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Calculus, Fractals, and Analysis on Metric Spaces

Stephen Semmes

Abstract. A consequence of the mean value theorem is that a differentiable
function f on an open interval I is constant if f ′(x) = 0 for each x ∈ I.
This does not work so well in the context of fractal sets, even when they are
connected, as in a classical example of Whitney. More precisely, the behavior of
functions on a set depends on the geometry of the set, and there are numerous
possibilities. Here we discuss some basic notions and examples related to these
themes.
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1. Whitney’s example

If f is a differentiable real-valued function on the real line, I ⊆ R is an interval,
and

(1.1) f ′(x) = 0

for every x ∈ I, then f is constant on I, by the mean value theorem. Of course,
there are analogous results for connected open sets or smooth curves and surfaces
in higher dimensions. However, a well-known example due to Whitney [68] shows
that a continuously-differentiable function f on the plane may satisfy

(1.2) ∇f(p) = 0

for every point p in a connected set E and not be constant on E.

More precisely, E is a continuous curve in R2 in Whitney’s example, which
cannot be very smooth. At the same time, if f were too smooth, then Whit-
ney’s example would also not work. For instance, if f were twice-continuously
differentiable, then f(E) would have 1-dimensional measure 0 in the real line, by
Sard’s theorem. This would imply that f(E) contains only one element, since
f(E) is connected, by the connectedness of E and continuity of f . This is the
same as saying that f is constant on E.
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Let us briefly review the proof of Sard’s theorem in this context. If p ∈ E
and the second derivatives of f are equal to 0 at p, then f is very flat at p, by
Taylor’s theorem. In this case, it does not matter how complicated E might be
near p. Otherwise, if one of the second derivatives of f is not 0 at p, then the
implicit function theorem implies that the set where one of the first derivatives
of f is equal to 0 is a continuously-differentiable curve near p. Thus one can use
the vanishing of the gradient directly on this part.

One of Whitney’s main tools was his celebrated extension theorem [67] for
smooth functions. This permits one to focus on functions on E, which can be
extended toR2 afterward. For that matter, we can consider functions on abstract
metric spaces.

2. Metric spaces

Let (M, d(x, y)) be a metric space. Thus d(x, y) is a nonnegative real-valued
function on the set M , d(x, y) = 0 exactly when x = y,

(2.1) d(y, x) = d(x, y)

for every x, y ∈ M , and

(2.2) d(x, z) ≤ d(x, y) + d(y, z)

for every x, y, z ∈ M . Of course, the latter is known as the triangle inequality,
and Rn is a metric space with the standard Euclidean metric.

There is an obvious way to say what it means for a real-valued function f on
M to have gradient at a point p ∈ M equal to 0, which is that

(2.3) lim
x→p

|f(x)− f(p)|

d(x, p)
= 0.

If M is Rn with the standard Euclidean metric, then this is equivalent to f being
differentiable at p, and with first derivatives equal to 0 at p.

If (2.3) holds at every point p in a closed set E ⊆ M , then one may wish
to ask that the limit be uniform on compact subsets of E. In particular, this
holds for continuously-differentiable functions on Rn. Conversely, if E is a closed
set in Rn, and f is a real-valued function on E that satisfies (2.3) uniformly on
compact subsets of E, then Whitney’s extension theorem implies that f can be
extended to a continuously-differentiable function on Rn whose gradient is equal
to 0 on E.

A real-valued function f on a metric space M is said to be Lipchitz if there is
a nonnegative real number C such that

(2.4) |f(x)− f(y)| ≤ C d(x, y)
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for every x, y ∈ M . Actually, it suffices to check that

(2.5) f(x) ≤ f(y) + C d(x, y)

for every x, y ∈ M , since this is the same as

(2.6) f(x)− f(y) ≤ C d(x, y),

and it implies that

(2.7) f(y)− f(x) ≤ C d(x, y)

by interchanging x and y. For example, fa(x) = d(a, x) is Lipschitz with C = 1
for each a ∈ M , by the triangle inequality.

3. Snowflake spaces

If a, b are nonnegative real numbers and 0 < t < 1, then

(3.1) (a+ b)t ≤ at + bt.

For example, if t = 1/2, then this can be seen by squaring both sides. Otherwise,
one can observe that

(3.2) max(a, b) ≤ (at + bt)1/t,

and hence

a+ b ≤ (at + bt) max(a, b)1−t(3.3)

≤ (at + bt) (at + bt)(1−t)/t

= (at + bt)1/t,

which is equivalent to (3.1). One can also use calculus to show (3.1).

If (M, d(x, y)) is any metric space, then it follows that d(x, y)t is a metric on
M when 0 < t < 1 too. The main point is that d(x, y)t satisfies the triangle
inequality, because of (3.1). Note that d(x, y)t determines the same topology on
M as d(x, y).

