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1. Introduction

Harmonic quasiconformal (briefly, hqc) mappings in the plane were studied
first by O. Martio in [23], today they are investigated both in the planar and
the multidimensional setting from several different points of view. Among topics
considered are: boundary behaviour, including Hölder and Lipschitz continuity
and more general moduli of continuity, behavior with respect to natural metrics,
especially quasihyperbolic metric, distortion estimates, bi-Lipschitz properties
with respect to different metrics, characterization of boundary maps. Different
tools are used: conformal moduli of curve families, Poisson kernels, estimates
from the theory of second order elliptic operators, notions of capacity, subhar-
monic functions, Hilbert’s transformation. Both theories of harmonic mappings
and quasiconformal mappings are well developed, it is of interest to consider how
these results can be strengthened in presence of both harmonicity and quasicon-
formality. Some of the results are unexpected and elegant, e.g. preservation of
boundary modulus of continuity in the case of Bn ([3]), bi-Lipschitz property with
respect to quasihyperbolic metric (n = 2) ([21]), Hölder continuity is preserved
for uniformly perfect domains ([7]). For example, bi-Lipschitz properties of such
mappings were studied extensively, see [15] and [26] for further references. Also,
characterizations of the boundary mappings admitting hqc extension were given
in [29] and [18].

ISSN 0971-3611 c© 2010
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2. Quasiconformal mappings

Conformal invariance has played a predominant role in the study of geometric
function theory during the past century. Some of the landmarks are the pio-
neering contributions of Grötzsch and Teichmüller prior to the Second World
War, and the paper of Ahlfors and Beurling [2] in 1950. These results lead to
farreaching applications and have stimulated many later studies [13]. For in-
stance, Gehring and Väisälä [10], [33] have built the theory of quasiconformal
mappings in Rn based on the notion of the modulus of a curve family intro-
duced by Ahlfors and Beurling [2], which is an essential tool in investigation of
quasiconformal mappings.

Let us consider a family Γ of curves in R
n
= Rn ∪ {∞}. We say that a

non-negative Borel measurable ρ : Rn → R is an admissible metric for Γ if

lρ(γ) =

∫

γ

ρ ds > 1 for each locally rectifiable γ ∈ Γ.

Let F (Γ) be the set of all admissible metrics for Γ. Finally, for each p > 1 we
define p-modulus of Γ by

Mp(Γ) = inf
ρ∈F (Γ)

∫

Rn

ρpdm.

The case p = n is most important, in that case we write simply M(Γ). 1
M(Γ)

is

the extremal length of Γ.

Definition 2.1. A domain A ⊂ Rn is a ring if C(A) has exactly two components.

If the components of C(A) are C0 and C1, we denote A = R(C0, C1), B0 =
C0 ∩ A and B1 = C1 ∩ A. To each ring A = R(C0, C1), we associate the curve
family ΓA = ∆(B0, B1, A) and the capacity of A is defined by cap A = M(ΓA).
Next, the modulus of A is defined by capA = ωn−1(modA)1−n.

Let f : D → D′ be a homeomorphism. If Γ is a family of curves in D, then Γ′

denotes the family {f ◦ γ | γ ∈ Γ} of curves in D′. We set

KI(f) = sup
M(Γ′)

M(Γ)
, KO(f) = sup

M(Γ)

M(Γ′)
,

where the suprema are taken over all families of curves Γ ⊂ D such that M(Γ)
and M(Γ′) are not simultaneously 0 or ∞.

Note that both quantities are equal to one if f is conformal mapping.

Definition 2.2. If f : D → D′ is a homeomorphism, KI(f) is the inner di-
latation and KO(f) is the outer dilatation of f . The maximal dilatation of f is
K(f) = max{KI(f), KO(f)}. If K(f) 6 K < ∞, f is K-quasiconformal. f is
quasiconformal (qc) if K(f) < ∞.
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Equivalently, f is K-quasiconformal iff

M(Γ)

K
6 M(Γ′) 6 KM(Γ),

for every family of curves Γ in D. This is the geometric definition of quasicon-
formal mappings.

Definition 2.3. Let A : Rn → Rn be a linear bijection. The numbers

HI(A) =
|det(A)|
ln(A)

, HO(A) =
|A|n

|det(A)| , H(A) =
|A|
l(A)

,

where l(A) = inf ||x||=1 ||Ax||, are called the inner, outer and linear dilatation of
A, respectively.

