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Abstract. Given a word w = w1w2...wn of length n over an ordered alphabet Σk, we construct
a graph G(w) = (V (w), E(w)) such that V (w) has n vertices labeled 1, 2, · · · , n and for i, j ∈
V (w), (i, j) ∈ E(w) if and only if wiwj is a scattered subword of w of the form atat+1, at ∈ Σk,
for some 1 ≤ t ≤ k − 1 with the ordering at < at+1. A graph is said to be Parikh word
representable if there exists a word w over Σk such that G = G(w). In this paper we characterize
all Parikh word representable graphs over the binary alphabet in terms of chordal bipartite graphs. It
is well known that the graph isomorphism (GI) problem for chordal bipartite graph is GI complete.
The GI problem for a subclass of (6, 2) chordal bipartite graphs has been addressed. The notion
of graph powers is a well studied topic in graph theory and its applications. We also investigate a
bipartite analogue of graph powers of Parikh word representable graphs. In fact we show that for
G(w), G(w)[3] is a complete bipartite graph, for any word w over binary alphabet.

1. Introduction
The Parikh vector mapping, an important tool in the theory of formal languages, introduced by R.
J. Parikh in [7] - gives the number of occurrences of letters in the word as a numerical vector. After
a long gap the Parikh matrix of a word has been introduced in [1] as an extension of Parikh vector
mapping. The Parikh matrix mapping of a word gives more numerical properties of a word in terms
of certain subwords of the given word. The Parikh vector appears in the Parikh matrix as the second
upper diagonal. Hence two words having same the Parikh vector need not have the same Parikh
matrix; in other words this mapping is not injective. Two words α and β are said to be amiable if
and only if they have the same Parikh matrix [2].

In [2] the author had constructed a graph with vertex set being the set of all amiable words over
binary alphabet and have shown that such a graph is connected.

Another type of word representable graphs has its roots in the study of Perkins semigroup
[3, 4]. A graph G = (V,E) is word representable [3, 4] if there exists a word w over the alphabet Σ
such that letters x and y alternate in w if and only if (x, y) ∈ E for each x 6= y.

In this paper we introduce another approach using Parikh matrices to represent graphs with
words. Let Σk = {ai|1 ≤ i ≤ k} be an alphabet with an ordering ai < ai+1, 1 ≤ i ≤ k − 1. A
graph G = (V,E) is called Parikh word representable or simply word representable if there exists
a word w = w1w2...wn ∈ Σ∗k of length n such that V is the set of vertices {1, 2, · · · , n} and for
i, j ∈ V , (i, j) ∈ E iffwiwj is a scattered subword ofw of the form atat+1, for some 1 ≤ t ≤ k−1.

In this paper we characterize the class of all graphs that are word representable over an ordered
binary alphabet. We show that these graphs are indeed (6, 2) chordal bipartite graphs with an addi-
tional property pertaining to the degree of the vertices. A graph G is called (6, 2) chordal bipartite if
G is bipartite and for each cycle of length at least 6 there exists at least 2 chords. We also show that
the class of word representable graphs is a proper subclass of bipartite permutation graphs.
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It was shown in [5] that the GI problem for chordal bipartite graphs is GI complete. We give
necessary and sufficient condition for two word representable graphs G1(w1) and G2(w2) to be
isomorphic to each other.

In general the problem of finding Hamiltonian cycle is NP complete [17, 18]. The only way to
check whether a given graph has a Hamiltonian cycle or not is an exhaustive search. In this paper we
characterize the class of Parikh word representable graphs that have a Hamiltonian cycle.

For the class of chordal graphs Duchet [13] proved that, for every positive integer m, if G[m] is
chordal then so is G[m+2]. Since power of a bipartite graph need not be bipartite, Chandran et al. [9]
introduced the notion of bipartite power and proved that if G is k-chordal then so is G[m], for every
positive integer k ≥ 4 and odd positive m.

Since the closure property is not hereditary for graph classes, in [11] it was shown that inter-
val bigraphs and bipartite permutation graphs are also closed under bipartite power defined in [9].
Following [9, 11], we show that the bipartite power of word representable graphs is also word rep-
resentable. In fact we show that the 3rd bipartite power of a word representable graph is a complete
bipartite graph.

The paper is structured as follows: Section 2 provides some basic notations, definitions and
some results on Parikh word representable graphs. We also characterize the class of Parikh word
representable graphs in terms of (6, 2) chordal bipartite graphs. We conclude this section by show-
ing that the class of Parikh word representable graphs is a proper subclass of bipartite permutation
graphs. In section 3 we discuss the graph isomorphism problem for the class of all connected Parikh
word representable graphs. The Hamiltonian cycle problem for these class of Parikh word repre-
sentable graphs has been studied in section 4. In section 5 we show that the bipartite power of Parikh
word representable graph is also Parikh word representable and the 3rd bipartite power of Parikh
word representable graph is a complete bipartite graph. We end the paper with some concluding
remarks.