Suppose that f is a Lipschitz function on M with respect to d(x, y). It is easy
to see that

(3.4) lim
x→p

|f(x)− f(p)|

d(x, p)t
= 0

uniformly onM when 0 < t < 1. Hence there are plenty of nonconstant functions
on M with “gradient 0” with respect to d(x, y)t.

In particular, this can be applied to connected metric spaces. For instance,
there are plenty of nonconstant functions with “gradient 0” on the unit interval
[0, 1] with respect to the metric |x− y|t when 0 < t < 1.
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4. Bilipschitz embeddings

Let (M1, d1(x, y)) and (M2, d2(u, v)) be metric spaces. A mapping φ from M1

into M2 is said to be bilipschitz if there is a real number C ≥ 1 such that

(4.1) C−1 d1(x, y) ≤ d2(φ(x), φ(y)) ≤ C d1(x, y)

for every x, y ∈ M1. Equivalently, φ is bilipschitz if it is one-to-one, Lipschitz,
and its inverse is Lipschitz as a mapping from φ(M1) onto M1.

Many standard snowflake curves in the plane are bilipschitz-equivalent, at
least locally, to an interval in the real line with a snowflake metric |x − y|t for
some 0 < t < 1. For instance, the von Koch snowflake curve has this property
with t = log 3/ log 4.

If φ : M1 → M2 is bilipschitz, then it is easy to see that a real-valued function
f on φ(M1) has “gradient 0” if and only if f ◦ φ has “gradient 0” on M1. Thus
one can get examples of nonconstant functions with “gradient 0” on snowflake
curves, using the corresponding examples on the real line with respect to |x−y|t

when 0 < t < 1. As mentioned previously, one can then use Whitney’s extension
theorem to get continuously-differentiable functions on the plane with the desired
properties. One can also look at snowflake curves in terms of quasiconformal
mappings on the plane. See [23] for more sophisticated examples using snowflake
metrics and embeddings, and [45, 46] for some other results related to Whitney’s
example.

Whitney’s original example was based on Cantor sets instead of snowflake
curves, but the gist of the argument is quite similar. Of course, it is easy to
find locally-constant functions on Cantor sets that are not constant, because
of disconnectedness. It is more interesting to consider mappings from Cantor
sets onto intervals of positive length, and which are as smooth as possible. For
instance, there is a continuous function from the middle-thirds Cantor set in
the unit interval [0, 1] onto [0, 1]. Using a Cantor set in the plane of Hausdorff
dimension 1, one can get a Lipschitz function onto [0, 1]. With a slightly larger
Cantor set in the plane, one can get a function that has “gradient 0” and maps
onto [0, 1]. To get a connected set, one can pass a curve through the Cantor set
in an appropriate manner.

5. Nice curves

Let (M, d(x, y)) be a metric space. As usual, a continuous path inM is defined
by a continuous mapping from a closed interval [a, b] in the real line into M . If
q : [b, c] → M is another continuous path and p(b) = q(b), then we can combine
the two in the obvious way to get a continuous path defined on [a, c].
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Let us say that p : [a, b] → M is a nice curve if

(5.1) d(p(x), p(y)) ≤ |x− y|

for every x, y ∈ [a, b], which is the same as saying that p is Lipschitz with
constant 1 as a mapping from [a, b] into M . If q : [b, c] is another nice curve with
p(b) = q(b), then the combined path on [a, c] is nice too.

A continuous path p : [a, b] → M is said to have finite length if the sums

(5.2)
n∑

i=1

d(p(xi), p(xi+1))

are bounded, where

(5.3) a = x0 < x1 < x2 · · · < xn = b

is any partition of [a, b]. In this case, the length of the path is defined to be the
supremum of (5.2) over all partitions of [a, b]. If p is nice, then p has finite length
less than or equal to b− a.

Conversely, if p is a continuous path of finite length, then there is a repa-
rameterization of p which is a nice curve defined on an interval whose length is
the length of p. Basically, one can reparameterize p by arc length, as in vector
calculus. For simplicity, we shall restrict our attention to nice curves here.

6. Calculus

Let (M, d(x, y)) be a metric space, and let p : [a, b] → M be a nice curve in M .
Also let f be a real-valued function on M which has “gradient 0” in the sense
of (2.3) at p(x) for every x ∈ [a, b]. This implies that f(p(x)) has derivative 0 in
the usual sense of calculus when a < x < b, with one-sided derivatives equal to
0 at the endpoints. In particular, f(p(x)) is continuous on [a, b], and the mean
value theorem implies that f(p(x)) is constant on [a, b].