They have the following geometric interpretation: The image of the unit ball
Bn under A is an ellipsoid E(A). Let BI(A) and BO(A) be the inscribed and
circumscribed balls of E(A), respectively. Then

HI(A) =
m(E(A))

m(BI(A))
=

a1 · · ·an−1

an−1
n

,

HO(A) =
m(BO(A))

m(E(A))
=

an−1
1

a2 · · · an
, H(A) =

a1
an

,

where a1 > a2 > · · · > an are the semi-axes of E(A).

Next we turn to a more interesting task: Finding conditions on quasiconfor-
mality in the case of a C1 mapping in terms of its derivative. This is an analytic
approach to quasiconformal mappings.

Module estimates will play crucial role here. In order to do that we define

HO(f
′(x)) =

|(f ′(x))|n
|Jf(x)|

, HI(f
′(x)) =

|Jf(x)|
l(f ′(x))n

,

where Jf(x) 6= 0 is Jacobian of f .

Theorem 2.4. [33, Theorem 15.1] Suppose that f : D → D′ is a diffeomorphism.
Then

KI(f) = sup
x∈D

HI(f
′(x)), KO(f) = sup

x∈D
HO(f

′(x)).

Theorem 2.5. [33, Theorem 15.2] Let f : D → D′ be a homeomorphism. If f
is differentiable at a point a ∈ D and if KO(f) < ∞, then

|f ′(a)|n 6 KO(f) · |Jf(a)|.
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Corollary 2.6. A diffeomorphism f : D → D′ is K-qc iff the double inequality

|f ′(x)|n
K

6 |Jf(x)| 6 K · l(f ′(x))n

holds for every x ∈ D.

Example 2.7. (Linear mapping) Let A : Rn → Rn be a linear bijection. Then
A′(x) = A for all x ∈ Rn. From Theorem 2.4 we obtain

KI(A) = HI(A) KO(A) = HO(A).

Thus A is qc.

Example 2.8. (Stretching) Let a 6= 0 be a real number, and set f(x) = |x|a−1x.
Then from theorem 2.4 it follows that

KI(f) = |a|, KO(f) = |a|n−1 if |a| > 1,

KI(f) = |a|1−n, KO(f) = |a|−1 if |a| 6 1.

Thus f is qc. In Example 2.10 we prove the sharp Hölder estimate for f.

Figure 1. Radial mappings.

Example 2.9 (Radial mappings). Now we consider radial mappings of a more
general type:

f(x) = ϕ(|x|) · x

|x| ,

where ϕ is continuously differentiable on [0,+∞), ϕ′(r) > 0 and ϕ(0) = 0 ([19]).
Now we want to calculate the Jacobi matrix of f at a given point x. In fact, we
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are interested in l(f ′(x)) and |f ′(x)|. It is easier to work in a new rectangular
coordinate system, one coordinate is along vector x, the other coordinates are in
the tangent plane (n − 1-dimensional hyperplane) to the sphere through x (see
picture below).

Then we have

[

∂f

∂x

]n

i,j=1

=











ϕ′(r) 0
ϕ(r)
r

. . .

0 ϕ(r)
r











.

Indeed, the rate of stretching along the first coordinate axis is ϕ′(r) by defini-
tion of f . In the tangent hyperplane we have a similarity transformation by a

coefficient ϕ(r)
r

(see picture below), where ∆r is ”infinitesimal” displacement.

Figure 2. The stretching rate.

Hence

Jf(x) = ϕ′(r) ·
(

ϕ(r)

r

)n−1

= det f ′(x),

l(f ′(x)) = l

(

∂f

∂x

)

= min

{

ϕ′(r),
ϕ(r)

r

}

,
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|f ′(x)| = max

{

ϕ′(r),
ϕ(r)

r

}

,

HO(f
′(x)) =

|f ′(x)|n
Jf(x)

=
max

{

ϕ′(r), ϕ(r)
r

}n

ϕ′(r)
(

ϕ(r)
r

)n−1 .

This is bounded iff supr>0
ϕ′(r)·r
ϕ(r)

< +∞ and supr>0
ϕ(r)

r·ϕ′(r)
< +∞.

HI(f
′(x)) =

Jf(x)

l(f ′(x)n
=

ϕ′(r)
(

ϕ(r)
r

)n−1

min
{

ϕ′(r), ϕ(r)
r

}n

= ϕ′(r)

(

ϕ(r)

r

)n−1

·max

{

1

ϕ′(r)
,

r

ϕ(r)

}n

.

This is bounded iff supr>0
ϕ(r)

r·ϕ′(r)
< +∞ and supr>0

ϕ′(r)·r
ϕ(r)

< +∞, which is the

same condition we obtained for HO.

