"); grf.document.close(); } function expcls(){ grf.window.close(); } function tip(){ popup=window.open('','','toolbar=no,width=350,height=100,location=top'); popup.document.open(); popup.document.writeln("the intermediate value theorem for continuous functions "); popup.document.writeln("For any continuous function f (x) in the interval [a,b] which satisfies f (a) * f (b) < 0 must have a zero of  'f ' in the interval [a,b] ."); popup.document.writeln(""); popup.document.close(); } function tipclose(){ popup.window.close(); } function hlts(){ hlt=window.open('','','toolbar=no,width=350,height=250,location=top'); hlt.document.open(); hlt.document.writeln("highlights"); hlt.document.writeln("AdvantagesDisadvantages."); hlt.document.writeln(""); hlt.document.close(); } function hltsclose(){ hlt.window.close(); }  
 

4. Find the root of   exp(-x) * (x2+5x+2) + 1= 0

exp4.jpg for exp[-x]*(x^2+5x+2)+1

   The graph of this equation is given in the figure. 

   Let a = 0 and b = -1 
 

Iteration
No.
a
b
c
f(a) * f(c)
1
0
-1
-0.5
1.763 (+ve)
2
-0.5
-1
-0.75
-0.89 (-ve)
3
-0.5
-0.75
-0.625
-0.219 (-ve)
4
-0.5
-0.625
-0.562
0.076 (+ve)
5
-0.562
-0.625
-0.593
-0.015 (-ve)
6
-0.562
-0.593
-0.577
1.733*10-3 (+ve)

   So one of the roots of  exp(-x) * (x2-5x+2) + 1= 0 is approximately -0.577.