Aitken's Method

The linear convergence of the iterative methods can be improved with the help of the Aitken's method. The error in two successive approximations for linear convergence methods (for details please see Order of Convergence) can be written as 

ei+1 = Aei
ei+2 = Aei+1

elimination of A gives

ei+2
 (ei+1)2

ei
(-s + xi+2) = 
(-s + xi+1)2

  (-s + xi)
(s2 - s(xi+xi+2) + xixi+2) = s2 - 2sxi+1+ xi+12
®   -s =    xi+12 - xixi+2

 xi+ xi+2 - 2xi+1

 
®   s = xi -     ( xi+1 - xi )2

 xi+ xi+2 - 2xi+1
s gives an improved value of the approximation xi+2

 
Algorithm - Aitken's Method

Choose initial approximation x0
Do
  Calculate x3i+1 and x3i+2 using any linear iterative method

  Modify x3i+2 using 
  x3i+2 = x3i -   ( x3i+1 - x3i )2      i = 0, 1, 2, . . .

 x3i+ x2i+2 - 2x3i+1

while (none of the convergence criterion C1 or C2 is met)

  • C1. Fixing apriori the total number of iterations N. 
  • C2. By testing the condition  | xi+1 - xi | (where i is the iteration number) less than some tolerance limit, say epsilon, fixed apriori. 
  • Example : Find a root of cos[x] - x * exp[x] = 0 with x0 = 0.0
    Let the linear iterative process be
    xi+1 = xi + 1/2(cos[xi]- xi * exp[xi] )     i = 0, 1, 2 . . .
    i
    xi
    Aitken's Modification 
    0
    0.00000000
     0.52810686
    1
    0.50000000
    2
    0.52661096
    0.52810686
     0.51770956
    3
    0.51222771
    4
    0.52059979
    0.51770956
     

     


    Solution of Transcendental Equations | Solution of Linear System of Algebraic Equations | Interpolation & Curve Fitting
    Numerical Differentiation & Integration | Numerical Solution of Ordinary Differential Equations
    Numerical Solution of Partial Differential Equations