Conclusion: f is qc-mapping iff

sup
r>0

ϕ′(r) · r
ϕ(r)

< +∞ and sup
r>0

ϕ(r)

r · ϕ′(r)
< +∞.

One can write this result in a different form:

Let α : (0, 1) → (u, v), where 0 < u < v < 1. For f(x) = |x|α(|x|)−1 x we have
ϕ(r) = rα(r) and

r ϕ′(r)

ϕ(r)
= r · α′(r) · ln(r) + α(r)

and the condition for qc-ty of f is that

r · α′(r) · ln(r) + α(r)

is bounded above and bounded away from zero.

This is, of course, true if α(r) = α ∈ (0, 1). In that case

Jf =









α · rα−1 0
rα−1

. . .
0 rα−1









.

Since 0 < α < 1, l = α · rα−1, |f ′(x)| = rα−1, Jf(x) = α · (rα−1)n and

HO(f
′(x)) =

(rα−1)n

α · (rα−1)n
=

1

α
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and

HI(f
′(x)) =

α · (rα−1)n

(α · rα−1)n
=

1

αn−1
.

Note that HI > HO, and we see that the constant of qc-ty is K = 1
αn−1 . From

here we have α = K1/(1−n). The constant α = K1/(1−n) is the best possible
exponent.

Example 2.10 (Hölder continuity of radial mappings). ([9, 19, Appendix]) Let
f(x) = |x|α−1 x, x ∈ Rn, α ∈ (0, 1). We prove that f is Hölder continuous with
exponent α, i.e.

∀x, y ∈ Rn |f(x)− f(y)| 6 C |x− y|α

with C = 21−α. Note that this Hölder estimate is sharp, since equality holds for
x = −y. See also [9, 19].

We write the function f in the following form

(2.11) f(x) = |x|α x

|x| .

Without loss of generality we can assume that |x| > |y| > 0. Put k = |x|
|y|

and

x̃ = x
|x|
, ỹ = y

|y|
. Then k > 1 and |x̃| = |ỹ| = 1. By the equality (2.11) we need

to prove
∣

∣

∣

∣

|x|α x

|x| − |y|α y

|y|

∣

∣

∣

∣

6 C |x− y|α.

By dividing previous inequality by |y|α it follows that

|kαx̃− ỹ| 6 C |k x̃− ỹ|α.
This inequality is equivalent with

|kαx̃− ỹ|2 6 C2 |k x̃− ỹ|2α.
By definition of the inner product it is equivalent with

(2.12) C2 >
k2α − 2 kα 〈x̃, ỹ〉+ 1

(k2 − 2 k〈x̃, ỹ〉+ 1)α
.

Inequality

C2 > max
k2α − 2 kα 〈x̃, ỹ〉+ 1

(k2 − 2 k〈x̃, ỹ〉+ 1)α

ensures (2.12). Because |〈x̃, ỹ〉| 6 1, it is sufficient to prove that

f(k, t) =
k2α − 2 kαt+ 1

(k2 − 2k t+ 1)α
6 22−2α
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for any t ∈ [−1, 1]. The function f(k, t) can be written in the form

f(k, t) =
(kα − 1)2 + 2 kα (1− t)

((k − 1)2 + 2 k (1− t))α
.

By differentiating f(k, t) with respect to t we obtain

∂f

∂t
=

−2 k ((kα+1 − 1)(1− kα−1) + (1− α) ((kα − 1)2 + 2 kα(1− t)))

(k2 − 2 k t+ 1)α+1
< 0.

Hence, f(k, t) is decreasing as a function of t when −1 6 t 6 1. By this reason,

f(k, t) 6 f(k,−1) =
k2α + 2 kα + 1

(k2 + 2 k + 1)α
=

(

kα + 1

(k + 1)α

)2

.

By concavity of function uα follows

kα + 1

(k + 1)α
=

kα+1
2

(k+1)α

2

6

(

k+1
2

)α

(k+1)α

2

= 21−α.

Consider a homeomorphism f : D → D′. Suppose that x ∈ D, x 6= ∞ and
f(x) 6= ∞. For each r > 0 such that Sn−1(x, r) ⊂ D we set

(2.13) L(x, f, r) = max
|y−x|=r

|f(y)− f(x)|, l(x, f, r) = min
|y−x|=r

|f(y)− f(x)|.

Definition 2.14. The linear dilatation of f at x is the number

H(x, f) = lim sup
r→0

L(x, f, r)

l(x, f, r)
.

If x = ∞, f(x) 6= ∞, we define H(x, f) = H(0, f ◦ u) where u is the inversion
u(x) = x

|x|2
. If f(x) = ∞, we define H(x, f) = H(x, u ◦ f).

