for the hyperbolic distance

(1.7) ρD
(

f(x), f(y)
)

≤ ρD(x, y) for x, y ∈ D,

where the equality holds if and only if f is a Möbius transformation.

While the hyperbolic metric is a powerful tool in function theory, this approach
also has two important limitations:

1. In Rn, for n ≥ 3, the hyperbolic metric cannot be defined for a domain
which is not an image of the unit ball in a Möbius transformation.

2. Even in the plane, there are no actual formulas for hyperbolic distance,
except in the case of a few domains for which the Riemann mapping can
be found analytically.

We would like to have a metric which could be defined for any domain of interest
and which could be easily computed, or at least estimated. Ideally, we would like
this metric to be as similar to the hyperbolic metric as possible in other respects.
This leads us the quasihyperbolic metric.

1.2. Quasihyperbolic and distance ratio metrics. The quasihyperbolic met-
ric was first introduced by F.W. Gehring and B.P. Palka in 1976 [GP], and it
has been studied by numerous authors thereafter.

Definition 1.8. Let Ω be a proper subdomain of the Euclidean space Rn, n ≥ 2.
We define the quasihyperbolic length of a rectifiable arc γ ⊂ Ω by

ℓk(γ) =

∫

α

|dz|
d(z, ∂Ω)

.

The quasihyperbolic metric is defined by

kΩ(x, y) = inf
γ
ℓk(γ),

where the infimum is taken over all rectifiable curves in Ω joining x and y. If the
domain Ω is clear from the context we use notation k instead of kΩ.

Clearly, for Ω = Hn the quasihyperbolic metric is the same as the hyperbolic
metric, but in the case of the ball it is not. The quasihyperbolic metric of the
ball is connected to the hyperbolic metric by the following inequalities (see [Vu2,
3.3]):

ρBn(x, y) ≤ 2kBn(x, y) ≤ 2ρBn(x, y), x, y ∈ Bn.

Obviously, it follows that quasihyperbolic metric is not, in general, invariant
under conformal mappings, not even in Möbius transformations. However, we
have the following result:
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Proposition 1.9. [Vu2, 3.10] If Ω,Ω′ are proper subdomains of Rn and f : Ω →
Ω′ = f(Ω) is a Möbius transformation, then

1

2
kΩ(x, y) ≤ kΩ′

(

f(x), f(y)
)

≤ 2kΩ(x, y),

for all x, y ∈ Ω.

The proof of the above was first given by Gehring and Palka [GP], where a
generalization of the result for quasiconformal mappings was also obtained.

In the case of the hyperbolic metric, it is easy to characterize the geodesics of
this metric at least in the case of the ball and half-space. The properties, or even
existence, of quasihyperbolic geodesics is not immediately clear, and they have
been studied by several authors. In Rn it is, however, true that quasihyperbolic
metric is always geodesic. Even this is not true in the more general setting of
Banach spaces which we will consider later in this paper.

Their results already reveal that the quasihyperbolic metric is useful in study
of geometric geometric function theory, but one crucial problem remains. While
the quasihyperbolic metric is easy to define, we do not yet have any effective
estimates for it. For this reason, we need yet another definition.

Definition 1.10. The distance ratio metric or j-metric in a proper subdomain
Ω of the Euclidean space Rn, n ≥ 2, is defined by

jΩ(x, y) = log

(

1 +
|x− y|

min{d(x), d(y)}

)

,

where d(x) is the Euclidean distance between x and ∂Ω.

Again, if the domain Ω is clear from the context, we use notation j instead of
jΩ. The distance ratio metric by F.W. Gehring and B.G. Osgood in 1979 [GO].
The above form for the distance ratio metric was introduced by M. Vuorinen
[Vu1].

A useful inequality connecting this the j-metric to the quasihyperbolic metric
is the following [GP, Lemma 2.1]:

kΩ(x, y) ≥ jΩ(x, y), x, y ∈ Ω.