2. Preliminaries
Let Σk = {a1 < a2 < ... < ak} be an ordered alphabet and w = w1w2...wn be a word of length n
over Σk.

Definition 1. For each word w = w1w2...wn of length n over Σk we define a simple graph G =
G(w) with n labeled vertices 1, 2, · · · , n, representing the positions of the letters wi, 1 ≤ i ≤ n in w
such that corresponding to each occurrence of the scattered subword aiai+1, for some 1 ≤ i ≤ k−1
in w, there is an edge between the corresponding positions. We say that the word w, represents the
graph G = G(w).

Example 1. Take Σ2 = {a < b} and the word w = aabb of length 4. Then the corresponding graph
having 4 vertices labeled 1, 2, 3 and 4 is given in Figure 1.

1

44

2

3
G(a2b2)

FIGURE 1

It is clear that the graph G has an edge between the vertices i and j (assuming i < j) if and
only if wi = a and wj = b. Also if there is an edge between the vertices i and j, then no vertex
numbered k(< i) is adjacent to the vertex i (For, if such a k exists, then we have an edge between k
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and i where k < i, therefore we must have wk = a,wi = b a contradiction to wi = a). The graph G
is unique.

But every labeled graph need not be word representable. For example, the following graph is
not word representable for any word over Σ2.

1

3

2

4

5

6

FIGURE 2. non representable graph

We call a graph G, Parikh word representable if there exists a word w that represents G.
Throughout the rest of the paper we consider graphs which are representable using words over binary
alphabet unless specified. We present some properties of Parikh word representable graphs.

Lemma 1. A disconnected graph having more than one non trivial component is not word repre-
sentable for any word over binary alphabet.

Proof. It is enough to consider the case when the number of components is 2.
Let G be a disconnected graph with n vertices having two non trivial components G1 and G2.

Therefore each ofG1 andG2 must have at least one edge. If possible letG be word representable for
a word w = w1w2...wn, where wi ∈ Σ2, for 1 ≤ i ≤ n. Consider an edge (i, j) in G1 and another
edge (k, l) in G2, where 1 ≤ i, j, k, l ≤ n. Without loss of generality let i < j and k < l. Then we
have wi = a,wj = b, wk = a,wl = b. Clearly j 6= k, since j and k are in different components.

1. If j < k, then i < l and this implies that there is a scattered subword ab corresponding to
these positions i, l. Therefore there must be an edge between the vertex position i and l, a
contradiction to the fact that they are in different components.

2. If j > k, this means that there is a scattered subword ab corresponding to these positions k, j.
Therefore there must be an edge between the vertex position k and j, a contradiction to the fact
that they are in different components.

Hence our assumption is wrong and the lemma follows. �

Therefore our main focus will be on the connected component of the given graph as the isolated
vertices will contribute to a’s as suffix or b’s as prefix. Hence for a connected graph with n vertices if
it is word representable for a word (say w, |w| = n), then the word w has to start with a and end with
b. Now the vertex labeled 1 corresponding to this a is adjacent to each vertex which corresponds to
b and therefore the degree of the vertex labeled 1 is |w|b. Similarly the degree of the vertex labeled
n is |w|a. We also see that the vertices labeled 1 and n are adjacent and sum of degrees of these two
vertices is |w|b + |w|a = n. Therefore we have the following.

Lemma 2. A connected graph with n vertices representable by a word must have two adjacent
vertices whose degree sum is n.

We can generalize Lemma 1 for any arbitrary ordered alphabet.

Theorem 1. Over an ordered alphabet Σk, k > 1 a disconnected graph having more than (k − 1)
non trivial components can not be represented by a word.

Proof. Let G be a Parikh word representable graph such that G = G(w) for a word w ∈ Σ∗k, having
k non trivial components. G must have at least k edges and each edge corresponds to a scattered
subword of the form alal+1, for 1 ≤ l ≤ k − 1. Since |Σ| = k, w can have (k − 1) such type of
distinct scattered subwords. Thus by Pigeon-hole principle, there exists a scattered subword aiai+1
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that corresponds to 2 edges inG in different components. Now using the same argument in the proof
of Lemma 1 we will end up with a contradiction.

�

Another important property of Parikh word representable graphs concerning cycles is given by
the following.

Proposition 1. Any graph having an odd cycle is not word representable for any word over an
arbitrary ordered alphabet.

Proof. Let G be a graph which is word representable and let C = {c1, c2, ..., c2m+1} be an odd
cycle of G where ci, 1 ≤ i ≤ 2m + 1 are the labeled vertices. With out loss of generality, suppose
the vertex c1 corresponds to the letter ai ∈ Σk. Then the vertex c2 corresponds to the letter either
ai−1 or ai+1 ∈ Σk. If c2 corresponds to the letter ai−1, c3 corresponds to the letter either ai−2 or
ai ∈ Σk and if c2 corresponds to the letter ai+1, c3 corresponds to the letter either ai or ai+2 ∈ Σk.
Therefore the vertex c3 corresponds to one of the letters ai−2, ai, ai+2 ∈ Σk. Proceeding in this
way the vertex c2m+1 corresponds to the letter ai+2j ∈ Σk, for some j = 0,±1,±2, ...,±m and in
each case the letters ai and ai+2j are not consecutive but there is an edge between the vertices c1
and c2m+1, a contradiction.