Example 2.15. Mapping f : Bn → Bn, f(x) = |x|α−1x has H(0, f) = 1.

Theorem 2.16. [33, Theorem 22.3] Suppose that f : D → D′ is a homeomor-

phism such that one of the following conditions is satisfied for some finite K:

1. M(ΓA) 6 K ·M(Γ′
A) for all rings A such that A ⊂ D,

2. KO(f) 6 K,

3. KI(f) 6 K.

Then H(x, f) is bounded by a constant which depends only on n and K.
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3. Planar hqc mappings

In [23], Martio gave sufficient conditions for K-conformality of a harmonic
mapping from the unit disk onto itself. He also posed the following question:

Question 1. If u is harmonic in the unit disk D, and f is the boundary
function on T = ∂D, find necessary and sufficient conditions that limz→ζ ur(z)
and limz→ζ uθ(z) exists at each ζ ∈ T.

In [29], Pavlović gave a characterization of the boundary function ensuring
the quasiconformality of the boundary function.

Theorem 3.1. Let u be a harmonic homeomorphism of D. Then the following

conditions are equivalent:

(a) u is qc;

(b) u is bi-Lipschitz in the euclidean metric;

(c) f is bi-Lipschitz and the Hilbert transformation of its derivative is in L∞.

In [18], the analogous result was proved for the half-plane. In [28], Partyka and
Sakan gave explicit estimations of the bi-Lipschitz constants for u expressed by
means of the maximal dilatation K of u and |u−1(0)|. Additionally if u(0) = 0,
they used Mori’s theorem as in [29], to get asymptotically sharp estimates as
K → 1.

Definition 3.2. A mapping f : (X, dX) → (Y, dY ) is bi-Lipschitz if it is bijective
and both f and f−1 are Lipschitz continuous.

Bi-Lipschitz property of harmonic quasiconformal mappings on the unit disc
was investigated in [26]. In [21], the following theorem was proved.

Theorem 3.3. Suppose D and D′ are proper domains in R2. If u : D −→ D′ is

K-qc and harmonic, then it is bilipschitz with respect to quasihyperbolic metrics

on D and D′.

The proof is based on the theorem of Astala and Gehring from [8].

In [26], Mateljević and Vuorinen extended Theorem 3.3 to domains in Rn

under the hypothesis that K < 2n−1 and u is of class C1,1.

3.1. Moduli of continuity in Euclidean metric. It is well known that if
f is a complex-valued harmonic function defined in a region G of the complex
plane C, then |f |p is subharmonic for p ≥ 1, and that in the general case is not
subharmonic for p < 1. However, if f is holomorphic, then |f |p is subharmonic
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for every p > 0. Here we consider k-quasiregular harmonic functions (0 < k < 1).
We recall that a harmonic function is quasiregular if

|∂̄f(z)| ≤ k|∂f(z)|, z ∈ G,

where

∂̄f(z) =
1

2

(

∂f

∂x
+ i

∂f

∂y

)

and ∂f(z) =
1

2

(

∂f

∂x
− i

∂f

∂y

)

, z = x+ iy.

We prove that |f |p is subharmonic for p ≥ 4k/(1 + k)2 =: q as well as that the
exponent q (< 1) is the best possible (see Theorem 3.4). The fact that q < 1
enables us to prove that if f is quasiregular in the unit disk D and continuous
on D, then ω̃(f, δ) ≤ const.ω(f, δ), where ω̃(f, δ) (respectively ω(f, δ)) denotes
the modulus of continuity of f on D (respectively ∂D); see Theorem 3.8.

Theorem 3.4. [20] If f is a complex-valued k-quasiregular harmonic function

defined on a region G ⊂ C, and q = 4k/(k + 1)2, then |f |q is subharmonic. The

exponent q is optimal.

Recall that a continuous function u defined on a region G ⊂ C is subharmonic
if for all z0 ∈ G there exists ε > 0 such that

(3.5) u(z0) ≤
1

2π

∫ 2π

0

u(z0 + reit) dt, 0 < r < ε,

If u(z0) = |f(z0)|2 = 0, then (3.5) holds. If u(z0) > 0, then there exists a
neighborhood U of z0 such that u is of class C2(U) (because the zeros of u are
isolated), and then we may prove that ∆u ≥ 0 on U . Thus the proof reduces to
proving that ∆u(z) ≥ 0 whenever u(z) > 0. In order to do this we will calculate
∆u.

It is easy to prove that If u > 0 is a C2 function defined on a region in C, and
α ∈ R, then next two statements holds

(3.6) ∆(uα) = αuα−1∆u+ α(α− 1)uα−2|∇u|2,

(3.7) |∇u|2 = 4|∂u|2 and ∆u = 4∂∂̄u.