An inequality to the other direction does not, in general, hold. For example, one
may consider the slit plane Ω = C \ R+, and two points s ± ti, where s, t > 0.
When s → +∞ and t remains fixed the j-metric distance of the points does not
change, but the quasihyperbolic distance of the points goes to infinity. If the
inequality

kΩ(x, y) ≤ c jΩ(x, y), x, y ∈ Ω,
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holds for all x, y ∈ Ω where c ≥ 1 is a constant, then we say that the domain Ω is
uniform. There are several equivalent ways of defining uniformity of a domain.
Uniformity of different domains and the respective constants of uniformity have
been studied by numerous authors, see e.g. [Vu2, L].

For a domain G ( Rn and a metric m ∈ {kG, jG} we define the metric ball
(metric disk in the case n = 2) for r > 0 and x ∈ G by

Bm(x, r) = {y ∈ G : m(x, y) < r}.
We call Bk(x, r) the quasihyperbolic ball and Bj(x, r) the j-metric ball. A domain
G ( Rn is starlike with respect to x ∈ G if for all y ∈ G the line segment [x, y] is
contained in G and G is strictly starlike with respect to x if each half-line from
the point x meets ∂G at exactly one point. If G is (strictly) starlike with respect
to all x ∈ G then it is (strictly) convex. A domain G ( Rn is close-to-convex if
Rn \ G can be covered with non-intersecting half-lines. By half-lines we mean
sets {x ∈ Rn : x = ty + z, t > 0} and {x ∈ Rn : x = ty + z, t ≥ 0} for z ∈ Rn

and y ∈ Rn \ {0}. We define metric balls, convexity and starlikeness similarly in
Banach spaces.

Clearly convex domains are starlike and starlike domains are close-to-convex
as well as complements of close-to-convex domains are starlike with respect to
infinity. However, close-to-convex sets need not be connected. An example of a
close-to-convex disconnected set is the union of two disjoint convex domains. We
use notation Bn(x, r) and Sn−1(x, r) for Euclidean balls and spheres, respectively,
with radius r > 0 and center x ∈ Rn.

2. Metric balls in subdomains of Rn

In this section we consider properties of the quasihyperbolic metric and j-
metric balls in subdomains of Rn.

For the quasihyperbolic metric the explicit formula is known only in a few
special domains like half-space, where it agrees with the usual hyperbolic metric,
and punctured space, where the formula was introduced by G.J. Martin and B.G.
Osgood in 1986 [MO]. They proved that for x, y ∈ Rn \ {0} and n ≥ 2

(2.1) kRn\{0}(x, y) =

√

α2 + log2
|x|
|y| ,

where α ∈ [0, π] is the angle between line segments [x, 0] and [0, y] at the ori-
gin. This implies that the quasihyperbolic geodesics in Rn \ {0} are logarithmic
spirals, circular arcs or line segments. All other domains, where the explicit for-
mula for the quasihyperbolic is known are derived from the half-space and the
punctured space.
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For any domain Ω ⊂ Rn and points x, y ∈ Ω there exists a quasihyperbolic
geodesic [GO]. This implies that the quasihyperbolic balls in Ω are always con-
nected. In convex plane domains Ω ⊂ R2 the quasihyperbolic circles ∂Bk are
always C1 smooth Jordan curves [Va7, Corollary 5.14]. In a general domain
Ω ⊂ Rn the quasihyperbolic ball need not be C1 smooth. However, the quasi-
hyperbolic balls are smooth except from possible inwards pointing cusps [Va7,
Theorem 5.10].

Väisälä posed [Va8, p. 448] the following conjectures:

Conjecture 2.1. Let Ω ⊂ Rn and x, y ∈ Ω.

(1) Uniqueness conjecture: There is a universal constant cu > 0 such that if
k(x, y) < cu, then there is only one quasihyperbolic geodesic from x to y.

