"); popup.document.close(); } function tipclose(){ popup.window.close(); }  
For Newton's Method
 
g(x) = x -    f(x)

  f '(x)

 
  g'(x) = 1 -  f '2 - f f ''   f f '' 

  = 
     f '   f '
if the multiplicity of the root m > 1 then f (x) and f '(x)  at x = s or zeros hence 
 
   g'(x)|x =s 0 * f ''

    0

      Now by repeadtedly using L'Hospitals rule we get
 

  lim
x ®
   lim
  x ®
   f f ''    lim
  x ®
  f ' f '' + f f '''
 g'(x)    =
      = 
   f '2      2 f ' f ''

 
  =     lim
  x ®
 2 f ' f ''' + f ''2 + f f 'v 1
m
)                           ( for m = 2 )
1
2

      =  ( 1 - 
      f ' f ''' + f ''2

 
  =     lim
  x ®
  3 f ' f 'v + 4f '' f ''' + f f v  
1
2

      3 f '' f ''' + f ' f 'v

 
 
  =     lim
  x ®
 7 f '' f 'v + 4 f ' f v + 4 f '''2 + f f v'  
1
2

         4 f '' f 'v + 3 f '''2 + f ' f v

 
 1   *   4   =   2   = (1 -  1  )                                     (for m = 3)
 2  3  3  m

Similarly for m>3 also we can show that the coefficient of ei is not zero but equal to (1-1/m). In the same way the coefficient of ei2 can be obtained as (The derivation is left to the reader).
 

      1   f(m+1)s


m2(m+1)    f(m)s
 

Solution of Transcendental Equations | Solution of Linear System of Algebric Equations | Interpolation & Curve Fitting
Numerical Differentiation & Integration | Numerical Solution of Ordinary Differetial Equations
Numerical Solution of Partial Differential Equations