�

Cor 1. If G = G(w) for w ∈ Σ∗k then G is bipartite.

LetG = (V,E) be a graph. Then its complement graph, denoted byG is the graphG = (V,E),
where any two vertices are adjacent in G iff they are not adjacent in G. If a graph is bipartite, its
complement need not be a bipartite graph. In [10] the authors have classified all graphs G such that
both G and G are bipartite.

Theorem 2. ([10]) All the graphsG such that bothG and its complement denoted byG are bipartite
are the graphs shown in Figure 3.

G1 : G2 : G3 : G4 :

G5 : G6 : G7 : G8 :

FIGURE 3

Thus we can deduce the following result pertaining to the complement of word representable
graphs.

Lemma 3. If a graph G is word representable, then its complement G is word representable iff G is
one of the following:
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G1 : G2 : G3 : G4 :

G5 : G6 :

FIGURE 4

Proof. If part: Complements of the graphs given in Figure 4 are given below in Figure 5 which are
word representable.

G1 : G2 : G3 : G4 :

G5 : G6 :

G1 = G(a) G2 = G(ab) G3 = G(ba) G4 = G(aba)

G5 = G(ab2) G6 = G(abab)

FIGURE 5

Only if part: Suppose G is word representable. Since G is word representable, it follows from
Theorem 2, that G must be one of those 8 graphs. Now we see that the last two graphs in Theorem 2
are complement of each other and among these two G7 is not word representable, since it has two
non trivial components.

G7 G8 = G7 = G(a2b2)

FIGURE 6

�

Lemma 4. A graph G is word representable for a word w if and only if every induced subgraph
H of G is word representable for a word u (say), where u is a scattered subword of w over any
arbitrary alphabet.

Proof. If part: Let G be a graph and let every induced subgraph H of G represent a word u over
any arbitrary alphabet Σk. Since the graph G is an induced subgraph of itself, G = G(w) for some
w ∈ Σ∗k.

Only if part: Let the graph G = G(w) for w = w1w2...wn ∈ Σ∗k of length n be word
representable. Then the vertices of G can be labeled with 1, 2, ..., n. Let H be an induced subgraph
of G having vertices i1, i2, ..., ik, 1 ≤ k ≤ n such that 1 ≤ i1 < i2 < · · · < ik ≤ n. Then H
represents the word u = wi1wi2 ...wik . And clearly u is a scattered subword of w. �
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For example, a Parikh word representable graph G and its proper induced subgraphs (up to
isomorphism) are given below:

G(a2b2) : G1(a) : G2(a
2) : G3(ab) : G4(a

2b) :

FIGURE 7

Cor 2. If an induced subgraph H of a graph G is not word representable, then the main graph G is
not word representable.

Given a simple graph G with n vertices, can we label the vertices in such a way that the graph
is word representable for a word over Σ2? Before answering this we first observe the following.

1. A path Pn with n ≤ 4 is word representable.

G(a)/G(b) G(ab)

G(abb) G(abab)

1

1 2

3

1 2

3

4 1 2

FIGURE 8

2. A path Pn with n > 4 is not word representable.
For in a path, the degree of each vertex is 2 except for starting and ending vertex, therefore the
degree sum of any two adjacent vertices is at most 4 < n, a contradiction to Lemma 2. Thus
Pn, n > 4 is not word representable over Σ2.

3. A cycle Cn with n > 4 is not word representable.
For in a cycle, the degree of each vertex is 2, therefore the degree sum of any two adjacent ver-
tices is exactly 4 < n, a contradiction to Lemma 2. Thus Cn, n > 4 is not word representable
over Σ2.

4. A star graph K1,n is word representable for all n ≥ 1.

t1

t2

tn
tn−1

K1,n : = G(abn)

FIGURE 9
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5. A tree with diameter1 < 4 is word representable.

p verticesm vertices

G(abmapb)/G(abpamb)

FIGURE 10. Tree with diameter < 4

6. A tree Tn, with diameter ≥ 4 is not word representable.
Since the diameter is≥ 4, there exists a path Pm withm > 4 andm ≤ n. Consider the induced
subgraph Pm where m > 4, this is not word representable, hence by Cor 2, we can conclude
that the tree Tn, with diameter ≥ 4 is not word representable.

7. A wheel graphWn, n > 2 is not word representable over Σ2 as the wheel graph is not bipartite.
We consolidate the above observations for some special classes of graphs in the following table.