(2) Prolongation conjecture: There is a universal constant cp > 0 such that if
γ is a quasihyperbolic geodesic from x to y with ℓk(γ) = k(x, y) < cp, then
there is a quasihyperbolic geodesic γ′ from x to y′ such that γ ⊂ γ′ and
ℓ(γ′) = cp.

(3) Convexity conjecture: There is a universal constant cc > 0 such that the
quasihyperbolic ball Bk(x, r) is strictly convex for all x ∈ Ω and r < cc.

Väisälä also proved that for Ω ⊂ Rn the Convexity conjecture implies the
Uniqueness conjecture (with cu = 2cc), the Uniqueness conjecture implies the
Prolongation conjecture (with cp = cu ∧ π/2) and for any Ω ⊂ R2 the above
conjectures hold with cu = 2, cp = 2 and cc = 1. Presumably the constant
cu = 2 is not sharp, see Example 2.11, [K3, Remark 6.18]. In convex domains
Ω ⊂ Rn the quasihyperbolic geodesics are always unique [MV, Theorem 2.11]
and moreover, the quasihyperbolic balls are always strictly convex [MV, 2.13].

The question of convexity of the hyperbolic type metric balls was posed by
M. Vuorinen in 2006 [Vu2, 8.1]. Soon after that a series of papers [K1, K2, K4,
MV, RT, Va8] was published on the problem in the case of the quasihyperbolic
metric and the j-metric. We review the main results in Rn.

2.1. Quasihyperbolic metric. We introduce some convexity properties of quasi-
hyperbolic metric balls in the domain Ω = Rn \ {0}. For each result the idea is
the following: first prove the result in the case n = 2 by using (2.1) and then
generalize the result to n > 2 by symmetry of the domain. For more details
about the proofs see the original papers.

Before the convexity results we define two constants. The constant κ is the
solution of the equation

(2.2) cos
√

p2 − 1 +
√

p2 − 1 sin
√

p2 − 1 = e−1
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for p ∈ [1, π], and the constant λ is the solution of the equation

(2.3) cos
√

p2 − 1 +
√

p2 − 1 sin
√

p2 − 1 = 0

for p ∈ (2, π).

Theorem 2.4. 1) For x ∈ Rn \ {0} the quasihyperbolic ball Bk(x, r) is strictly
convex for r ∈ (0, 1] and it is not convex for r > 1.

2) For x ∈ Rn \ {0} the quasihyperbolic ball Bk(x, r) is strictly starlike with
respect to x for r ∈ (0, κ] and it is not starlike with respect to x for r > κ, where
κ is defined by (2.2) and has a numerical approximation κ ≈ 2.83297.

Proof. [K2, Theorem 1.1].

Figure 1. Boundaries of quasihyperbolic disks Bk(x, r) in
R2 \ {0} with radii r = 1, r = 2 and r = κ.

Theorem 2.5. If domain Ω ( Rn is starlike with respect to x ∈ Ω, then the
quasihyperbolic ball Bk(x, r) is starlike with respect to x for all r > 0.

Proof. [K2, Theorem 2.10].

Theorem 2.6. For y ∈ Rn \ {0} the quasihyperbolic ball Bk(y, r) is close-to-
convex, if r ∈ (0, λ], where λ is defined by (2.3) and has a numerical approxima-
tion λ ≈ 2.97169. Moreover, the constant λ is sharp in the case n = 2.

Proof. [K3, Theorem 1.2].
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2.2. Distance ratio metric. We introduce some convexity properties of j-
metric balls. The results are similar to the ones presented for the quasihyperbolic
metric. However, now the results are valid for all subdomains of Rn. The main
idea in the proof of the results is to first prove the result in Rn \ {0} and then
generalize it to general subdomains of Rn. Generalization is fairly simple, because
of the explicit formula for the metric is known. For more details about the proofs
see the original papers.

Theorem 2.7. For a domain Ω ( Rn and x ∈ Ω the j-balls Bj(x, r) are convex

if r ∈ (0, log 2] and strictly starlike with respect to x if r ∈
(

0, log(1 +
√
2)
]

.

Proof. [K1, Theorem 1.1].

Theorem 2.8. Let r > 0, Ω ( Rn be a convex domain and x ∈ Ω. Then j-balls
Bj(x, r) are convex.

Proof. [K1, Theorem 4.5].

Results of Theorems 2.7 and 2.8 are illustrated in Figure 2.

Figure 2. Left: boundaries of j-disks j(1, r) in punctured plane
Ω = R2 \ {0} with r = 01/2, r = log 2, r = log(1 +

√
2) and

r = 1.1 ≈ log 3. Right: boundaries of j-disks in a convex polygonal
domain.

Theorem 2.9. Let r > 0 and Ω ( Rn be a starlike domain with respect to x ∈ Ω.
Then the j-balls Bj(x, r) are starlike with respect to x.

Proof. [K1, Theorem 4.8].

Theorem 2.10. For a domain Ω ( Rn and x ∈ Ω the j-metric ball Bj(x, r) is

close-to-convex and connected, if r ∈ (0, log(1 +
√
3)]. Moreover, the constant

log(1 +
√
3) is sharp in the case n = 2.
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Proof. [K3, Theorem 1.2].

2.3. Examples in subdomains of Rn. We consider some concrete examples
of the quasihyperbolic metric and j-metric balls in Rn.

Example 2.11. Let us consider the quasihyperbolic distance in the punctured
plane Ω = R2 \ {0}. By [Va8] quasihyperbolic geodesics between x, y ∈ Ω are
unique whenever k(x, y) ≤ 2. Choosing x ∈ Ω and y = −x it is by (2.1) easy
to see that k(x, y) = π. Since |x| = |y| quasihyperbolic geodesic joining x and y
is a subset of S1(0, |x|) and by selection of x and y it is clear that there are (at
least) two different geodesics from x to y.

While the metric space (Ω, kΩ), Ω ⊂ Rn, is always geodesic, the metric space
(Ω, jΩ) is never geodesic [K1, Theorem 2.10]. This implies that quasihyperbolic
balls are always connected and j-metric balls need not be connected.

Example 2.12. An example of disconnected j-metric disks is shown in Figure
3. The domain is constructed from two disconnected Euclidean disks by joining
then with a narrow corridor. In this domain it is possible to have a j-metric disk
Bj(x, r) such that Bj(x, r) is connected and ∂Bj(x, r) is disconnected. For more
details see [K1, Remark 4.9].

Example 2.13. For any N > 0 it is possible to construct a domain such that
there exists a j-metric ball with exactly N components [K3, 6.3]. It can be shown
that the quasihyperbolic diameter of each of these components is bounded above
by a constant depending only on dimension n and radius r [K3, Lemma 6.8].

Example 2.14. By Theorem 2.10 j-metric balls are always connected, if the
radius is less than or equal to log(1 +

√
3). It is possible to find examples of

j-metric balls such that they are disconnected for radius log(1 +
√
3) + ε for all

ε > 0. For example Bj(
√
3e2, r) in Ω = R2 \ {e1,−e1} is disconnected for all

r = log(1 +
√
3) + ε, where ε > 0 is small enough [K4, Remark 2.10].

Figure 3. An example of disconnected j-disks.
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3. Quick tour on Banach spaces and their geometry

3.1. Basic notions. Recall that a norm on a (real or complex) vector space V
is a function ρ : V → [0,∞) such that

ρ(x+ y) ≤ ρ(x) + ρ(y), x, y ∈ V

ρ(ax) = |a| ρ(x), a ∈ R, x ∈ V

ρ(x) = 0 =⇒ x = 0, x ∈ V.