For a continuous function f : D → C harmonic in D we define two moduli of
continuity:

ω(f, δ) = sup{|f(eiθ)− f(eit)| : |eiθ − eit| ≤ δ, t, θ ∈ R}, δ ≥ 0,

and

ω̃(f, δ) = sup{|f(z)− f(w)| : |z − w| ≤ δ, z, w ∈ D}, δ ≥ 0.
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Clearly ω(f, δ) ≤ ω̃(f, δ), but the reverse inequality need not hold. To see this
consider the function

f(reiθ) =
∞
∑

n=1

(−1)nrn cosnθ

n2
, reiθ ∈ D.

This function is harmonic in D and continuous on D. The function v(θ) = f(eiθ),
|θ| < π, is differentiable, and

dv

dθ
=

∞
∑

n=1

(−1)n−1 sin nθ

n

=
θ

2
, |θ| < π.

This formula is well known, and can be verified by calculating the Fourier coef-
ficients of the function θ → θ/2, |θ| < π. It follows that

|f(eiθ)− f(eit)| ≤ (π/2)|θ − t|, −π < θ, t < π,

and hence ω(f, δ) ≤ Mδ, δ > 0, where M is an absolute constant. On the other
hand, the inequality ω̃(f, δ) ≤ CMδ, C = const, does not hold because it implies
that |∂f/∂r| ≤ CM, which is not true because

∂

∂r
f(reiθ) =

∞
∑

n=1

rn−1

n
, for θ = π, 0 < r < 1.

However, as was proved by Rubel, Shields and Taylor [30], and Tamrazov [32],
if f is a holomorphic function, then ω̃(f, δ) ≤ Cω(f, δ), where C is independent
of f and δ. Here is an extension that result to quasiregular harmonic functions.

Theorem 3.8. [20] Let f be a k-quasiregular harmonic complex-valued function

which has a continuous extension on D, then there is a constant C depending

only on k such that ω̃(f, δ) ≤ Cω(f, δ).

This theorem was deduced from Theorem 3.4 by use of some simple properties
of the modulus ω(f, δ). Let

ω0(f, δ) = sup{|f(eiθ)− f(eit)| : |θ − t| ≤ δ, t, θ ∈ R}.
It is easy to check that

(3.9) C−1ω0(f, δ) ≤ ω(f, δ) ≤ Cω0(f, δ),

where C is an absolute constant, and that

ω0(f, δ1 + δ2) ≤ ω0(f, δ1) + ω0(f, δ2), δ1, δ2 ≥ 0.
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Hence, ω0(f, 2
nδ) ≤ 2nω0(f, δ), and hence ω0(λδ) ≤ 2λω0(δ), for λ ≥ 1, δ ≥ 0.

From these inequalities and (3.9) it follows that

(3.10) ω(f, λδ) ≤ 2Cλω(f, δ), λ ≥ 1, δ ≥ 0,

and

(3.11) ω(f, δ1 + δ2) ≤ Cω(f, δ1) + Cω(f, δ2), δ1, δ2 ≥ 0,

where C is an absolute constant. As a consequence of (3.10) we have, for 0 <
p < 1,

(3.12)

∫ ∞

x

ω(f, t)p

t2
dt ≤ C

ω(f, x)p

x
, x > 0,

where C depends only on p.

4. HQC mappings in domains in Rn

Let Bn = {x ∈ Rn : |x| < 1} and dσ is the normalized surface measure on the
unit sphere Sn−1. Let us consider the following question:

Question 2. If u is a hqc mapping on the unit ball and u|Sn−1 has some
continuity property, does it follow that u has the same property on the ball?

If this property is Lipschitz continuity, the answer is affirmative [4, 6]. If this
property is the modulus of continuity, the answer is also affirmative [3].

It is known, even for n = 2, that Lipschitz continuity of φ : T → C, where
T = {z ∈ C : |z| = 1}, does not imply Lipschitz continuity of u = P [φ].

Here, for any n ≥ 2,

P [φ](x) =

∫

Sn−1

P (x, ξ)φ(ξ)dσ(ξ), x ∈ Bn

where P (x, ξ) = 1−|x|2

|x−ξ|n
is the Poisson kernel for the unit ball, and φ : Sn−1 → Rn

is a continuous mapping.

It was shown in [4] that Lipschitz continuity is preserved by harmonic exten-
sion, if the extension is quasiregular. The analogous statement is true for Hölder
continuity without assumption of quasiregularity.

