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Abstract. During the past thirty years hyperbolic type metrics have become
popular tools in modern mapping theory, e.g., in the study of quasiconformal
and quasiregular maps in the euclidean n-space. We study here several metrics
that one way or another are related to modern mapping theory and point out
many open problems dealing with the geometry of such metrics.
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1. Introduction

Many results of classical function theory (CFT) are more natural when ex-
pressed in terms of the hyperbolic metric than the euclidean metric. Naturality
refers here to invariance with respect to conformal maps or specific subgroups
of Möbius transformations. For example, one of the corner stones of CFT, the
Schwarz lemma [A1], says that an analytic function of the unit disk into itself
is a hyperbolic contraction, i.e., decreases hyperbolic distances. Another exam-
ple is Nevanlinna’s principle of the hyperbolic metric [N-53, p. 50]. Note that
the hyperbolic metric is invariant under conformal maps. Usual methods of CFT
such as power series, integral formulas, calculus of residues, are mainly concerned
with the local behavior of functions and do not reflect invariance very well. The
extremal length method of Ahlfors and Beurling [AhB] has conformal invariance
as a built-in feature and has become a powerful tool of CFT during the past sixty
years that have elapsed since its discovery. One may even say that conformal
invariance, and thus ”naturality”, is one of the guiding principles of geometric
function theory.

There are serious obstacles in generalizing these ideas from the two-dimensional
case to euclidean spaces of dimension n ≥ 3 . For instance, basic facts such as
multiplication of complex numbers or power series of functions, do not make
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sense here. Perhaps a more dramatic obstacle is the failure of Riemann’s map-
ping theorem for dimensions n ≥ 3 : according to Liouville’s theorem, conformal
maps of a domain D ⊂ Rn onto D′ ⊂ Rn are of the form f = g|D for some
Möbius transformation g .

Here we shall study various ways to generalize the hyperbolic metric to the n-
dimensional case n ≥ 3 . In order to circumvent the above difficulties, we do not
require complete invariance with respect to a group of transformations, but only
require “quasi-invariance” under transformations called quasi-isometries. Now
there are numerous “degrees of freedom”, for instance some of the questions posed
below make sense in general metric spaces equipped with some special properties.
Therefore the problems below allow for a great number of variations, depending
on the particular metric or on the geometry of the space. The Dictionary of
Distances [DD-09] lists hundreds of metrics.

This survey is based on my lectures held in two workshops/conferences at IIT-
Madras in December 2009 and August 2010. In December 2005 I gave a similar
survey [Vu-05] and this survey partially overlaps it. The main difference is that
here mainly metric spaces are studied while in the previous survey also categories
of maps between metric spaces such as bilipschitz maps or quasiconformal maps
were considered. During the past decade the progress has been rapid in this area
as shown by the several recent PhD theses [Ha-03, HE, I, Kle-09, Lin-05, Man-08,
SA]. In fact, some of the many problems formulated in [Vu-05] have been solved
in [Kle-09, Lin-05, Man-08]. The original informal lecture style has been mainly
kept without major changes. As in [Vu-05], several problems of varying level
of difficulty, from challenging exercises to research problems, are given. It was
assumed that the audience was familiar with basic real and complex analysis.
The interested reader might wish to study some of the earlier surveys such as
[Ge-99, Ge-05, V-99, Vu4, Vu5, Vu-05].

Acknowledgements. The research of the author was supported by grant
2600066611 of the Academy of Finland.

2. Topological and metric spaces

We list some basic notions from topology and metric spaces. For more infor-
mation on this topic the reader is referred to some some standard textbook of
topology such as Gamelin and Greene [GG].

The notion of a metric space was introduced by M. Frechét in his thesis in
1906. It became quickly one of the key notions of topology, functional analysis
and geometry. In fact, distances and metrics occur in practically all areas of
mathematical research, see the book [DD-09]. Modern mapping theory in the
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setup of metric spaces with some additional structure has been developed by
Heinonen [Hei-01].

2.1. Metric space (X, d). Let X be a nonempty set and let d : X×X → [0,∞)
be a function satisfying

(a) d(x, y) = d(y, x) , for all x, y ∈ X,
(b) d(x, y) ≤ d(x, z) + d(z, y) , for all x, y, z ∈ X,
(c) d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y .

2.2. Examples.

1. (Rn, | · |) is a metric space.
2. If (Xj, dj), j = 1, 2, are metric spaces and f : (X1, d1) → (X2, d2) is an

injection, then mf (x, y) = d2(f(x), f(y)) is a metric.
3. If (X, d) is a metric space, then also (X, da) is a metric space for all a ∈

(0, 1] .
4. More generally, if h : [0,∞)→ [0,∞) is an increasing homeomorphism with
h(0) = 0 such that h(t)/t is decreasing, then (X, h ◦ d) is a metric space
(see e.g. [AVV, 7.42]).

2.3. Proposition. Let (X, d) be a metric space, 0 < a ≤ 1 ≤ b <∞, and

ρ(x, y) = max{d(x, y)a, d(x, y)b} .
Then

ρ(x, y) ≤ 2b−1(ρ(x, z) + ρ(z, y))

for all x, y, z ∈ X . In particular, ρ is a metric if b = 1 .

Proof. Fix x, y, z ∈ X . Consider first the case d(x, y) ≤ 1 . Then

ρ(x, y) = d(x, y)a ≤ (d(x, z) + d(z, y))a ≤ d(x, z)a + d(z, y)a ≤ ρ(x, z) + ρ(z, y) ,

by an elementary inequality [AVV, (1.41)]. Next for the case d(x, y) ≥ 1 we have

ρ(x, y) = d(x, y)b ≤ (d(x, z) + d(z, y))b ≤ 2b−1(d(x, z)b + d(z, y)b) ≤

2b−1(ρ(x, z) + ρ(z, y))

by [AVV, (1.40)].

2.4. Remark. If (X, d) is a metric space and ρ is as defined above in 2.3, then
by a result of A. H. Frink [F], there is a metric d1 such that d1 ≤ ρ1/k ≤ 4d1 .
This result was recently refined by M. Paluszynski and K. Stempak [PS-09]. I
am indebted to J. Luukkainen for this remark.
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2.5. Uniform continuity. Let (Xj, dj), j = 1, 2, be metric spaces and f :
(X1, d1)→ (X2, d2) be a continuous map. Then f is uniformly continuous (u.c.)
if there exists a continuous injection ω : [0, t0)→ [0,∞) such that ω(0) = 0 and

d2(f(x), f(y)) ≤ ω(d1(x, y)) , for all x, y ∈ X1 with d1(x, y) < t0.

2.6. Remarks.

1. This definition is equivalent with the usual (ε, δ)-definition [GG].
2. If ω(t) = Lt for t ∈ (0, t0], then f is L-Lipschitz (abbr. L-Lip).
3. If ω(t) = Lta for some a ∈ (0, 1] and all t ∈ (0, t0], then f is Hölder.
4. If f : (X1, d1) → (X2, d2) is a bijection and there is L ≥ 1 such that
d1(x, y)/L ≤ d2(f(x), f(y)) ≤ Ld1(x, y) for all x, y ∈ X1 then f is L-
bilipschitz. Sometimes bilipschitz maps are also called quasi-isometries.

5. A map is said to be an isometry if it is 1-bilipschitz.
6. The map f : (X, | · |) → (X, | · |), X = (0,∞), f(x) = 1/x, for x ∈ X

is not uniformly continuous. We will later see that this map is uniformly
continuous with respect to the hyperbolic metric of X .

7. A Lip map h : [a, b]→ R has a derivative a.e.

2.7. Balls. Write Bd(x0, r) = {x ∈ X : d(x0, x) < r} and Bd(x0, r) = {x ∈ X :
d(x0, x) ≤ r}.

2.8. Fact. Let τ = {Bd(x, r) : x ∈ X, r > 0} be the collection of all balls. Then
(X, τ ∪ {∅} ∪ {X}) is a topology.

2.9. Remarks.

1. We always equip a metric space with this topology.
2. The balls Bd(x0, r) and Bd(x0, r) are closed and open as point sets, resp.
3. The set (Z, d), d(x, y) = |x − y| is a metric space. Then Bd(0, 1) = {0},
Bd(0, 1) = {−1, 0, 1}. Hence clos(Bd(x0, r)) need not be Bd(x0, r) . Also

diam(Bd(0, 1)) = 0 < diam(Bd(0, 1)) = 2 .

4. Balls in Rn need not be connected (cf. below).
5. In Rn: balls are denoted by Bn(x, r) and spheres by ∂Bn(x, r) = Sn−1(x, r) .

2.10. Paths. A continuous map γ : ∆ → X,∆ ⊂ R , is called a path. The
length of γ, `(γ) , is

`(γ) = sup

{
n∑
i=1

d(γ(xi−1), γ(xi) : {x0, , ..., xn} is a subdivision of ∆

}
.

We say a path is rectifiable if `(γ) < ∞ . A rectifiable path γ : ∆ → X has a
parameterization in terms of arc length γo : [0, `(γ)]→ X.
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Figure 1. A non-convex set which has no Euclidean geodesics

2.11. Definition. A set G is connected if for all x, y ∈ G there exists a path
γ : [0, 1]→ G such that γ(0) = x, γ(1) = y . Sometimes we write Γxy for the set
of all paths joining x with y in G .

2.12. Inner metric of a set G ⊂ X. For fixed x, y ∈ X the inner metric with
respect to G is defined by d(x, y) = inf{`(γ) : γ ∈ Γxy, γ ⊂ G} .

2.13. Geodesics. A path γ : [0, 1] → G where G is a domain, is a geodesic
joining γ(0) and γ(1) if `(γ) = d(γ(0), γ(1)) and d(γ(0), γ(t)) + d(γ(t), γ(1)) =
`(γ) for all t ∈ (0, 1).

2.14. Remarks.

1. In (Rn, | · |) the segment [x, y] = {z ∈ Rn : z = λx+ (1− λ)y, λ ∈ [0, 1]} is
a geodesic .

2. Let G = B2 \ {0} and d be the inner metric of G . There are no geodesics
joining −1/2 and 1/2 in (G, d) .

2.15. Problems. ([Vu-05, p. 322]) Let X be a locally convex set in Rn and let
(X, d) be a metric space.

1. When are balls Bd(x, t) convex for all radii t > 0?
2. When are balls convex for small radii t?
3. When are the boundaries of balls nice/smooth?

2.16. Ball inclusion problem. Suppose that (X, dj), j = 1, 2, determine the
same euclidean topology, X ⊂ Rn . Then

Bd1(x0, r) ⊂ Bd2(x0, s) ⊂ Bd1(x0, t)

for some r, s, t > 0 . For a fixed s > 0, find the best radii r and t . This problem
is interesting and open for instance for several pairs of the metrics d1, d2 even in
the special case when one of the metrics is the euclidean metric.

Note that in the above problems 2.15 and 2.16 we consider the general metric
space situation. It is natural to expect that useful answers can only be given
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under additional hypotheses. The reader is encouranged to find such hypotheses.
In some particular cases the problems will be studied below.

3. Principles of geometry

In this section we continue our list of metrics and introduce some necessary
terminology. We also outline the principles of geometry, according to F. Klein.
These principles provide a uniform view of various geometries. In particular, the
basic models of geometry: the euclidean geometry, the geometry of the Riemann
sphere and the hyperbolic geometry of the unit ball fit into this framework.

The search for geometries leads us to compare the properties of geometries.
The Klein principles, known under the name ”Erlangen Program”, have also
paved the road for the development of geometric function theory during the past
century. For a broad review of basic and advanced geometry we recommend
[Ber-87] and [BBI-01].

3.1. Path integrals. For a locally rectifiable path γ : ∆→ X and a continuous
function f : γ∆→ [0,∞] , the path integral is defined in two steps. Recall that
γo is the normal representation of a rectifiable path.

[I] If γ is rectifiable, we set∫
γ

fds =

∫ `(γ)

0

f(γo(t))|(γo)′(t)| dt .

[II] If γ is locally rectifiable, we set∫
γ

fds = sup

{∫
β

f ds : `(β) <∞, β is a subpath of γ

}
.

3.2. Weighted length. Let G ⊂ X be a domain and w : G→ (0,∞) continu-
ous. For fixed x, y ∈ D , define

dw(x, y) = inf{`w(γ) : γ ∈ Γxy, `(γ) <∞}, `w(γ) =

∫
γ

w(γ(z)) |dz| .

It is easy to see that dw defines a metric on G and (G, dw) is a metric space. If
a length-minimizing curve exists, it is called a geodesic.

The above construction of the weighted length 3.2 has many applications in
geometric function theory. For instance the hyperbolic and spherical metrics are
special cases of it. Our first example of 3.2 is the quasihyperbolic metric, which
has been recently studied by numerous authors. See for instance the papers [KM]
and [KRT] in this proceedings and their bibliographies.
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3.3. Quasihyperbolic metric. If w(x) = 1/d(x, ∂G), then dw is the quasihy-
perbolic metric of a domain G ⊂ Rn . Gehring and Osgood have proved [GO-79]
that geodesics exist in this case. Note that w(x) = 1/d(x, ∂G) is like a ”penalty-
function”, the geodesic segments try to keep away from the boundary.

3.4. Examples.

1. If G = Hn = {x ∈ Rn : xn > 0} then the quasihyperbolic metric coin-
cides with the usual hyperbolic metric, to be discussed later on. Often the
notation ρHn is used.

2. The hyperbolic metric of the unit ball Bn is a weighted metric with the
weight function w(x) = 2/(1− |x|2) . Often the notation ρBn is used.

3. In the special case when w ≡ 1 and the the domain G is a convex subdomain
G ⊂ Rn , dw is the Euclidean distance. The geodesics are the Euclidean
segments.

4. In the special case when w ≡ 1 in the non-convex set G = B2 \ [0, 1)
geodesics do not exist (consider the points a = 1

2
+ i

10
and b = a). See Fig.

1.
5. If the construction 3.2 is applied to Rn with the weight function 1/(1+ |x|2)

we obtain the spherical metric. This spaces can be identified with the
Riemann sphere Sn(en+1/2, 1/2) equipped with the usual arc-length metric.

6. Let X = {x ∈ R : x > 0} and w(x) = 1/x, x ∈ X . Then we see that
`w(x, y) = | log(x/y)| for all x, y ∈ X . Consider again the map f : X →
X, f(x) = 1/x, x ∈ X . We have seen in 2.6 (6) that it is not uniformly
continuous. But it is uniformly continuous as a map f : (X, `w)→ (X, `w) .

3.5. The Möbius group GM(Rn). The group of Möbius transformations in
Rn is generated by transformations of two types

1. inversions in Sn−1(a, r) = {z ∈ Rn : |a− z| = r}

x 7→ a+
r2(x− a)

|x− a|2
,

2. reflections in hyperplane P (a, t) = {x ∈ Rn : x · a = t}

x 7→ x− 2(x · a− t) a

|a|2
.

If G ⊂ Rn we denote by GM(G) the group of all Möbius transformations with
fG = G. The stereographic projection π : Rn → Sn((1/2)en+1, 1/2) is defined
by a Möbius transformation, an inversion in Sn(en+1, 1):

π(x) = en+1 +
x− en+1

|x− en+1|2
, x ∈ Rn, π(∞) = en+1 .
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Figure 2. Stereographic projection

3.6. Plane versus space.

1. For n = 2 Möbius transformations are of the form az+b
cz+d

, z, a, b, c, d ∈ C with
ad− bc 6= 0 .

2. Recall that for n = 2 there are many conformal maps (Riemann mapping
Theorem., Schwarz-Christoffel formula). In contrast for n ≥ 3 conformal
maps are, by Liouville’s theorem (suitable smoothness required), Möbius
transformations.

3. Therefore conformal invariance for the space n ≥ 3 is very different from
the plane case n = 2.

3.7. Chordal metric. Stereographic projection defines the chordal distance by

q(x, y) = |πx− πy| = |x− y|√
1 + |x|2

√
1 + |y|2

for x, y ∈ Rn = Rn ∪ {∞} . Perhaps the shortest proof of the triangle inequality
for q follows if we use 2.6(2).

3.8. Absolute (cross) ratio. For distinct points a, b, c, d ∈ Rn the absolute
ratio is

|a, b, c, d| = q(a, c)q(b, d)

q(a, b)q(c, d)
.

The most important property is Möbius invariance: if f is a Möbius transforma-
tion, then |fa, fb, fc, fd| = |a, b, c, d|. Permutations of a, b, c, d lead to 6 different
numerical values of the absolute ratio.