Alternatively, one might start with the hypotheses that p : [a, b] → M be a
continuous path of finite length, and that (2.3) hold with uniform convergence
on p([a, b]). In this case, one can show somewhat more directly that f(p(x)) is
constant on [a, b], basically by showing that it has length 0 as a continuous path
in the real line. It suffices to consider partitions of [a, b] in which the distances
between consecutive elements is small, because the relevant sums can only get
larger as points are added to a partition, by the triangle inequality. The sums
for f(p(x)) can then be estimated in terms of the gradient 0 condition for f and
the finite length of p.
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Of course, there are many variants of arguments like these. Well-known the-
orems in real analysis state that Lipschitz functions on the real line are dif-
ferentiable almost everywhere with respect to Lebesgue measure, and that the
fundamental theorem of calculus holds for Lipschitz function using the Lebesgue
integral of the derivative. Thus a Lipschitz function on R, or on an interval,
is constant when its derivative is equal to 0 almost everywhere. There are also
analogous results on Rn.

Monotone functions on the real line are differentiable almost everywhere too.
This applies as well to functions of “bounded variation”, which amounts to finite
length for paths in R. Monotone functions automatically have bounded varia-
tion on closed intervals, and conversely functions of bounded variation can be
expressed as differences of monotone increasing functions. However, an example
of Cantor shows that a continuous monotone function can have derivative equal
to 0 almost everywhere without being constant. This does not happen with the
additional condition of absolute continuity, which is automatically satisfied by
Lipschitz functions.

7. Calculus, 2

Let (M, d(x, y)) be a metric space, and let f be a real-valued function on M .
There is also a simple version of |∇f(p)| ≤ k that can be defined on M for each
k ≥ 0, which is that

(7.1) lim sup
x→p

|f(x)− f(p)|

d(x, p)
≤ k.

To be more explicit, this means that for each ǫ > 0 there is a δ > 0 such that

(7.2)
|f(x)− f(p)|

d(x, p)
< k + ǫ

for every x ∈ M with d(x, p) < δ. If M is Rn with the standard metric and f is
differentiable at p, then this is equivalent to |∇f(p)| ≤ k in the usual sense.

Consider the case of a continuous function f on a closed interval [a, b] in the
real line that satisfies (7.1) at every point in (a, b). If f is differentiable at every
point in (a, b), then the mean value theorem implies that f is Lipschitz on [a, b]
with constant k. This can be extended to deal with functions that may not be
differentiable, as follows. If r is a real number such that |r| > k, then one can
check that f(x) + r x cannot have any local maxima or minima in (a, b). This
is analogous to the fact that the derivative of a function is equal to 0 at a local
minimum or maximum when it exists. Thus f(x)+ r x attains its maximum and
minimum on [a, b] at the endpoints, and one can use this to show that

(7.3) |f(b)− f(a)| ≤ k (b− a).
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The same argument works on any closed subinterval of [a, b], which implies that
f is Lipschitz with constant k on [a, b].

Suppose now that p : [a, b] → M is a nice curve, and that f : M → R satisfies
(7.1) at each point in p([a, b]). In this case, f(p(x)) satisfies the conditions
described in the previous paragraph, and hence is Lipschitz with constant k on
[a, b]. Alternatively, suppose that p : [a, b] → M is a continuous path, and that
(7.1) holds with uniform convergence on p([a, b]). The latter means that for every
ǫ > 0 there is a δ > 0 such that (7.2) holds at every point in p([a, b]). As in the
previous section, one can show directly that f(p(x)) has finite length less than
or equal to k times the length of p, by estimating sums associated to sufficiently
fine partitions of [a, b].

If f is Lipschitz with constant k, then (7.1) obviously holds at every point
in M . Lipschitz functions on Rn are also differentiable almost everywhere,
as mentioned previously. Conversely, if a Lipschitz function f on Rn satisfies
|∇f(p)| ≤ k almost everywhere, then it can be shown that f is Lipschitz with
constant k on Rn.

8. Happy fractals

Let (M, d(x, y)) be a metric space, and suppose that there is a real number
L ≥ 1 such that for each x, y ∈ M there is a nice curve p : [a, b] → M such that
p(a) = x, p(b) = y, and

(8.1) b− a ≤ Ld(x, y).

This means that every pair of points x, y in M can be connected by a curve
of length less than or equal to Ld(x, y). Of course, any curve in M connecting
x and y has length at least d(x, y). If M is Rn with the standard Euclidean
metric, then this condition holds with L = 1, because every pair of points can
be connected by a straight line segment.

Suppose that f is a real-valued function on M and k is a nonnegative real
number such that (7.1) holds at every point in M . If p : [a, b] → M is a nice
curve in M , then

(8.2) |f(p(a))− f(p(b))| ≤ k (b− a),

as in the previous section. Thus the geometric condition about nice curves implies
that f is Lipschitz with constant k L on M . In particular, f is constant when
k = 0.