Recall that a normed space X = (X, ‖ · ‖) (where X is a vector space and
‖ · ‖ is a norm) is said to be a Banach space if all of its Cauchy sequences
converge. This means that for each Cauchy sequence, i.e. a sequence (xn) ⊂ X
such that lim supn,m→∞ ‖xn − xm‖ = 0 there is a (unique) point x ∈ X such that
limn→∞ ‖x− xn‖ = 0. Each finite-dimensional normed space, e.g. (Rn, | · |), is a
Banach space. Next we will give examples of the most simple Banach spaces. We
denote by ℓ0 the vector space of all sequences of real numbers (x1, x2, x3, . . .) (this
is not a normed space). Now, we will define linear subspaces of ℓ0 by taking all
the sequences (xn) such that ‖(xn)‖ < ∞, where the norm ‖ · ‖ varies according
to the choice of the space. Thus we obtain the following classical spaces:

ℓ∞ = (ℓ∞, ‖ · ‖∞), where ‖(xn)‖∞ = sup
n

|xn|,

ℓp = (ℓp, ‖ · ‖p), 1 ≤ p < ∞, where ‖(xn)‖p =
(

∞
∑

n=1

|xn|p
)

1

p

.

An example of a normed space, which is not a Banach space is the normed
subspace of ℓ∞ consisting of all finitely supported vectors, called c00. This is not
a Banach space because vectors of the form (1, 1/2, 1/3, . . . , 1/n, 0, 0, 0, . . .) (n
runs in N) form a Cauchy sequence but the point of convergence
(1, 1/2, . . . , 1/n, 1/n+1, . . .) ∈ ℓ∞ is not in c00. However, each normed space can
be completed (essentially in a unique way) to be a Banach space. For example,
the unique completion of c00 is the Banach space

c0 = (c0, ‖ · ‖∞), where c0 = {(xn) ∈ ℓ∞ : lim
n→∞

|xn| = 0}.

In a similar spirit, the Banach spaces of Lebesgue measurable functions
f : [0, 1] → R are defined: L∞ = (L∞, ‖ · ‖L∞), where ‖f‖L∞ is the essential
supremum of

|f | = inf{a > 0 : m({t ∈ [0, 1] : |f(t)| > a}) = 0},

Lp = (Lp, ‖ · ‖Lp), 1 ≤ p < ∞, where ‖f‖Lp =

(
∫ 1

0

|f(t)|p dt

)

1

p

.
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The spaces ℓ2 and L2 in fact isometrically isomorphic. These Hilbert spaces
are infinite-dimensional generalizations of the Euclidean space and they have a
central role in functional analysis and applications in many branches of mathe-
matics.

The Banach space of continuous functions f : K → R with point-wise linear
operations and the sup-norm ‖f‖sup = supt∈K |f(t)| is denoted by C(K), where
K is a compact Hausdorff space.

The Hardy spaces Hp(D) consist of holomorphic functions from the open unit
disk D to the complex plane C, where the norm is given by

‖f‖Hp =

(

1

2π

∫ 2π

0

lim
r→1

|f(reiθ)|p dθ

)

1

p

.

3.2. Duality, reflexive spaces. The dual space of a real Banach space X =
(X, ‖·‖X) consists of all continuous linear mappings F : X → R. These mappings
are called functionals. The dual of a Banach space X , denoted by X∗, is equipped
with the norm ‖x∗‖X∗ = supy∈X, ‖y‖X=1 x

∗[y] and it is also a Banach space. For
example, it can be seen by using Hölder’s inequality that for 1 < p < ∞ the dual
space of Lp is Lq and the dual of ℓp is ℓq, where 1 < q < ∞ satisfies 1/p+1/q = 1.

The duality is in the sense that f ∗[g] =
∫ 1

0
f ∗(t)g(t) dt or x∗[y] =

∑∞
n=1 x

∗(n)y(n),
respectively.