3.9. Conformal mapping. If G1, G2 ⊂ Rn are domains and f : G1 → G2 is a
diffeomorphism with |f ′(x)h| = |f ′(x)|︸ ︷︷ ︸

operator n.

|h|︸︷︷︸
vector n.

we call f a conformal map. We

use this also in the case G1, G2 ⊂ Rn by excluding the two points {∞, f−1(∞)}.
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For instance, Möbius transformations are examples of conformal maps for all
dimensions n ≥ 3 (cf. 3.6 02 )

3.10. Linear dilatation. Let f : (X, d1)→ (Y, d2) be a homeomorphism, x0 ∈
X . We define the linear dilatation H(x0, f) as follows

H(x0, f, r) =
Lr
lr
, H(x0, f) = lim sup

r→0
H(x0, f, r)

3.11. Quasiconformal maps. We adopt the definition of Väisälä [V1] for K-
quasiconformal (qc) mappings. Recall that for a K-qc, K ≥ 1, homeomorphism
f : G → G′, G,G′ ⊂ Rn there exists a constant Hn(K) such that ∀x0 ∈ G
H(x0, f) ≤ Hn(K) . The reader is referred to [V1] and [Ge-05] for the basic
properties of quasiconformal maps.

It is well-known that conformal maps are 1-qc. It can be also proved that
Hn(1) = 1 , for the somewhat tedious details, see [AVV].

3.12. Examples. In most examples below, the metric spaces will have addi-
tional structure. In particular, we will study metric spaces (X, d) where the
group Γ of automorphisms of X acts transitively (i.e. given x, y ∈ X there exists
h ∈ Γ such that hx = y . We say that the metric d is quasiinvariant under the
action of Γ if there exists C ∈ [1,∞) such that d(hx, hy)/d(x, y) ∈ [1/C,C] for
all x, y ∈ X , x 6= y, and all h ∈ Γ . If C = 1, then we say that d is invariant.

1. The Euclidean space Rn equipped with the usual metric |x−y| = (
∑n

j=1(xj−
yj)

2)1/2, Γ is the group of translations.
2. The unit sphere Sn = {z ∈ Rn+1 : |z| = 1} equipped with the metric of
Rn+1 and Γ is the set of rotations of Sn .

3.13. F.Klein’s Erlangen Program 1872 for geometry.

• use isometries (”rigid motions”) to study geometry
• Γ is the group of isometries
• two configurations are considered equivalent if they can be mapped onto

each other by an element of Γ
• the basic ”models” of geometry are

(a): Euclidean geometry of Rn
(b): hyperbolic geometry of the unit ball Bn in Rn
(c): spherical geometry (Riemann sphere)

The main examples of Γ are subgroups of Möbius transformations of Rn =
Rn ∪ {∞}.
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3.14. Example: Rigid motions and invariant metrics.

X Γ metric
G M(G) ρG hyperbolic metric, G = Bn,Hn

Rn Iso(Rn) q chordal metric
Rn transl. | · |Euclidean metric

3.15. Beyond Erlangen, dictionary of the quasiworld. For the purpose of
studying mappings defined in subdomains of Rn, we must go beyond Erlangen,
to the quasiworld, in order to get a rich class of mappings.

Conformal → ”Quasiconformal”
Invariance → ”Quasi-invariance”
Unit ball → ”Classes of domains”

Metric → ”Deformed metric”
World → ”Quasiworld”

Smooth → ”Nonsmooth”
Hyperbolic → ”Neohyperbolic”

4. Classical geometries

In this section we discuss some basic facts about the hyperbolic geometry,
already defined in Section 3 as a particular case of the weighted metric. Some
standard sources are [A2, A, Be-82, KL-07]. See also [Vu-88]. We begin by
describing the hyperbolic balls in terms of euclidean balls. In passing we remark
that this description will provide, in one concrete case, a complete solution to
the ball inclusion problem 2.16.

4.1. Comparison of metric balls. For r, s > 0 we obtain the formula

ρ(ren, sen) =
∣∣∣ ∫ r

s

dt

t

∣∣∣ =
∣∣∣ log

r

s

∣∣∣ .(4.1)

Here en = (0, ..., 1) ∈ Rn . We recall the invariance property:

ρ(x, y) = ρ(f(x), f(y)) .(4.2)

For a ∈ Hn and M > 0 the hyperbolic ball {x ∈ Hn : ρ(a, x) < M } is
denoted by D(a,M). It is well known that D(a,M) = Bn(z, r) for some z and
r (this also follows from (4.2)! ). This fact together with the observation that
λten, (t/λ)en ∈ ∂D(ten,M), λ = eM (cf. (4.1)), yields

(4.3)

 D(ten,M) = Bn
(
(t coshM)en, t sinhM

)
,

Bn(ten, rt) ⊂ D(ten,M) ⊂ Bn(ten, Rt) ,
r = 1− e−M , R = eM − 1 .
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Figure 3. The hyperbolic ball D(ten,M) as a Euclidean ball.