Theorem 4.1. Assume φ : Sn−1 → Rn satisfies a Lipschitz condition:

|φ(ξ)− φ(η)| ≤ L|ξ − η|, ξ, η ∈ Sn−1

and assume u = P [φ] : Bn → Rn is K-quasiregular. Then

|u(x)− u(y)| ≤ C ′|x− y|, x, y ∈ Bn

where C ′ depends on L, K and n only.
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In [6], the authors gave the estimate Lu ≤ KLφ, where Lu, Lφ denote the
Lipschitz constants of u, φ, respectively. Also in [6], Question 1 is solved and
extended to the n-dimensional case.

4.1. Moduli of continuity of hqc mappings in higher dimensions. The
following problem is considered: can one control the modulus of continuity ωu

of a harmonic quasiregular (briefly, hqr) mapping u in Bn by the modulus of
continuity ωf of its restriction to the boundary Sn−1, i.e. is it true that ωu ≤ Cωf?

In fact this problem has been studied extensively for harmonic functions and
mappings without assumption of quasiregularity. We recall some of known re-
sults. For the unit ball the answer is positive in the case ω(δ) = δα, 0 < α < 1
(Hölder continuity) and negative in the case ω(δ) = Lδ (Lipschitz continuity). In
fact, for bounded plane domains the answer is always negative for Lipschitz con-
tinuity (see [1]). However, it is proved in [11], that for general plane domains one
has “logarithmic loss of control”: ωu(δ) ≤ Cωf(δ) log(1/δ). In [3], the following
results were proved.

Theorem 4.2. There is a constant q = q(K, n) ∈ (0, 1) such that |u|q is subhar-
monic in Ω ⊂ Rn whenever u : Ω → Rn is a K-quasiregular harmonic map.

Theorem 4.3. If u : B
n → Rn is a continuous map which is K-quasiregular and

harmonic in Bn, then ωu(δ) ≤ Cωf(δ) for δ > 0, where f = u|Sn−1 and C is a

constant depending only on K, ωf and n.

In the case n = 2, these theorems were proved by using properties of analytic
functions [20]. In [3], Theorem 4.2 was proved by using a linear algebra extremal
problem. In [17], the optimal constant q is find in simple way.

We note that every every continuous map u : B
n → Ω which is hqc in Bn,

where Ω is bounded and has C2 boundary, is Lipschitz continuous, see [16].
Also, every holomorphic quasiregular mapping on a domain Ω ⊂ Cn (n > 1)
with C2 boundary is Lipschitz continuous, see [31]. The same paper contains
an example of a holomorphic quasiregular map in a domain Ω ⊂ C2 (with non-
smooth boundary) which is not Lipschitz.

In view of the above, one is tempted to make the following conjecture: every
hqc map u : Bn → Ω is Lipschitz continuous. However, this is false, as we show
by an example for n = 3 given in [3] by V. Božin.

Example 4.4. We use the following notation: X = (x, y, z), Π+ = {(x, y, z) :
z > 0}. We construct a mapping f : Π+ → R3 such that

1. f is continuous on Π+.

2. f is not Lipschitz on L = {(0, 0, z) : 0 ≤ z ≤ 1}.
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3. f is hqc on Π+.

Of course, then the same is true for the restriction of f to the closed unit ball
centered at (0, 0, 1).

Set g(X) = X/|X|3, this mapping is, up to a constant, the gradient of a
harmonic function 1/|X|, and therefore harmonic for X 6= 0. We have

Dg(X) =
1

|X|3 (I − 3UT
X · UX),

where UX = X/|X|. Note that |g(X)| ≤ 1/|X|2 and ‖Dg(X)‖ ≤ C0/|X|3. Now
set

f(X) = f0(X) +
∞
∑

n=1

fn(X),

where f0(X) = (x, y,−2z), fn(X) = cng(X −Xn) and Xn = (0, 0,−rn). We are
going to show that one can choose sequences rn and cn such that the above three
conditions are satisfied, for the moment we require that they are strictly positive
and that limn→∞ rn = 0 monotonically.

We claim that the condition
∞
∑

n=1

cn
r2n

< +∞ (C)

is sufficient for continuity up to the boundary. Indeed, for every X ∈ Π+,
∞
∑

n=1

|fn(X)| =
∞
∑

n=1

cn
|X −Xn|2

≤
∞
∑

n=1

cn
r2n

< +∞

and therefore the series
∑∞

n=1 fn(X) converges absolutely and uniformly on Π+.