The coarsest topology on X , that makes all the dual functionals continuous,
is called the weak topology. Recall that a topological space is compact if each
its open cover admits a finite subcover. For example, the closed balls of Rn are
compact. The closed unit ball

BX = {x ∈ X : ‖x‖ ≤ 1}
is never compact in the topology given by the norm, if X is infinite-dimensional.
However, it might happen that BX is compact in the weak topology. In such a
case X is said to be reflexive. This happens exactly when X is isometric in a
canonical way to its second dual X∗∗ = (X∗)∗. For example, the dual of c0 is
ℓ1, whose dual in turn is ℓ∞. For this reason c0 is not reflexive, since c0 is not
isometric to ℓ∞ (in any way). Compactness of the unit ball in weak topology is
very useful property and it has many applications in several branches of math-
ematics, e.g. for proving the existence of quasihyperbolic geodesics on convex
subsets of a reflexive Banach space (see e.g. [Va6]). We will give subsequently
some geometric conditions ensuring that a space is reflexive.

3.3. The Radon-Nikodym principle, differentiation and integration in

Banach spaces. In calculations regarding paths and the quasihyperbolic metric
it is often very convenient to write a path as an integral of its derivative in
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some sense. However, in a general Banach space this is not always possible,
and even if it is, some extra care is needed in doing calculus. We require a
notion of derivative for mappings on Banach spaces as well as a Banach-valued
integral. The fundamental theorem of calculus in the form of the Radon-Nikodym
theorem does not hold in all Banach spaces (e.g. not in c0) and in principle one is
required to study Banach-valued measures in order to decide which space satisfy
the Radon-Nikodym theorem. The good news is that there is a wide class of
Banach spaces, namely ones with the so-called Radon-Nikodym Property (RNP),
in which one can apply the fundamental theorem of calculus principle.

Let us begin by defining the two most important derivatives of a function
on a Banach space. Suppose that f : X → Y is a continuous mapping between
Banach spaces X and Y. The functional analytic differentiation is a a straight
forward generalization of the usual one in Rn. Namely, we say that f is Gâteaux
differentiable at x0 ∈ X if there is a linear continuous mapping f ′(x0) : X → Y
given by

f ′(x0)(z) = lim
t→0

f(x0 + tz)− f(x0)

t
for z ∈ X. If the Gâteaux derivative f ′(x0) : X → Y exists at point x0 and

lim
r→0+

sup
h∈X, ‖h‖=r

f ′(x0)(h)− (f(x0 + h)− f(x0))

‖h‖ = 0,

then f is said to be Fréchet differentiable at x0. In Rn these concepts of differ-
entiability coincide due to compactness of closed balls.

A Banach-valued function f : [0, 1] → X is said to be measurable if there is a
sequence (fn) of countably valued functions of the form

fn : [0, 1] → X, fn(t) =
∞
∑

i=1

xi,nχAi,n
(t), with Ai,n ⊂ [0, 1] measurable,

such that fn(t) → f as n → ∞ for almost every t ∈ [0, 1].

There is a natural way to define an integral
∫ 1

0
f(t) dt of a measurable function

f , called the Bochner integral :
∫ 1

0

f(t) dt = lim
n→∞

∞
∑

i=1

m(Ai,n)xi,n,

where the limit is taken in the norm, if

lim
n→∞

∫ 1

0

‖f(t)− fn(t)‖ dt = 0.

This definition is well set as it does not depend on the selection of the sequence
(fn).
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A Banach space X has the RNP if and only if each Lipschitz path γ : [0, 1] → X
is Gâteaux differentiable almost everywhere. In such a case one can represent
such a path γ as a Bochner integral of its Gâteaux derivative by the formula

γ(s) = γ(0) +

∫ s

0

γ′(t) dt,

where
∫ s

0
f(t) dt =

∫ 1

0
χ[0,s](t)f(t) dt.