It is not too difficult to see that some standard fractals like Sierpinski gaskets
and carpets and Menger sponges have this property. The edges of the various
triangles, squares, or cubes can be used as building blocks for nice curves. One
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can use sequences of these edges at different scales to connect any point to a
vertex at some level of the construction. However, one should be careful about
points that are close to each other but may not be in the same small triangle,
square, or cube. They may be in adjacent small triangles, squares, or cubes, so
that one should connect from one to the other.

LetM be a compact connected smooth submanifold ofRn, with the restriction
of the standard Euclidean metric to M as the metric on M . In this case, M
certainly satisfies the geometric condition described before for some L ≥ 1. The
size of L reflects the relationship between the intrinsic and extrinsic geometry of
M .

9. Happy fractals, 2

In some situations, distances on a metric space might be defined in terms of
minimization of lengths of paths, so that the geometric condition discussed in the
previous section holds automatically. On a Riemannian manifold, for instance,
the length of a smooth path is defined directly in terms of the Riemannian metric,
as the integral of the lengths of the tangent vectors along the path. The distance
between two points is then defined to be the infimum of the lengths of the paths
connecting them.

To compensate for this, one can ask for other geometric conditions that limit
the complexity of the metric space. As in [10, 11], one such condition is the
doubling condition, that every ball of radius r be contained in the union of a
bounded number of balls of radius r/2. It is easy to see that Euclidean spaces
satisfy this condition, and that subsets of doubling metric spaces are also dou-
bling with respect to the induced metric. Thus the doubling condition holds
automatically for fractal sets in Rn, but the condition in the previous section
does not.

Sub-Riemannian spaces are another very interesting class of examples. One
can start with a smooth manifold as before, but now the paths are restricted
to have their tangent vectors in certain subspaces of the tangent bundle. Under
suitable conditions, it is still possible to connect any two elements of the manifold
by such a path. The lengths of these paths can be defined by integrals in the usual
way, and the infimum of the lengths of these paths between two points determines
a metric on the manifold. Under suitable conditions again, the resulting metric is
compatible with the standard topology on the manifold and satisfies the doubling
condition. However, it is also fractal. More precisely, the Hausdorff dimension is
still an integer, but it is larger than the topological dimension of the manifold.

In addition to a doubling condition on the metric space, there is often an
interesting doubling measure, which is a positive Borel measure such that the
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measure of a ball is bounded by a constant times the measure of the ball with
the same center and one-half the radius. For example, Lebesgue measure has this
property on Rn, and one can show that the existence of a doubling measure on
a metric space implies that the space is doubling. A lot of analysis on Euclidean
spaces can be extended to metric spaces with doubling measures, or spaces of

homogeneous type, as in [10, 11]. This applies to disconnected spaces like Cantor
sets as well as snowflake spaces and spaces with a lot of rectifiable curves. With
the latter, one can do more, as in the previous sections.

10. Very happy fractals

On the real line, the fundamental theorem of calculus permits the behavior
of a function to be analyzed in terms of integrals of its derivative, instead of
uniform bounds for the derivative. There are also versions of this in arbitrary
dimensions, including Poincaré and Sobolev inequalities. There are analogous
results for nilpotent Lie groups and sub-Riemannian spaces as well. This is
related to isoperimetric inequalities too, in which the size of a region is estimated
in terms of the size of its boundary.

In [32], Juha Heinonen and I asked whether some type of connection with
approximately Euclidean or sub-Riemannian geometry was necessary in order
to have analytic or geometric properties like these, under suitable conditions.
Remarkable examples of Bourdon and Pajot [7] and Laakso [39] show that there
are quite different spaces with similar features. These examples have topological
dimension equal to 1, but different geometry from the classical Sierpinski gaskets
and carpets and Menger sponges.

As discussed in [53], the examples of Bourdon, Pajot, and Laakso show that
stronger hypotheses are required to get positive results. In a sense, the necessary
conditions in Hörmander’s theorem on sums of squares of vector fields [33] take
a step in this direction, except that one is already working on a smooth manifold
by hypothesis.

The answer seems to lie somewhere between [6] and [9]. In the former, reg-
ularity of the tangent cone of a metric space leads to local models based on
nilpotent Lie groups. In the latter, Poincaré inequalities are used to obtain a
measurable tangent bundle related to directional derivatives almost everywhere.
On an ordinary smooth manifold, the tangent space at a point is both the domain
for directional derivatives and a local model for the geometry of the manifold.
However, these are not quite the same already for standard sub-Riemannian
spaces.
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