Next, the condition
∞
∑

n=1

cn
r3n

= +∞ (NL)

is sufficient for property 2. In fact, for X = (0, 0, z) ∈ Π+ we have ∂
∂z
fn(X) =

− 2cn
(z+rn)3

e3, where e3 = (0, 0, 1) and

∂

∂z
f(X) = −

[

2 +

∞
∑

n=1

cn
(z + rn)3

]

· e3.

Hence, if (NL) holds, then | ∂
∂z
f(0, 0, z)| → ∞ as z → 0 and this implies that f

is not Lipschitz continuous on L.

Now we look for a sufficient condition for quasiconformality. First note that a
matrix A ∈ M3(R), A 6= 0 is K-quasiconformal iff its normalization Ã = A/‖A‖
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is K-quasiconformal. Also, for each compact H ⊂ GL3(R) there is a K ≥ 1 such
that every A ∈ H is K-quasiconformal.

We omit an easy proof of the following lemma, which is true for vectors in
any real inner product space, although for our purposes M3(R) ∼= R9 is the only
case of interest.

Lemma 4.5. Let A ∈ M3(R), A 6= 0 and 0 < ǫ <
√
2. Then for any matrices

B1, . . . , Bk satisfying ‖Ã − B̃j‖ < ǫ, 1 ≤ j ≤ k we have ‖Ã − B̃‖ < ǫ, where
B = B1 + · · ·+Bk.

Let A0 = diag(1, 1,−2) = Df0. Choose 0 < δ <
√
2 such that H = {B :

‖Ã0 − B‖ ≤ δ} is a compact subset of GL3(R). Hence, there is a K0 > 1 such
that every B ∈ H is a K0-qc matrix.

Set AX = I − 3UT
X · UX , X ∈ Π+, X 6= 0. Of course, AX = AUX

. Clearly,
AX is continuous in X and A(0,0,1) = A0. Hence there is an ǫ > 0 such that

‖ÃX − Ã0‖ < δ whenever |X − e3| < ǫ. Equivalently, there is an η > 0 such
that tan∠(e3, X) < η implies ‖ÃX − Ã0‖ < δ or, in coordinates, ‖ÃX − Ã0‖ < δ

whenever X = (x, y, z) ∈ Π+ satisfies

√
x2+y2

z
< η.

Next choose β > 0 such that ‖A0 − B‖ ≤ β implies ‖Ã0 − B̃‖ < δ.

Now we can show that the condition

2
√
2C0

∑

rn≤
ρ

η

cn
(rn + ρ)3

≤ β for all ρ > 0 (QC1)

is sufficient for quasiconformality of f . First note that, for z > 0, Df(0, 0, z) is a

constant multiple of A0. Now consider X = (x, y, z) ∈ Π+ with ρ =
√

x2 + y2 >
0. Then

Df(X) = Df0 +

∞
∑

n=1

Dfn(X)

= A0 +

∞
∑

n=1

cnAX−Xn

= A0 +
∑

rn≤
ρ

η

cnAX−Xn
+

∑

rn>
ρ

η

cnAX−Xn

= A0 +R + T

The sum T is finite (possibly empty) and for each term in that sum we have
√

x2 + y2

z + rn
≤ ρ

rn
≤ η.
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Hence, ‖ÃX−Xn
− Ã0‖ < δ for each term in that sum. Now we estimate norm of

R:

‖R‖ ≤
∑

rn≤
ρ

η

cn‖AX−Xn
‖

≤ C0

∑

rn≤
ρ

η

cn
|X −Xn|3

= C0

∑

rn≤
ρ

η

cn

[ρ2 + (z + rn)2]
3/2

≤ C0

∑

rn≤
ρ

η

cn
(ρ2 + r2n)

3/2

≤ 2
√
2C0

∑

rn≤
ρ

η

cn
(rn + ρ)3

≤ β.

Hence ‖(A0+R)−A0‖ ≤ β and therefore ‖Ã0−Ã0 +R‖ < δ. Now we see that
Df(X) can be represented as a sum of terms satisfying assumptions of Lemma,

therefore ‖D̃f(X)− Ã0‖ < δ, hence D̃f(X) ∈ H . So, D̃f(X) is a K0-qc matrix
and so is Df(X). Since it is easy to verify that f is one-to-one it follows that f
is a K0-quasiconformal map.

It is easily seen that the condition (QC1) is equivalent to the following one:

∞
∑

k=n

ck ≤ Mr3n for all n ≥ 1 (QC)

where M is constant depending on η, C0 and β. However, the exact value of M is
of no importance. Namely, once we have sequences rn and cn satisfying (C), (NL)
and (QC) for some M , it suffices to multiply cn with suitably small constant to
get M as small as desired, since conditions (C) and (NL) are invariant under
such change of cn.

