"); grf.document.close(); } function expcls(){ grf.window.close(); } function tip(){ popup=window.open('','','toolbar=no,width=350,height=100,location=top'); popup.document.open(); popup.document.writeln("the intermediate value theorem for continuous functions "); popup.document.writeln("For any continuous function f (x) in the interval [a,b] which satisfies f (a) * f (b) < 0 must have a zero of  'f ' in the interval [a,b] ."); popup.document.writeln(""); popup.document.close(); } function tipclose(){ popup.window.close(); } function hlts(){ hlt=window.open('','','toolbar=no,width=350,height=250,location=top'); hlt.document.open(); hlt.document.writeln("highlights"); hlt.document.writeln("AdvantagesDisadvantages."); hlt.document.writeln(""); hlt.document.close(); } function hltsclose(){ hlt.window.close(); }  
 

2. Find the root of  x4-x-10 = 0

exp2.jpg for x^4-x-10

   The graph of this equation is given in the figure. 

   Let a = 1.5 and b = 2 
 

Iteration
No.
a
b
c
f(a) * f(c)
1
1.5
2
1.75
15.264 (+ve)
2
1.75
2
1.875
-1.149 (-ve)
3
1.75
1.875
1.812
2.419 (+ve)
4
1.812
1.875
1.844
0.303 (-ve)
5
1.844
1.875
1.86
-0.027 (-ve)

   So one of the roots of x4-x-10 = 0 is approximately 1.86.