Reflexive spaces and separable dual spaces have the RNP. The RNP is a kind
of convexity property, which does not allow too much flatness on the unit sphere.
Given two Banach space properties P and Q, we say that P is a dual property of
Q if P of X∗ implies Q of X. For example, RNP is a dual property for another
property of Banach spaces, called Asplund. A Banach space is Asplund if each
of its separable subspaces has separable dual. As noted, the RNP is a kind of
convexity property, whereas Asplund is a kind of smoothness property, which
yields that the norm is a Fréchet differentiable function in a dense set of points.

3.4. Uniform convexity and smoothness of the unit ball. The unit ball
of (R2, ‖·‖∞) is a non-typical one, it is a square, and thus it barely deserves to be
called a ball. Two things to observe are that it has flat sides and sharp corners.
This is to say that the space is not strictly convex and not smooth. In order to
bypass some pathological behaviour of Banach spaces, one would like to ensure
convexity and smoothness of the unit ball, not just looking at some particular
points (like corners above) but instead the whole asymptotics of the ball. This is
in particular necessary when one desires to form estimates involving smoothness
of the norm non-specific to a certain location of the unit ball.

Next, we will present two moduli related to the geometry of Banach spaces.
The modulus of convexity δX(ǫ), 0 < ǫ ≤ 2, is defined by

δX(ǫ) := inf{1− ‖x+ y‖/2 : x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ǫ},
and the modulus of smoothness ρX(τ), t > 0 is defined by

ρX(τ) := sup{(‖x+ y‖+ ‖x− y‖)/2− 1, x, y ∈ X, ‖x‖ = 1, ‖y‖ = τ}.
The Banach space X is called uniformly convex if δX(ǫ) > 0 for all ǫ > 0, and
uniformly smooth if

lim
τ→0+

ρX(τ)

τ
= 0.

The modulus of convexity measures the maximum distance to the boundary form
a point of a cord of length ǫ inside the unit ball. Thus the unit ball of a uniformly
convex space is round (meaning non-flat) in all directions and this roundness is
controlled by the modulus δ. In getting acquainted with the notion of uniform
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smoothness, it is perhaps worthwhile to calculate the modulus of smoothness for
ℓ1, which is the function τ 7→ τ .

Moreover, a space X is uniformly convex (resp. uniformly smooth) of power
type p ∈ [1,∞) if δX(ǫ) ≥ Kǫp (resp. ρX(τ) ≤ Kτ p) for some K > 0. The power
type p relates the smoothness/convexity of the space X to that of the spaces Lp.
The power types q of smoothness and p of convexity satisfy q ≤ 2 ≤ p. In fact,
Hilbert spaces (corresponding to the case q = p = 2) are both uniformly convex
and uniformly smooth and moreover have the best possible modulus functions of
convexity and smoothness. Spaces linearly homeomorphic to a uniformly smooth
or a uniformly convex space are (super)reflexive.

An example of a Banach space, which is reflexive, strictly convex and smooth,
but not superreflexive, is

ℓ2 ⊕2 ℓ
3 ⊕2 ℓ

4 ⊕2 . . . .

4. Metric balls on Banach spaces

Some previous work will be treated here ([M], [MV], [Va1], [Va2], [Va3], [Va4],
[Va5], [Va6]).

Next we will summarize the main results in [RT]. First, in the j-metric, balls
are starlike for radii r ≤ log 2:

Theorem 4.1. Let X be a Banach space, Ω ( X a domain, and let j be the
distance ratio metric on Ω. Then each j-ball Bj(x0, r), x0 ∈ Ω, is starlike for
radii r ≤ log 2.

The following theorem is a generalization of a result of Martio and Väisälä [MV,
2.13]:

Theorem 4.2. Let X be a Banach space and Ω ( X a convex domain. Then all
quasihyperbolic balls and j-balls on Ω are convex. Moreover, if Ω is uniformly
convex, or if X is strictly convex and has the RNP, then these balls are strictly
convex.

If Ω is starlike with respect to x0 ∈ Ω, then all quasihyperbolic and j-metric
balls centered at x0 are starlike as well.

Theorem 4.3. Let X be Banach space, x0 ∈ X and let Ω ⊂ X be a domain
which is starlike with respect to x0. Then all balls Bj(x0, r) and Bk(x0, r) of Ω
are starlike.

Finally, we note that in [K2] (see Theorem 2.4) critical radii are provided for
the convexity of quasihyperbolic and j-balls on punctured Rn. Again, it is a
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natural question whether the existence of such radii can be established, in the
Banach space setting

In order to check the convexity of a k-ball in a punctured space it would seem
natural to exploit an averaging argument similar to the proof of Theorem 4.2.
We have obtained the following partial result which comes very close to providing
such a device:

Theorem 4.4. Let X be a Banach space, which is uniformly convex and uni-
formly smooth, both moduli being of power type 2. We consider the quasihyper-
bolic metric k on Ω = X \ {0}. Then there exists R > 0 as follows. Assume that
γ1, γ2 : [0, t2] → Ω are rectifiable paths satisfying the following conditions:

(i) γ1, γ2 and (γ1 + γ2)/2 are contained in B‖·‖(0, 2) \B‖·‖(0, 1),
(ii) γ1(0) = γ2(0),
(iii) ℓk(γ1) ∨ ℓk(γ2) ≤ R,
(iv) ℓ‖·‖(γ1) = t1 ≤ t2 = ℓ‖·‖(γ2),
(v) the paths are parameterized with respect to ℓ‖·‖, except that

γ1(t) = γ1(t1) for t ∈ [t1, t2].

Then the following estimate holds:

ℓk(γ1) + ℓk(γ2)

2
+

∫ t2

t1

‖dγ2‖
2d(γ2)

≥ ℓk

(

γ1 + γ2
2

)

+

∫ t1

0

δX(‖D(γ1 − γ2)‖)
‖γ1‖+ ‖γ2‖

ds.

5. Summary of critical radii

In Table 1 and Table 2 the known radii of convexity, starlikeness and close-
to-convexity for the quasihyperbolic and the j-metric balls are presented.

domain convex starlike w.r.t x close-to-convex
R2 \ {0} 1 [K1] κ ≈ 2.83 [K1] λ ≈ 2.97 [K4]
Rn \ {0} 1 [K1] κ ≈ 2.83 [K1] λ∗ ≈ 2.97 [K4]

convex, Rn ∞ [MV] ∞ [MV] ∞ [MV]
convex, BS ∞ [RT] ∞ [RT] ∞ [RT]

starlike w.r.t. x, Rn ? ∞ [K1] ∞ [K1]
general (n = 2), Rn 1 [Va8] π/2∗ [Va7] π/2∗ [Va7]
general (n ≥ 2), Rn ? π/2∗ [Va7] π/2∗ [Va7]

Table 1. The known radii of convexity, starlikeness and close-
to-convexity for the quasihyperbolic balls Bk(x, r). Notation r∗

means that the radius r is not sharp.
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domain convex starlike w.r.t x close-to-convex
convex, Rn ∞ [K2] ∞ [K2] ∞ [K2]
convex, BS ∞ [RT] ∞ [RT] ∞ [RT]

starlike w.r.t. x, Rn log 2 [K2] ∞ [K2] ∞ [K2]

general (n = 2), Rn log 2 [K2] log(1 +
√
2) [K2] log(1 +

√
3) [K4]

general (n ≥ 2), Rn log 2 [K2] log(1 +
√
2) [K2] log(1 +

√
3)∗ [K4]

Table 2. The known radii of convexity, starlikeness and close-to-
convexity for the j-metric balls Bj(x, r). Notation r∗ means that
the radius r is not sharp.
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