Observe that the sequences rn = 2−2n/3 and cn = 2−2n satisfy the conditions
(C), (NL) and (QC), hence there is a non-Lipschitz qhc map on Bn continuous
up to the boundary.

As concluding remark we note that an analogous construction can be carried
in any dimension k ≥ 2. Also, by multiplying the z-component of our function
by a factor −1/2 and taking a tail of the series

∑∞
n=1 fn(X), one can get the

constant of quasiconformality as close to 1 as desired.
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5. Moduli of continuity of quasiconformal mappings in

higher dimensions

Clearly, for general quasiconformal mappings u : Ω1 → Ω2 one can not ex-
pect that the modulus of continuity behaves as in the above theorem, even for
Ω1 = Bn. However, for bounded Ω2, Hölder continuity of u|∂Ω1

implies Hölder
continuity of u, but with possibly different Hölder exponent, see [27] and [24].

The following theorem is the main result in [24].

Theorem 5.1. Let D be a bounded domain in Rn and let f be a continuous

mapping of D into Rn which is quasiconformal in D. Suppose that, for some

M > 0 and 0 < α ≤ 1,

(5.2) |f(x)− f(y)| ≤ M |x− y|α

whenever x and y lie on ∂D. Then

(5.3) |f(x)− f(y)| ≤ M ′|x− y|β

for all x and y on D, where β = min(α,K
1/(1−n)
I ) and M ′ depends only on M ,

α, n, K(f) and diam(D).

The exponent β is the best possible, as an example of a radial quasiconformal
map f(x) = |x|α−1x, 0 < α < 1, of Bn onto itself shows (see [33], p. 49). Also, the
assumption of boundedness is essential. Indeed, one can consider g(x) = |x|ax,
|x| ≥ 1 where a > 0. Then g is quasiconformal in D = Rn \ Bn (see [33],
p. 49), it is identity on ∂D and hence Lipschitz continuous on ∂D. However,
|g(te1)−g(e1)| ≍ ta+1, t → ∞, and therefore g is not globally Lipschitz continuous
on D.

P. Koskela posed the following question:

Question 3. Is it possible to replace β with α if we assume, in addition to
quasiconformality, that f is harmonic?

In the special case D = Bn this was proved, for arbitrary moduli of continuity
ω(δ), in [3]. Our main result is that the answer is positive, if ∂D is a uniformly
perfect set (cf. [12]). In fact, we prove a more general result, including domains
having a thin, in the sense of capacity, portion of the boundary. However, this
generality is in a sense illusory, because any hqc mapping extends harmonically
and quasiconformally across such portion of the boundary.

In the case of smooth boundaries much better regularity up to the boundary
can be deduced, see [14]; related results for harmonic functions were obtained by
[1].
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A compact setK ⊂ Rn, consisting of at least two points, is α-uniformly perfect
(α > 0) if there is no ring R separating K (i.e. such that both components of
Rn \ R intersect K) such that mod(R) > α. We say that a compact K ⊂ Rn is
uniformly perfect if it is α-uniformly perfect for some α > 0.

Here D denotes a bounded domain in Rn. Let

Γ0 = {x ∈ ∂D : capB(x, ǫ) ∩ ∂D = 0 for some ǫ > 0},
and Γ1 = ∂D \ Γ0. The following result is proved in [7].

Theorem 5.4. Assume f : D → Rn is continuous on D, harmonic and quasi-

conformal in D. Assume f is Hölder continuous with exponent α, 0 < α ≤ 1,
on ∂D and Γ1 is uniformly perfect. Then f is Hölder continuous with exponent

α on D.

If Γ0 is empty we obtain the following

Corollary 5.5. If f : D → Rn is continuous on D, Hölder continuous with

exponent α, 0 < α ≤ 1, on ∂D, harmonic and quasiconformal in D and if ∂D is

uniformly perfect, then f is Hölder continuous with exponent α on D.

6. Open problems

1. Is Hölder continuity on the boundary preserved for hqc mappings in any
bounded domain?

2. Generalize characterizations from [18] and [29] to n > 2.
3. Characterize moduli of continuity of boundary values of functions in hqc(Bn).

Note that these include non-Lipschitz ones.
4. Is any hqc mapping bi-Lipschitz continuous with respect to quasihyperbolic

metric in bounded domains in Rn for n > 2?

References
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[18] D. Kalaj and M. Pavlović, Boundary correspondence under harmonic quasiconformal

diffeomorphisms of a half-plane, Ann. Acad. Sci. Fenn. Math. 30(2005), 159–165.
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