"); grf.document.close(); } function expcls(){ grf.window.close(); } function tip(){ popup=window.open('','','toolbar=no,width=350,height=100,location=top'); popup.document.open(); popup.document.writeln("the intermediate value theorem for continuous functions "); popup.document.writeln("For any continuous function f (x) in the interval [a,b] which satisfies f (a) * f (b) < 0 must have a zero of  'f ' in the interval [a,b] ."); popup.document.writeln(""); popup.document.close(); } function tipclose(){ popup.window.close(); } function hlts(){ hlt=window.open('','','toolbar=no,width=350,height=250,location=top'); hlt.document.open(); hlt.document.writeln("highlights"); hlt.document.writeln("AdvantagesDisadvantages."); hlt.document.writeln(""); hlt.document.close(); } function hltsclose(){ hlt.window.close(); }

System Of Non-Linear Equations - Examples



 
 
 
 

Solve for  x  and  y  if 
   Example 1    1 + y2 - 4x2 = 0  and  3 + 2x - x2 - y= 0  Solution
   Example 2    y - x3 = 0 and 36 - 4x2 - 9y2 = 0  Solution
   Example 3    3 + y - x2 = 0 and 3 - xy = 0  Solution
   Example 4    y - x3 + 3x2 - 4x = 0   and   y2 - x - 2 = 0  Solution
   Example 5    x2 -2x - y + 0.5 = 0   and  x2 + 4y2 - y = 0  Solution
Problems to workout

 
 
 
 

1. Solve for  x  and y  if   1 + y2 - 4x= 0  and  3 + 2x - x2 - y= 0.

Let the initial approximation be (1, 2)

By Fixed-Point Iteration Method

Let   xi+1 = g1(xi, yi) = (8xi - 4x2i + y2i + 1)/8
        yi+1 = g2(xi, yi) = (2xi - x2i + 4yi + y2i + 3)/4
 

i
0
1
2
3
4
xi
1
1.125
1.117
1.116
1.116
yi
2
2
1.996
1.997
1.997
So by Fixed-Point Iteration Method   x = 1.116 & y = 1.997 [Solved Examples]

By Newton's Method
 
 

i
0
1
2
3
xi
1
1.125
1.117
1.117
yi
2
2
1.997
1.997
So by Newton's Method   x = 1.117 & y = 1.997 [Solved Examples]

 



 

2. Solve for  x  and y  if  y - x3 = 0 and 36 - 4x2 - 9y2 = 0

Let the initial approximation is (1, 2)

By Fixed-Point Iteration Method

Let   xi+1 = g1(xi, yi) = (4xi - x3i + yi) /4
        yi+1 = g2(xi, yi) = (-x2i / 9) + (4yi -y2i)/4 + 1
 

i
0
1
2
3
4
xi
1
1.125
1.234
1.22
1.222
yi
2
1.889
1.823
1.823
1.823
So by Fixed-Point Iteration Method   x = 1.222 & y = 1.823 [Solved Examples]

By Newton's Method
 

i
0
1
2
3
4
xi
1
1.276
1.225
1.222
1.222
yi
2
1.828
1.826
1.826
1.826
So by Newton's Method   x = 1.222 & y = 1.826 [Solved Examples]



3.Solve for  x  and y  if  3 + y - x2 = 0 and 3 - xy = 0.

Let the initial approximation is (2, 1.5)

By Fixed-Point Iteration Method

Let   xi+1 = g1(xi, yi) = (4xi - x2i + yi + 3)/4
        yi+1 = g2(xi, yi) = (3 - xiyi + 2yi)/2
 

i
0
1
2
3
4
5
6
7
8
xi
2
2.125
2.121
2.098
2.101
2.105
2.104
2.104
2.104
yi
1.5
1.5
1.406
1.415
1.431
1.431
1.425
1.426
1.426
So by Fixed-Point Iteration Method   x = 2.104 & y = 1.426 [Solved Examples]

By Newton's Method
 

i
0
1
2
3
4
xi
2
2.105
2.104
2.104
2.104
yi
1.5
1.421
1.426
1.426
1.426
So by Newton's Method   x = 2.104 & y = 1.426 [Solved Examples]

 



4. Solve for  x  and y  if  y - x3 + 3x2 - 4x = 0   and   y2 - x - 2 = 0.

Let the initial approximation is (-0.5, -1.5)

By Fixed-Point Iteration Method

Let   xi+1 = g1(xi, yi) = (yi - x3i + 3x2i - 3xi)/7 
        yi+1 = g2(xi, yi) = (y2i + 2yi - xi - 2)/2
 
 

i
0
1
2
3
4
5
xi
-0.5
-0.304
-0.247
-0.269
-0.27
-0.27
yi
-1.5
-1.125
-1.340
-1.319
-1.315
-1.315
So by Fixed-Point Iteration Method   x = -0.27  &  y = -1.315 [Solved Examples]

By Newton's Method
 
 

i
0
1
2
3
xi
-0.5
-0.299
-0.27
-0.27
yi
-1.5
-1.317
-1.315
-1.315
So by Newton's Method   x = -0.27  &  y = -1.315 [Solved Examples]



5. Solve for  x  and y  if  x2 -2x - y + 0.5 = 0   and  x2 + 4y2 - y = 0

Let the initial approximation is (0, 1)

By Fixed-Point Iteration Method
Let   xi+1 = g1(xi, yi) = (x2i -yi +0.5)/2
        yi+1 = g2(xi, yi) = (-x2i -4y2i +8yi +4)/8
 

i
0
1
2
3
4
xi
0
-0.25
-0.219
-0.222
-0.222
yi
1
1
0.992
0.994
0.994
So by Fixed-Point Iteration Method   x = -0.222  &  y = 0.994 [Solved Examples]

By Newton's Method
 

i
0
1
2
3
4
5
6
xi
0
-0.036
0.063
0.12
0.143
0.148
0.148
y
1
 0.571
0.367
0.271
0.235
0.226
0.226
So by Newton's Method   x = 0.148  &  y = 0.226 [Solved Examples]


Problems to Work-Out: