WORKED  OUT  PROBLEMS
The problems in this section are solved using Newton's divided difference formula and Lagrange's formula. Since By Sheperd's Zig-Zag rule any aritrary path from function values to its highest divided difference to compute the value of  f(x) in all these examples first fuction value and its higher divided differences are been used to compute f(x).

1. Find f(2) for the data f(0) = 1, f(1) = 3 and f(3) = 55.
 

x
0
1
3
f
1
3
55

Solution :

By Newton's divided difference formula :

Divided difference table

 
xi
fi
 
 
0
1
 
 
 
 
2
 
1
3
 
8
 
 
26
 
3
55
 
 
Now Newton's divided difference formula is
f(x) = f [x0] + (x - x0) f [x0, x1] + (x - x0) (x - x1) f [x0, x1, x2
f(2) = 1 + (2 - 0) 2 + (2 - 0)(2 - 1) 8 
      = 21
 
By Lagrange's formula :
 
 
 
 
(x - x1) (x - x2)
 
(x - x0)(x - x1
 
f(x)  = 

f0+ . . . + 

 f2
 
(x0 - x1) (x0 - x2)
 
(x2 - x0)(x2 - x1)
 

 
 
(2 - 1)(2 - 3)
 
(2 - 0)(2 - 3)
 
(2 - 0)(2 - 1)
f(2) = 

 1+ 

 3 + 

55
 
(0 - 1) (0 - 3)
 
(1 - 0)(1 - 3) 
 
(3 - 0)(3 - 1)

 
       f(2) = 21

2. Find f(3) for 
x
0
1
2
4
5
6
f
1
14
15
5
6
19
Solution :

By Newton's divided difference formula :

Divided difference table

xi
fi
 
 
 
   
0
1
 
 
 
   
 
 
13
 
 
   
1
14
 
-6
 
   
 
 
1
 
1
   
2
15
 
-2
 
0
 
 
 
-5
 
1
 
0
4
5
 
2
 
0
 
 
 
1
 
   
5
6
 
     
   
13
       
6
19
         
Now Newton's divided difference formula is


f(x) = f [x0] + (x - x0) f [x0, x1] + (x - x0) (x - x1) f [x0, x1, x2] +  (x - x0) (x - x1) (x - x2)f [x0, x1,  x2, x3]

+ (x - x0) (x - x1) (x - x2)(x - x3)f [x0, x1,  x2, x3, x4]
+ (x - x0) (x - x1) (x - x2)(x - x3)(x - x4)f [x0, x1,  x2, x3, x4, x5]
f(3) = 1 + (3 - 0) 13 + (3 - 0)(3 - 1) -6 + (3 - 0) (3 - 1) (3 - 2) 1

      = 10
 

 

By Lagrange's formula :

 
(3 - 1)(3 - 2)(3 - 4)(3 - 5)(3 - 6)
 
(3 - 0)(3 - 2)(3 - 4)(3 - 5)(3 - 6)
f(3) = 

 1+ 

  14+
 
(0 - 1)(0 - 2)(0 - 4)(0 - 5)(0 - 6)
 
(1 - 0)(1 - 2)(1 - 4)(1 - 5)(1 - 6)

  
(3 - 0)(3 - 1)(3 - 4)(3 - 5)(3 - 6)
 
(3 - 0)(3 - 1)(3 - 2)(3 - 5)(3 - 6)

 15+ 

  5+
(2 - 0)(2 - 1)(2 - 4)(2 - 5)(2 - 6)
 
(4 - 0)(4 - 1)(4 - 2)(4 - 5)(4 - 6)

  
(3 - 0)(3 - 1)(3 - 2)(3 - 4)(3 - 6)
 
(3 - 0)(3 - 1)(3 - 2)(3 - 4)(3 - 5)

 6+ 

  19
(5 - 0)(5 - 1)(5 - 2)(5 - 4)(5 - 6)
 
(6 - 0)(6 - 1)(6 - 2)(6 - 4)(6 - 5)

 
       f(2) = 10



3. Find f(0.25) for 
x
0.1
0.2
0.3
0.4
0.5
f
9.9833
4.9667
3.2836
2.4339
1.9177
Solution :

By Newton's divided difference formula :

Divided difference table

xi
fi
 
 
 
 
0.1
9.9833
 
 
 
 
 
 
-50.166
 
 
 
0.2
4.9667
 
166.675
 
 
 
 
-16.83
 
-416.68
 
0.3
3.2836
 
41.67
 
833.42
 
 
-8.497
 
-83.32
 
0.4
2.4339
 
16.675
 
 
 
 
-5.162
 
   
0.5
1.9177
 
     
Now Newton's divided difference formula is


f(x) = f [x0] + (x - x0) f [x0, x1] + (x - x0) (x - x1) f [x0, x1, x2] +  (x - x0) (x - x1) (x - x2)f [x0, x1,  x2, x3]

+ (x - x0) (x - x1) (x - x2)(x - x3)f [x0, x1,  x2, x3, x4]


 f(3) = 9.9833 + (0.25 - 0.1) -50.166 + (0.25 - 0.2)(0.25 - 0.3) 166.675 + 

(0.25 - 0.1) (0.25 - 0.2) (0.25 - 0.3) -416.68 + (0.25 - 0.1) (0.25 - 0.2) (0.25 - 0.3)(0.25 - 0.4) 833.42


       = 3.912
 
 

 

By Lagrange's formula :

f(0.25) =
 
 
(.25 - .2)(.25 - .3)(.25 - .4)(.25 - .5)
 
(.25 - .1)(.25 - .3)(.25 - .4)(.25 - .5)
 

 9.9833+ 

  4.9667 +
 
(.1 - .2)(.1 - .3)(.1 - .4)(.1 - .5)
 
(.2 - .1)(.2 - .3)(.2 - .4)(.2 - .5)

  
(.25 - .1)(.25 - .2)(.25 - .4)(.25 - .5)
 
(.25 - .1)(.25 - .2)(.25 - .3)(.25 - .5)

 3.2836+ 

 2.4339 +
(.3 - .1)(.3 - .2)(.3 - .4)(.3 - .5)
 
(.4 - .1)(.4 - .2)(.4 - .3)(.4 - .5)

  
(.25 - .1)(.25 - .2)(.25 - .3)(.25 - .4)

  1.9177
(.5 - .1)(.5 - .2)(.5 - .3)(.5 - .4)
       f(0.25) = 3.912
 

Work out with the Newton's divided difference here


Work out with the Lagrange's Interpolation formula here


Solution of Transcendental Equations | Solution of Linear System of Algebraic Equations | Interpolation & Curve Fitting
Numerical Differentiation & Integration | Numerical Solution of Ordinary Differential Equations
Numerical Solution of Partial Differential Equations