It is well known that the balls D(z,M) of (Bn, ρ) are balls in the Euclidean
geometry as well, i.e. D(z,M) = Bn(y, r) for some y ∈ Bn and r > 0. Making
use of this fact, we shall find y and r. Let Lz be a Euclidean line through 0 and z
and {z1, z2} = Lz ∩ ∂D(z,M), |z1| ≤ |z2|. We may assume that z 6= 0 since with
obvious changes the following argument works for z = 0 as well. Let e = z/|z|
and z1 = se, z2 = ue, u ∈ (0, 1), s ∈ (−u, u). Then it follows that

ρ(z1, z) = log
(1 + |z|

1− |z|
· 1− s

1 + s

)
= M ,

ρ(z2, z) = log
(1 + u

1− u
· 1− |z|

1 + |z|

)
= M

Solving these for s and u and using the fact that

D(z,M) = Bn
(
1
2
(z1 + z2),

1
2
|u− s|

)
one obtains the following formulae:

(4.4)


D(x,M) = Bn(y, r)

y =
x(1− t2)
1− |x|2t2

, r =
(1− |x|2)t
1− |x|2t2

, t = tanh 1
2
M ,

and 
Bn
(
x, a(1− |x|)

)
⊂ D(x,M) ⊂ Bn

(
x, A(1− |x|)

)
,

a =
t(1 + |x|)
1 + |x|t

, A =
t(1 + |x|)
1− |x|t

, t = tanh 1
2
M .

A special case of (4.4):

D(0,M) = Bρ(0,M) = Bn(tanh
1

2
M) .
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x

y

x´

y´

Figure 4. Hyperbolic lines are circular arcs perpendicular to ∂Bn

and ρBn(x, y) = log |x′, x, y, y′|.

For a given pair of points x, y ∈ Rn and a number t > 0 , an Apollonian
sphere is the set of all points z such that |z − x|/|z − y| = t . It is easy to show
that, given x ∈ Bn , hyperbolic spheres with hyperbolic center x are Apollonian
spheres w.r.t. the points x, x/|x|2, see [KV1].

Note that balls in chordal metric can be similarly described in terms of the
euclidean balls, see [AVV].

4.2. Hyperbolic metric of the unit ball Bn. Four equivalent definitions
of the hyperbolic metric ρBn .

1. ρBn = mw, w(x) = 2
1−|x|2 .

2. sinh2 ρBn (x,y)
2

= |x−y|2
(1−|x|2)(1−|y|2) .

3. ρBn(x, y) = sup{log |a, x, y, d| : a, d ∈ ∂Bn} .
4. ρBn(x, y) = log |x∗, x, y, y∗| .

The hyperbolic metric is invariant under the action of GM(Bn), i.e. ρ(x, y) =
ρ(h(x), h(y)) for all x, y ∈ Bn and all h ∈ GM(Bn) .

4.3. The hyperbolic line through x, y. The hyperbolic geodesics between
x, y in the unit ball are the circular arcs joining x and y orthogonal to ∂Bn.

4.4. Hyperbolic metric of G = f(B2), f conformal. In the case where Gk =
fk(B

2) and fk is conformal, k = 1, 2 , it follows that if h : G1 → G2 is conformal,
then the hyperbolic metric is invariant under h , i.e., ρG1(x, y) = ρG2(hx, hy).
Thus we may use explicit conformal maps to evaluate the hyperbolic metrics in
cases where such a map is known.
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f conformal

-1f (y)

x
y

-1f (x)

Figure 5. Definition of ρ(x, y) in terms of ρBn(f−1(x), f−1(y)),
f conformal.

h

y
h (x)

x h (y)

Figure 6. Invariance of the hyperbolic metric under conformal map.

For n = 2 one can generalize the hyperbolic metric, using covering transfor-

mations, to a domain G ⊂ R2
with card(R2 \G) ≥ 3 [KL-07].

The formula for the hyperbolic metric of the unit ball given by 4.2(2) is rel-
atively complicated. Therefore various comparison functions have been intro-
duced. We will now discuss two of them.

4.5. The distance ratio metric jG. For x, y ∈ G the distance ratio metric jG
is defined [Vu-85] by

jG(x, y) = log

(
1 +

|x− y|
min{d(x), d(y)}

)
.

The inequality jG ≤ δG ≤ j̃G ≤ 2jG holds for every open set G  Rn, where the
metric j̃G (cf. [GO-79]) is a metric defined by

j̃G(x, y) = log

(
1 +
|x− y|
d(x)

)(
1 +
|x− y|
d(y)

)
.

We collect the following well-known facts:

1. Inner metric of the jG metric is the quasihyperbolic metric kG .
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2. kG(x, y) ≤ 2jG(x, y) for all x, y ∈ G with jG(x, y) < log(3/2) , see [Vu-88,
3.7(2)].

3. Both kG and jG define the Euclidean topology.
4. jG is not geodesic; the balls Bj(z,M) = {x ∈ G : jG(z, x) < M} may be

disconnected for large M .

If we compare the density functions of the hyperbolic and the quasihyperbolic
metrics of Bn, it will lead to the observations that

(4.5) ρBn(x, y)/2 ≤ kBn(x, y) ≤ ρBn(x, y)

for all x, y ∈ Bn .

The following proposition gathers together several basic properties of the met-
rics kG and jG, see for instance [GP-76, Vu-88].

4.6. Proposition. ([KSV-09])

1. For a domain G ⊂ Rn, x, y ∈ G, and with L = inf{`(γ) : γ ∈ Γx,y} , we
have

kG(x, y) ≥ log

(
1 +

L

min{δ(x), δ(y)}

)
≥ jG(x, y) .

2. For x ∈ Bn we have

kBn(0, x) = jBn(0, x) = log
1

1− |x|
.

3. Moreover, for b ∈ Sn−1 and 0 < r < s < 1 we have

kBn(br, bs) = jBn(br, bs) = log
1− r
1− s

.