Graph existence of word over binary alphabet
Path Pn,n ≤ 4 Yes
Path Pn,n > 4 No
Cycle C3 No
Cycle C4 Yes(a2b2)
Cycle Cn, n > 4 No
Complete graph K2 Yes
Complete graph Kn, n > 2 No
Star graph Sn Yes(abn−1 or an−1b)
Trees Tn, diameter< 4 Yes
Trees Tn, diameter ≥ 4 No
Wheel Wn, n > 2 No
Complete bipartite graph Km,n Yes(ambn or anbm)

Thus we can conclude that not all graphs can be represented by a word.
The next theorem characterizes the class of all connected Parikh word representable graphs.

Theorem 3. A connected bipartite graph is word representable if and only if it is (6, 2) chordal
having two adjacent vertices whose degree sum is same as the number of vertices of the graph.

Proof. If part: Let G be a connected (6, 2) chordal bipartite graph having two adjacent vertices
whose degree sum is same as the number of vertices of the graph. Then we have the following two
cases:

1. G does not have cycles of length more than 4.
2. G has cycles of length at least 6.

Case 1: If the graph does not have cycles of length more than 4, then we have the following sub cases:
(a) If the graph does not contain a cycle.

Then G is a tree. If diameter of G is ≥ 4, then G is trivially (6, 2) chordal but G does not
have two adjacent vertices whose degree sum is same as the number of vertices (n > 4).
If diameter of G < 4 then G is word representable (see Figure 10).

(b) If the graph G contains only cycles of length 4.

1The diameter d of a graph is the length of the longest shortest path of the graph. i.e. d = Maxu,v∈GdG(u, v), where
dG(u, v) is the distance between the vertices u and v in G.
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(i) Let G be such a graph having more than one four cycle and two adjacent vertices
whose degree sum is as same as the number of vertices in the graph G. Then the
graph must be of the form given in Figure 11.

m vertices

p vertices

FIGURE 11

And this graph is word representable by either abmabp or apbamb.

(ii) If the graph G has only one four cycle having two adjacent vertices whose degree
sum is as same as the number of vertices in the graph, then the graph will be one of
the forms given in Figure 12.

G(a2b2) G(abab2)/G(a2bab) G(ababab)

FIGURE 12

Case 2: Let G be a graph with cycles of length at least 6. Then we prove by induction on number of
vertices.
Let G be a (6, 2) chordal bipartite graph with n vertices having 2 adjacent vertices x and y
(say) such that deg(x) + deg(y) = n, where deg(x) is the degree of the vertex x.
Base case: n = 6. The only (6, 2) chordal graphs having adjacent vertices whose degree sum
is 6 are given in Figure 13.

G1 : G2 :

FIGURE 13

In Figure 13, one can easily verify that G1 is word representable by the word a2bab2 and
G2 is word representable by the word a3b3.
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Induction step: Suppose the statement is true for n = k−1, i.e, all bipartite (6, 2) chordal
graph with k−1 vertices having 2 adjacent vertices x and y (say) such that deg(x)+deg(y) =
k − 1 is word representable.

Let G be a (6, 2) chordal bipartite graph with k vertices, having 2 adjacent vertices x and
y (say) such that deg(x) + deg(y) = k. Now delete a vertex v other than x and y from G. Let
G′ be the induced subgraph of G− v. We see that the vertex v must be adjacent to either x or
y but not both (if v is adjacent to both x and y, then G contains a triangle, a contradiction to
the fact that G is bipartite. And if v is adjacent to neither x nor y, then deg(x) + deg(y) < k,
a contradiction). We see that

(a) G′ is bipartite, since G is bipartite.
(b) G′ is (6, 2) chordal, since (6, 2) chordal property is an hereditary property (i.e. any

induced subgraph of a (6, 2) chordal graph is (6, 2) chordal).
(c) Also in G′, deg(x) + deg(y) = k − 1 = |V (G′)|.

Therefore by induction hypothesis G′ is word representable and let G′ is word representable
by a word u = u1u2...uk−1.

Now since x and y are adjacent, without loss of generality, let the letter a corresponds to
the position x and the letter b corresponds to the position y. Therefore we can take u1 = a and
uk−1 = b. Also since either x or y is adjacent to v, let v be adjacent to x, therefore v has to be
labeled with b.

Suppose deg(v) = m, 1 ≤ m ≤ |u|a. Then the word w = au2..upbup+1.uk−2b, where
|au2..up|a = m, represents the graph G. Hence G is word representable.

Converse part: Let G be a connected bipartite graph and let it is word representable by a word w.
Then by Lemma 2, it follows that G must have two adjacent vertices whose degree sum is same as
the number of vertices in G. To prove the second condition, if possible let G be not (6, 2) chordal,
then there exists a cycle C of length at least 6 in G such that the cycle C has at most one chord.
Now consider the induced subgraph of this cycle C. If the cycle C is of length exactly 6, then it is
not word representable by base case. If the cycle is of length more than 6, then the degree sum of
any two adjacent vertices in the cycle is at most 6. Therefore by Lemma 2 the cycle C is not word
representable. Hence by Cor 2 the graph G is not word representable, a contradiction. �

One can easily check that none of the two conditions in Theorem 3 can be dropped. For exam-
ple,

Graph-A Graph-B

FIGURE 14

Graph-A in Figure 14, is (6, 2) chordal bipartite but it is not word representable, and the
Graph-B has two adjacent vertices whose degree sum is 6 (the number of vertices) still it is not word
representable.

A graphG = (V,E) with V = {1, 2, ..., n} is a permutation graph if there exists a permutation
π over V such that {i, j} ∈ E if and only if (i − j)(π(i) − π(j)) < 0. A graph is a bipartite
permutation graph if it is bipartite and a permutation graph. An interval graph is the intersection
graph of a family of intervals on the real line. It has one vertex for each interval in the family, and an
edge between every pair of vertices corresponding to intervals that intersect. A graph is a bipartite
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interval graph if it is bipartite and an interval graph. A bipartite graph is chordal if every induced
cycle is of length four. Let the classes of bipartite permutation graphs, bipartite interval graphs and
chordal bipartite graphs are denoted by BP , IB and CB respectively. Hell and Haung [15] have
shown the following hierarchy among these classes.

BP ⊂ IB ⊂ CB.
We denote the class of all Parikh word representable graphs by PWG. We conclude this section
by showing that the class of Parikh word representable graphs is a proper sub class of bipartite
permutation graphs. We recall the following.

Theorem 4. ([15]) The following statements are equivalent, for a bipartite graph G:

1. G is a permutation graph. i.e. both G and G are comparability graph.
2. G is a comparability graph2.

Theorem 5. The class of Parikh word representable graphs(PWG) is a proper sub class of bipartite
permutation graph(BP ).

Proof. Let G be a Parikh word representable graph by a word w = w1w2...wn with n vertices
1, 2, ..., n. To show that G is a bipartite permutation graph, by the previous theorem it is enough to
show that G is a comparability graph.

If possible, suppose G is not a comparability graph. Then there exist three vertices say 1 ≤
i < j < l ≤ n such that (i, j), (j, l) ∈ E(G) but (i, l) /∈ E(G). Now since (i, j), (j, l) ∈ E(G),
(i, j), (j, l) /∈ E(G). We also have i < j < l. There are two cases either wj = a or wj = b.

1. If wj = a, we must have wl = a, since (j, l) /∈ E(G). On the other hand wi can be either
a or b. In both cases there is no edge between i and l. i.e. (i, l) /∈ E(G). This implies that
(i, l) ∈ E(G), a contradiction.

2. If wj = b, we must have wi = b, since (i, j) /∈ E(G). On the other hand wl can be either
a or b. In both cases there is no edge between i and l. i.e. (i, l) /∈ E(G). This implies that
(i, l) ∈ E(G), a contradiction.

Thus our assumption is wrong. Hence G is a comparability graph. This shows that G is a bipartite
permutation graph.

1

3

2
5

4

6

8 7

1 2 3 4 5 6 7 8

3 5 6 1 2 8 4 7

Graph A Graph B

FIGURE 15

The Graph A in Figure 15 is an example of bipartite permutation graph (whose permutation
representation is shown in Graph B in Figure 15) which is not Parikh word representable, as it does
not have two adjacent vertices whose degree sum is 8.

Therefore, the class of Parikh word representable graphs is a proper sub class of bipartite
permutation graph. �

Thus we have

PWG ⊂ BP ⊂ IB ⊂ CB.

2A comparability graph is an undirected graph that connects pairs of elements that are comparable to each other in a partial
order. Comparability graphs have also been called transitively orientable graphs.
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3. Graph Isomorphism
The graph isomorphism problem is to decide whether two finite graphs are isomorphic or not. Since
it is neither known to be NP complete nor to be tractable, we will try to find some partial result for
the class of Parikh word representable graphs. Two words w1 and w2 are said to be M -ambiguous if
they have the same Parikh matrix (i.e) |w1|a = |w2|a, |w1|b = |w2|b and number of ab’s in w1 and
w2 as a scattered subword are same.

Here it is natural to check whether graphs corresponding to M -ambiguous words w1 and w2

are isomorphic to each other or not. We observe the following.
1. For abbba ∼M babab, (where ∼M means M -ambiguous, i.e. the Parikh matrices of the two

words abbba and babab are same.) the corresponding graphs which are non isomorphic are
given below.

1 2

4 5 3 4 5 3

21

G(ab3a) G(babab)

FIGURE 16

2. Two isomorphic graphs having different labeling need not be word representable byM -ambiguous
words.

1 2

3

3 1

2
G(abb) G(aab)

FIGURE 17

Definition 2. An involution is a mapping θ : Σ → Σ such that θ2 equals the identity mapping,
θ(θ(a)) = a, for all a ∈ Σ. A mapping θ : Σ∗ → Σ∗ is a morphism if θ(uv) = θ(u)θ(v) and an
anti morphism if θ(uv) = θ(v)θ(u) for all u, v ∈ Σ∗.

Now we provide a sufficient condition for two graphs to be isomorphic each other.

Lemma 5. Let x and y be two words over the binary alphabet {a < b} such that x = θ(y), then
G(x) ' G(y) (i.e. G(x) is isomorphic to G(y)), where G(x) denotes the graph corresponding to
the word x.

Proof. Let x = x1x2...xn−1xn, where xi ∈ {a < b}, 1 ≤ i ≤ n and G(x) be the corresponding
graph with the labeled vertices 1, 2, ..., n.

Then θ(x) = θ(xn)θ(xn−1)...θ(x2)θ(x1) = y and G(y) be the corresponding graph with the
labeled vertices 1, 2, ..., n.

Now we define a map φ : {1, 2, ..., n} → {1, 2, ..., n} by φ(i) = n− i+ 1.
To show that φ is an isomorphism,

1. Without loss of generality, suppose there is an edge between i and j and 1 ≤ i < j ≤ n. Then
xi = a and xj = b. We also have yn−j+1 = θ(xj) = a and yn−i+1 = θ(xi) = b, since
n− j + 1 < n− i+ 1, there is an edge between n− j + 1(= φ(j)) and n− i+ 1(= φ(i)).
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2. Without loss of generality, Suppose l and m, 1 ≤ l < m ≤ n are not adjacent, then there are
three cases:

(a) xl = a and xm = a, then yn−l+1 = θ(xl) = b and yn−m+1 = θ(xm) = b and therefore
n− l + 1(= φ(l)) and n−m+ 1(= φ(m)) are not adjacent.

(b) xl = b and xm = b, then yn−l+1 = θ(xl) = a and yn−m+1 = θ(xm) = a and therefore
n− l + 1(= φ(l)) and n−m+ 1(= φ(m)) are not adjacent.

(c) l < m and xl = b and xm = a, then yn−l+1 = θ(xl) = a and yn−m+1 = θ(xm) = b
and since n−m+ 1 < n− l+ 1 therefore n− l+ 1(= φ(l)) and n−m+ 1(= φ(m))
are not adjacent.

�

Lemma 6. Let w and w′ be two words over the binary alphabet {a < b} such that G(w) ' G(w′)
and the graphs are connected, then w = θ(w′).

Proof. We prove by induction on the length of the word.
Base case: G(ab) ' G(ab). Clearly ab = θ(ab).

Induction hypothesis: Suppose it is true for all words with |w| < n.
Let w and w′ be of length n and G(w) ' G(w′) and the graphs are connected. Then we have w =
aw1b and w′ = aw′1b. Therefore G(aw1b) ' G(aw′1b). Let G1 = G(aw′1b) and V (G1) = X1 ∪Y1,
G2 = G(aw′1b), V (G2) = X2 ∪ Y2, then G1 ' G2. Also let x1 ∈ X1 corresponds to the starting
letter a in w and y1 ∈ Y1 corresponds to the ending letter b in w, we see that x1 is adjacent to all the
vertices in Y1 and y1 is adjacent to all the vertices in X1. Similarly in G2, let x2 ∈ X2 corresponds
to the starting letter a in w′ and y2 ∈ Y2 corresponds to the ending letter b in w′, we see that x2
is adjacent to all the vertices in Y2 and y2 is adjacent to all the vertices in X2. Let the isomorphic
map be φ. Since isomorphism preserves the structure of a graph, either φ(X1) = X2, φ(Y1) = Y2
or φ(X1) = Y2, φ(Y1) = X2.

Case 1: If φ(X1) = X2, φ(Y1) = Y2, then without loss of generality we can assume that φ(x1) = x2,
φ(y1) = y2. Now if we delete the vertices x1, y1 from G1 and x2, y2 from G2 we still have
isomorphism betweenG1\{x1, y1} andG2\{x2, y2}(the same map φwill work). This implies
that G(w1) ' G(w′1). By induction hypothesis, we have w1 = θ(w′1).

Therefore θ(w′) = θ(aw′1b) = aθ(w′1)b = aw1b = w.
Case 2: If φ(X1) = Y2, φ(Y1) = X2, then |X1| = |Y2| and |Y1| = |X2|. Since x1 is adjacent to

all the vertices in Y1 and y2 is adjacent to all the vertices in X2, also we have |Y1| = |X2|.
Without loss of generality we can assume φ(x1) = y2 and similarly φ(y1) = x2. Proceeding
in a similar way as in case (i) we will get G(w1) ' G(w′1). By induction hypothesis, we have
w1 = θ(w′1).

Therefore θ(w′) = θ(aw′1b) = aθ(w′1)b = aw1b = w.
�

Lemma 7. G(bkxal) ' G(bmxan) ' G(bmθ(x)an) ' G(bkθ(x)al), where x ∈ {a < b}∗ and
k + l = m+ n, k, l,m, n ≥ 0.

Proof. G(bkxal) = union of (k + l) isolated vertices and the graph of the word x.
' union of m+ n isolated vertices and the graph of the word x, as k + l = m+ n.
= G(bmxan)
= union of (m+ n) isolated vertices and the graph of the word x.
' union of (m+ n) isolated vertices and the graph of the word θ(x), since G(x) ' G(θ(x)).
= G(bmθ(x)an)
' G(bkθ(x)al). �

For example, the graphs of the words ba2b, bab2, a2ba, ab2a in Figure 18 are isomorphic to
each other.
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1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

G(baab) G(babb)

G(aaba) G(abba)

FIGURE 18

The next theorem will give us a necessary and sufficient condition for any two Parikh word
representable graphs to be isomorphic.

Based on Theorem 3, Lemmas 5 and 6 we deduce the following.

Theorem 6. Two connected (6, 2) chordal bipartite graphs each having two adjacent vertices whose
degree sum is same as the number of vertices are isomorphic iff the corresponding words represented
by those graphs are involution of each other.

4. Hamiltonian cycle problem
A Hamiltonian cycle of a graph G = (V,E) is a cycle which traverses each vertices of G exactly
once. A graph is said to be Hamiltonian if it contains a Hamiltonian cycle. The Hamiltonian cycle
problem is a problem to decide whether a given graph is Hamiltonian or not. In general the class
of (6, 2) chordal bipartite graphs are not Hamiltonian. In [16] The authors have shown that the
expanding condition is necessary for (6, 2) chordal bipartite graphs to have a Hamiltonian cycle,
where the expanding condition is defined as follows.

Definition 3. ([16]) Assume that G = (V +, V −, E) is a bipartite graph with 2n vertices and
|V +| = |V −| = n. We call the following condition an expanding condition for V + of G:

∀X ⊂ V +, |X| < |N(X)|
This condition is equivalent to ∀X ⊂ V −, |X| < |N(X)|.

Now we give a necessary and sufficient condition for a Parikh word representable graph to
have a Hamiltonian cycle as follows.

Theorem 7. A Parikh word representable graph by a word w over binary alphabet Σ2 with 2n
vertices, n vertices in each partite set, is Hamiltonian if and only if the followings hold:

1. w = a2w′b2, for some w′ ∈ Σ∗2.
2. all the prefixes of w has more number of a’s than b’s.

Proof. If part: LetG be word representable by a word w = w1w2w3 · · ·w2n−2w2n−1w2n satisfying
the above two conditions. We see that all the prefixes starts with a2 and |w|a ≥ 2, |w|b ≥ 2. Clearly
w1 = w2 = a and w2n−1 = w2n = b. To show that G is Hamiltonian it is enough to show that
there exists a Hamiltonian cycle. We have |w|a = |w|b = n. To find the Hamiltonian cycle of G, we
will start with the vertex corresponding to the 1st a in w. Now choose the edge between the vertices
corresponding to the 1st a and 1st b. Suppose 1st b occurs in the tth1 position in w. i.e. wt1 = b,
3 ≤ t1 ≤ 2n. Now since u1 = w1w2w3 · · ·wt1 is a prefix of w, |u1|a > |u1|b and w2 = a, we
choose the edge between the vertices corresponding to the 1st b and 2nd a. Then choose the edge
between the vertices corresponding to the 2nd a and 2nd b. Then we have the following two cases:

case 1: If the 2nd b occurs in w2n position, then there is no more a and b. Therefore now choose the
the edge between the vertices corresponding to the 2nd b and 1st a. And this will complete the
Hamiltonian cycle.
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case 2: If the word w has more than 2 a’s and b’s. Then the 2nd b will occurs in some wt2 position
where t1 < t2 < 2n. Now considering the prefix u2 = w1w2w3...wt2 and using the condition
|u2|a > |u2|b we assured that there is another a(3rd) before the 2nd b. Choose the edge between
the vertices corresponding to the 2nd b and 3rd a. Since |w|a = |w|b 3rd b must be there.

If 3rd b occurs in w2n position, using case 1 we will get the cycle, otherwise iteratively proceeding
as in case 2 we will end up with a Hamiltonian cycle.

Only if part: Suppose a Parikh word representable graph G = G(w) is Hamiltonian. Since G
is Hamiltonian, it has a Hamiltonian cycle that traverses all the vertices exactly once. Therefore each
vertex has to be of degree atleast 2. Hence w must be of the form w = a2w′b2, otherwise the graph
will have pendent vertices, a contradiction.

To prove the condition 2, we use the fact that the expanding condition is necessary for a graph
G to have a Hamiltonian cycle. For the contrary suppose the condition 2 does not hold. Then there
exists a prefix u of w such that |u|a ≤ |u|b and w = ux, x ∈ Σ+

2 . Also u can be written as u =
am1bn1am2bn2 · · · amtbnt such thatm1+m2+· · ·+mt ≤ n1+n2+· · ·+nt. LetG = (X+, X−, E),
where X+ = vertices corresponding to a’s, X− = vertices corresponding to b’s and E denotes the
edges. Consider X = vertices corresponding to these n1, n2, ..., nt b’s. Clearly N(X) = vertices
corresponding to these m1,m2, ...,mt a’s and |N(X)| ≤ |X| where X ⊂ X−. Therefore the
expanding condition fails. This implies that G has no Hamiltonian cycle, a contradiction. Thus the
condition 2 is established. �

5. Bipartite power
The notion of graph power and its algorithmic application (see [8] and the references therein) have
been well studied in graph theory. Graph power for chordal graphs is used to construct graphs with
higher boxicity [9]. Also recognition of power of a graph is NP complete. Several graph classes are
closed under power operation that is, for some graph classes C, G ∈ C implies Gk ∈ C, k ∈ N.
Now we recall the definition of power of a graph.

Definition 4. Given a graph G and a positive integer m, Gm is a graph with V (Gm) = V (G),
E(Gm) = {(u, v)|u, v ∈ V (G), dG(u, v) ≤ m}, where dG(u, v) denotes the distance between the
two vertices u and v in G. The graph Gm is called the m-th power of G. For example,

G G2 G3

FIGURE 19

If a bigraph has at least three vertices, any kth power of this graph must contain an odd cycle.
This shows that the class of bigraphs is not closed under power operation. To preserve the bipartited-
ness, Sunil Chandran in [9] introduced the notion of bipartite powering to preserve the bipartitedness
of a bipartite graph as follows.

Definition 5. ([9]) Given a bipartite graph G and an odd positive integer m, G[m] is a bipartite
graph with V (G[m]) = V (G), E(G[m]) = {(u, v)|u, v ∈ V (G), dG(u, v) is odd and dG(u, v) ≤
m}. The graph G[m] is called the m-th bipartite power of G.
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It is known that several important graph classes such as the class of unit interval graphs, interval
graphs, strongly chordal graphs are closed under the kth power for any k, [12, 13, 14]. Also in case
of bipartite graphs, the class of chordal bipartite graphs(CB), interval bipartite graphs(IB) and
bipartite permutation graphs(BP ) are closed under kth power for any odd positive integer k [9, 11].

Since closure property for graph classes is not hereditary, we show that PWG is also closed
under the odd kth bipartite power. Indeed we show that G[k] is complete for any odd k ≥ 3 which
follows from the following theorem.

Theorem 8. For any Parikh word representable connected graph G, G[3], the 3rd bipartite power
of G is Parikh word representable and it is the complete bipartite graph Km,n, where m = |w|a,
n = |w|b, w represents the graph G.

Proof. Let G be a word representable connected graph by a word w = w1w2...wm+n such that
|w|a = m, |w|b = n. Since G is connected, we must have w = aw′b, for some w′ ∈ Σ∗2. Also G is
bipartite. Let G = X ∪ Y , where X = the set of all vertices represented by a′s, Y = the set of all
vertices represented by b′s. Then we have |X| = m and |Y | = n.

Now consider G[3], then we have

V (G[3]) = V (G), E(G[3]) = {(u, v)|u, v ∈ V (G), dG(u, v) is odd and dG(u, v) ≤ 3}

In G[3], there will be no edge between any two vertices from the same bipartite set X or Y , because
dG(u, v) is always even for every pair u, v ∈ X or Y . Therefore G[3] remains bipartite with the
same bipartite sets X and Y .

To show that every vertex in X (represented by a) is adjacent to every vertex in Y (represented
by b) in G[3], we have the following two cases:

Case 1: If a vertex in X is adjacent to a vertex in Y in G, then they are adjacent in G[3] also.
Case 2: Let there be a vertex va in X which is labeled ‘i’ (say) in the graph G that is not adjacent to a

vertex vb in Y labeled ‘j’ (say), then 1 ≤ j < i ≤ m+ n. Then dG(va, vb) = 3. This implies
that there will be an edge between these two vertices in G[3].

Since these two vertices are arbitrary, we can say that every vertex in X is adjacent to every vertex
in Y in G[3]. i.e. G[3] is complete bipartite graph Km,n.

And G[3] is word representable by the word ambn. �

6. Concluding remarks
This paper introduces a new notion of Parikh word representable graphs and some properties of the
class of these graphs. A major result concerning the characterization of Parikh word representable
graphs over binary ordered alphabet is given. Also the GI problem for this special class of graphs
over binary ordered alphabet has been studied. It is interesting to see if we can generalize the results
we obtained for the class of Parikh word representable graphs over binary ordered alphabet to an
arbitrary ordered alphabet.
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