4. Let G  Rn be any domain and z0 ∈ G. Let z ∈ ∂G be such that
δ(z0) = |z0 − z|. Then for all u, v ∈ [z0, z] we have

kG(u, v) = jG(u, v) =

∣∣∣∣log
δ(z0)− |z0 − u|
δ(z0)− |z0 − v|

∣∣∣∣ =

∣∣∣∣log
δ(u)

δ(v)

∣∣∣∣ .
5. For x, y ∈ Bn we have

jBn(x, y) ≤ ρBn(x, y) ≤ 2jBn(x, y)

with equality on the right hand side when x = −y .
6. For 0 < s < 1 and x, y ∈ Bn(s) we have

jBn(x, y) ≤ kBn(x, y) ≤ (1 + s) jBn(x, y).
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Proof. (1) Without loss of generality we may assume that δ(x) ≤ δ(y). Fix
γ ∈ Γ(x, y) with arc length parameterization γ : [0, u]→ G, γ(0) = x, γ(u) = y

`k(γ) =

∫ u

0

|γ′(t)| dt
d(γ(t), ∂G)

≥
∫ u

0

dt

δ(x) + t
= log

δ(x) + u

δ(x)

≥ log

(
1 +
|x− y|
δ(x)

)
= jG(x, y) .

(2) We see by (1) that

jBn(0, x) = log
1

1− |x|
≤ kBn(0, x) ≤

∫
[0,x]

|dz|
δ(z)

= log
1

1− |x|
and hence [0, x] is the kBn-geodesic between 0 and x and the equality in (2) holds.

The proof of (3) follows from (2) because the quasihyperbolic length is additive
along a geodesic

kBn(0, bs) = kBn(0, br) + kBn(br, bs) .

The proof of (4) follows from (3).

The proof of (5) is given in [AVV, Lemma 7.56].

For the proof of the last statement see [KSV-09].

In view of (4.5) and Proposition 4.6 we see that for the case of the unit ball,
the metrics j, k, ρ are closely related.

5. Metrics in particular domains: uniform, quasidisks

We have seen above that for the case of the unit ball, several metrics are
equivalent. This leads to the general question: Suppose that given a domain
G ⊂ Rn we have two metrics d1, d2 on G . Can we characterize those domains G ,
which for a fixed constant c > 0 satisfy d1(x, y) ≤ cd2(x, y) for all x, y ∈ G . As
far as we know, this is a largely open problem. However, the class of domains
characterized by the property that the quasihyperbolic and the distance ratio
metric have a bounded quotient, coincides with the very widely known class of
uniform domains introduced by Martio and Sarvas [MS-79].

There is more general class of domains, so called ϕ-uniform domains, which
contain the uniform domains as special case which we will briefly discuss [Vu-85].

It is easy to see that for a general domain the quasihyperbolic and distance
ratio metrics both define the euclidean topology, in fact we can solve the ball
inclusion problem 2.16 easily, see [Vu-88, (3.9)] for the case of the quasihyperbolic
metric. Although some progress has been made on this problem recently in
[KV2], the problem is not completely solved in the case of metrics considered in
this survey.
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5.1. Uniform domains and constant of uniformity. The following form of
the definition of the uniform domain is due to Gehring and Osgood [GO-79].
As a matter of fact, in [GO-79] there was an additive constant in the inequality
(5.1), but it was shown in [Vu-85, 2.50(2)] that the constant can be chosen to be
0 .

5.2. Definition. A domain G  Rn is called uniform, if there exists a number
A ≥ 1 such that

(5.1) kG(x, y) ≤ AjG(x, y)

for all x, y ∈ G. Furthermore, the best possible number

AG := inf{A ≥ 1 : A satisfies (5.1)}
is called the uniformity constant of G.

Our next goal is to explore domains for which the uniformity constant can
be evaluated or at least estimated. For that purpose we consider some simple
domains.

5.3. Examples of quasihyperbolic geodesics.

1. For the domain Rn\{0}Martin and Osgood (see [MO-86]) have determined
the geodesics. Their result states that given x, y ∈ Rn \ {0}, the geodesic
segment can be obtained as follows: let ϕ be the angle between the segments
[0, x] and [0, y], 0 < ϕ < π. The triple 0, x, y clearly determines a 2-
dimensional plane Σ, and the geodesic segment connecting x to y is the
logarithmic spiral in Σ with polar equation

r(ω) = |x| exp

(
ω

ϕ
log
|y|
|x|

)
.

In the punctured space the quasihyperbolic distance is given by the formula

kRn\{0}(x, y) =

√
ϕ2 + log2 |x|

|y|
.

2. [Lin-05] Let ϕ ∈ (0, π] and x, y ∈ Sϕ = {(r, θ) ∈ R2 : 0 < θ < ϕ}, the
angular domain. Then the quasihyperbolic geodesic segment is a curve
consisting of line segments and circular arcs orthogonal to the boundary.
If ϕ ∈ (π, 2π), then the geodesic segment is a curve consisting of pieces
of three types: line segments, arcs of logarithmic spirals and circular arcs
orthogonal to the boundary.

3. [Lin-05] In the punctured ball Bn \ {0}, the quasihyperbolic geodesic seg-
ment is a curve consisting of arcs of logarithmic spirals and geodesic seg-
ments of the quasihyperbolic metric of Bn.
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Figure 7. Sets {z : kG(1, z)/jG(1, z) = c} .

The above formula 5.3(1) shows that the quasihyperbolic metric of G =
Rn \ {0} is invariant under the inversion x 7→ x/|x|2 which maps G onto it-
self. It is also easy to see that for this domain G also jB has the same invari-
ance property. Next, for this domain G and a given number c > 1 , the sets
{x : kG(1, x)/jG(1, x) = c} are illustrated. The invariance under the inversion is
quite apparent. The same formula 5.3 (1) is also discussed in [KM].

We now give a list of constants of uniformity for a few specific domains fol-
lowing H. Lindén [Lin-05].

1. For the domain Rn \ {0}, the uniformity constant is given by (cf. Figure 7)

ARn\{0} = π/ log 3 ≈ 2.8596 .

2. Constant of uniformity in the punctured ball Bn \ {0} is same as that in
Rn \ {0}.

3. For the angular domain Sϕ, the uniformity constant is given by

ASϕ =
1

sin ϕ
2

+ 1

when ϕ ∈ (0, π].

There are numerous characterizations of quasidisks, i.e. quasiconformal im-
ages of the unit disk under a quasiconformal map. E.g. it is known that a simply
connected domain is a quasidisk if and only if it is a uniform domain, see [Ge-99].
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5.4. ϕ-uniform domains ([Vu-85]). Let ϕ : [0,∞) → [0,∞) be a homeomor-
phism. We say that a domain G ⊂ Rn is ϕ-uniform if

kG(x, y) ≤ ϕ(|x− y|/min{d(x, ∂G), d(y, ∂G)})

holds for all x, y ∈ G .

In [Vu-85] ϕ-uniform domains were introduced for the purpose of finding a
wide class of domains where various conformal invariants could be compared
to each other. Obviously, uniform domains form a subclass. Recently, many
examples of these domains were given in [KSV-09]. This class of domains is
relative little investigated and there are many interesting questions even in the
case of plane simply connected ϕ-uniform domains. This class of plane domains
contains e.g. all quasicircles. Because for a quasicircle C the both components
of C \ C are quasidisks, we could ask the following question. Suppose that C
is a Jordan curve in the plane dividing thus C \ C into two components, one
of which is a ϕ-uniform domain. Is it true that also the other component is a
ϕ1-uniform domain for some function ϕ1? This question was recently answered
in the negative in [HKSV-09].

5.5. Open problem. Is it true that there are ϕ-uniform domains G in the
plane such that the Hausdorff-dimension of ∂G is two?

Recall that for quasicircles this is not possible by [GV]. P. Koskela has in-
formed the author that Tomi Nieminen has done some work on this problem.

6. Hyperbolic type geometries

In this section we discuss briefly two metrics, the Apollonian metric αG and a
Möbius invariant metric δG introduced by P. Seittenranta [Se-99] and formulate a
few open problems. For the case of the unit ball, both metrics coincide with the
hyperbolic metric. For other domains they are quite different: while δG is always
a metric, for domains with small boundary αG may only be a pseudometric. The
Apollonian metric was introduced in 1934 by D. Barbilian [Ba, BS], but forgotten
for many years. A. Beardon [Be-98] rediscovered it independently in 1998 and
thereafter it has been studied very intensively by many authors: see, e.g., Z.
Ibragimov [I], P. Hästö [Ha-03, Ha-04, Ha-05, Ha-04, HI-05, HPS-06, HKSV-09],
S. Ponnusamy [HPWS-09, HPWW-10], S. Sahoo [SA]. See also D. Herron, W.
Ma and D. Minda [HMM].
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 x
 y b

 a

Figure 8. A quadruple of points admissible for the definition of
the Apollonian metric.

6.1. Apollonian metric of G  Rn.

αG(x, y) = sup{log |a, x, y, b| : a, b ∈ ∂G}.

• αG agrees with ρG, if G equals Bn and Hn.
• αhG(hx, hy) = αG(x, y) for h ∈ GM(Rn)
• αG is a pseudometric if ∂G is ”degenerate”

6.1.1. Facts.

1. The well-known sharp relations αG ≤ 2jG and αG ≤ 2kG are due to Beardon
[Be-98].

2. αG does not have geodesics.
3. The inner metric of the Apollonian metric is called the Apollonian inner

metric and it is denoted by α̃G (see [Ha-03, Ha-04, HPS-06]).
4. We have αG ≤ α̃G ≤ 2kG.
5. α̃G-geodesic exists between any pair of points in G  Rn if Gc is not

contained in a hyperplane [Ha-04].

6.2. A Möbius invariant metric δG. For x, y ∈ G  Rn, Seittenranta [Se-99]
introduced the following metric

δG(x, y) = sup
a,b∈∂G

log{1 + |a, x, b, y|} .

6.2.1. Facts. [Se-99]

1. The function δG is a metric.
2. δG agrees with ρG, if G equals Bn or Hn.
3. It follows from the definitions that δRn\{a} = jRn\{a} for all a ∈ Rn.
4. αG ≤ δG ≤ log(eαG + 2) ≤ αG + 3. The first two inequalities are best

possible for δG in terms of αG only [Se-99].
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6.3. Open problem. Define

mBn(x, y) := 2 log

(
1 +

|x− y|
2 min{d(x), d(y)}

)
.

Then mBn(x, y) is not a metric. In fact, any choice of the points on a radial
segment will violate the triangle inequality. It is easy to see that kBn(x,−x) =
mBn(x,−x). We do not know whether kBn(x, y) ≤ mBn(x, y) for all x, y ∈ Bn .
If the inequality holds, then certainly kBn ≤ 2mBn ≤ 2jBn .

6.4. Diameter problems. There exists a domain G  Rn and x ∈ G such that
j(∂Bj(x,M)) 6= 2M for all M > 0. Indeed, let G = Bn. Choose x ∈ (0, e1) and
consider the j-sphere ∂Bj(0,M) for M = jG(x, 0). Now, Bj(0,M) is a Euclidean
ball with radius |x| = 1− e−M . The diameter of the j-sphere ∂Bj(0,M) is

jG(x,−x) = log

(
1 +
|2x|
d(x)

)
= log

(
1 +

2− 2e−M

e−M

)
= log(2eM − 1) .

We are interested in knowing whether jG(x,−x) = 2M holds, equivalently in this
case, (eM − 1)2 = 0 which is not true for any M > 0. Therefore, we always have
jG(x,−x) < 2M and the diameter of ∂Bj(0,M) is less than twice the radius M .
Note that there is no geodesic of the jG metric joining x and −x .

For a convex domain G, it is known by Martio and Väisälä [MV-08] that
k(∂Bk(x,M)) = 2M . However, we have the following open problem.

6.5. Open problem. Does there exist a number M0 > 0 such that for all
M ∈ (0,M0] we have k(∂Bk(x,M)) = 2M . For the case of plane domains, this
problem was studied by Beardon and Minda [BM-11].

6.6. Convexity problem [Vu-05]. Fix a domain G ( Rn and neohyperbolic
metric m in a collection of metrics (e.g. quasihyperbolic, Apollonian, jG, hyper-
bolic metric of a plane domain etc.). Does there exist constant T0 > 0 such that
the ball Bm(x, T ) = {z ∈ G : m(x, z) < T}, is convex (in Euclidean geometry)
for all T ∈ (0, T0)?

6.7. Theorem. [[Kle-08]] For a domain G ( Rn and x ∈ G the j-balls Bj(x,M)
are convex if and only if M ∈ (0, log 2].
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Figure 9. Boundaries (nonsmooth!) of j-disks BjR2\{0}
(x,M)

with radii M = −0.1 + log 2, M = log 2 and M = 0.1 + log 2.

Figure 10. Boundaries of quasihyperbolic disks BkR2\{0}
(x,M)

with radii M = 0.7, M = 1.0 and M = 1.3.

6.8. Theorem. [[Kle-07], [MO-86]] For x ∈ R2 \ {0} the quasihyperbolic disk
Bk(x,M) is strictly convex iff M ∈ (0, 1] .

Some of the convexity results of Klén have been extended to Banach spaces
by A. Rasila and J. Talponen [RT-10]. See also [KRT].

If a metric space is geodesic, then all metric balls are connected. For non-
geodesic metric spaces the connectivity of metric balls depends on the setting.
For example, chordal balls are always connected while j-balls need not be con-
nected [Kle-08, Remark 4.9 (2)]. See also [KRT].

6.9. Lemma. Let G ⊂ Rn be a domain, x ∈ G, and r > 0. Then for each
connected component D of Bj(x, r) we have

diamk(D) ≤ c(r, n).

7. Complement of the origin

We have already seen that the quasihyperbolic metric has a simple formula
for the complement of the origin. Even more is true: many results of elementary
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plane geometry hold, possibly with minor modifications, in the quasihyperbolic
geometry. Geometrically we can view (G, kG), G = R2 \ {0} as a cylindrical
surface embedded in R3, cf. [Kle-09].

Therefore many basic results of euclidean geometry hold for (G, kG) as such
or with minor modifications. Some of these results are listed below.

7.1. Theorem. [Law of Cosines] ([Kle-09]) Let x, y, z ∈ R2 \ {0}.
(i) For the quasihyperbolic triangle 4k(x, y, z)

k(x, y)2 = k(x, z)2 + k(y, z)2 − 2k(x, z)k(y, z) cos]k(y, z, x).

(ii) For the quasihyperbolic trigon 4∗k(x, y, z)

k(x, y)2 = k(x, z)2 + k(y, z)2 − 2k(y, z)k(z, x) cos]k(y, z, x)− 4π(π − α),

where α = ](x, 0, y).

Figure 11. An example of a quasihyperbolic triangle (left) and
a quasihyperbolic trigon (right). The small circle stands for the
puncture at the origin. [Kle-09]

7.2. Theorem. ([Kle-09]) Let 4k(x, y, z) be a quasihyperbolic triangle. Then
the quasihyperbolic area of 4k(x, y, z) is√

s
(
s− k(x, y)

)(
s− k(y, z)

)(
s− k(z, x)

)
,

where s =
(
k(x, y) + k(y, z) + k(z, x)

)
/2.

It is a natural question to ask whether for some other domains the Law of
Cosines holds as an inequality, see [Kle-09]. For the case of the half plane the
problem was solved in [HPWW-10].
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7.3. Lemma. ([HPWW-10]) Let x, y, z ∈ H2 be distinct points. Then

kH2(x, y)2 ≥ kH2(x, z)2 + kH2(y, z)2 − 2kH2(y, z)kH2(x, z) cos γ,

where γ is the Euclidean angle between geodesics Jk[z, x] and Jk[z, y].

These results raise many questions about generalizations to more general situa-
tions. For instance, what about the case of domains with finitely many boundary
points or simple domains such as a sector, a strip or a polygon?
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[Ha-05] P. Hästö, Isometries of relative metrics, In: S. Ponnusamy, T. Sugawa, and M.
Vuorinen (Eds.) Quasiconformal Mappings and their Applications, Narosa Publish-
ing House, 57–77, New Delhi, India, 2007.
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[HPS-06] P. Hästö, S. Ponnusamy, and S.K. Sahoo, Inequalities and geometry of the
Apollonian and related metrics, Rev. Roumaine Math. Pures Appl. 51(4)(2006),
433–452.

[HE] V. Heikkala, Inequalities for conformal capacity, modulus, and conformal invari-
ants, Ann. Acad. Sci. Fenn. Math. Diss. No. 132 (2002), 62 pp.

[HV-03] V. Heikkala and M. Vuorinen, Teichmüller’s extremal ring problem, Math. Z.
254(2006), 509–529.

[Hei-01] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer, 2001.
[HMM] D. A. Herron, W. Ma, and D. Minda, Möbius invariant metrics bilipschitz
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