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Abstract. Representation of a word by a graph is an important branch of
study in combinatorics of words. The vertices and the edges are defined using
certain properties of words. Such a representation is useful in solving some prob-
lems in graph theory. One such representation is the idea of Rauzy graphs that was
used to study Arnoux-Rauzy sequences. In this paper, we define half range Rauzy
graphs and study the structural properties of such a variant for some special words.
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1 Introduction
Theory of word representation graph lies in the intersection of combinatorics on words,
Graph theory and Computer Science. One of the earliest study of word representable
graphs is the well known De Bruijn graphs. It was later adapted by Gerard Rauzy
in [14] to a graph in which each vertex is a subword of a given word. Rauzy graphs
are mainly used in the study of words with low complexity [5, 8, 15]. A new class
of word representable graphs has been first used for the free spectrum study of the
famous Perkins semigroup [11]. A word w over some alphabet Σ, is given a graph
description exploiting a particular property of the word. Hence, any word may not
be suitable for its representation as a graph. For example, in [10] it is shown that
Peterson graph cannot be represented by 2-uniform words. Also, all such words that
are representable by graphs have many attractive properties [4]. In [9], Graham et.al.,
bring out the connections of word representable graphs to robot movement. In [2], Bera
et.al., construct a graph for a word, based on the arrangements of scattered subwords. A
complete characterization of Parikh word representable graphs over the binary alphabet
in terms of chordal bipartite graph is also given in [2].

Rauzy graphs represent a set of words. The vertices of the Rauzy graphs are words
of length n. Any two words w1, w2 have an edge between them if w1 = xv, w2 = vy,
where x, y are symbols. An estimation of finite word complexities of infinite sequences
using Rauzy graphs is given in [7]. Salimov in [16] has shown that every sequence of
finite strongly connected directed graphs with bounded in-degree and out-degree, will
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contain a subsequence. A conjecture on automaticity function of a unary language is
solved using the Rauzy graph structure in [6].

In 1994, Leonard Adleman [1] showed that DNA could be used to solve a graph
theory problem. The seven node Hamiltonian path problem is solved by using single
strand DNA molecule over A, G, C, T for each vertex of the graph. These strands are of
length 20 out of which the suffix of 10 nucleotides of one strand is the complement of
the prefix of 10 nucleotides of another strand indicating an edge between them. Mixing
the DNA strands thus formed with DNA ligase and ATP (Adenosine Triphosphate)
results in all paths through vertices.

A word, finite or infinite is a sequence of symbols taken from a finite alphabet.
Mathematical research of words is well known as ’Combinatorics on words’ and is
connected to many modern as well as classical fields of mathematics. A word is prim-
itive if it is not a proper power of a word of shorter length. The concept of primitivity
of words plays a vital role in algebraic coding theory [17] and combinatorial theory of
words [13].

In this paper, we introduce a new variant of Rauzy graphs, called as the half range
Rauzy graphs. For any two vertices u and v, there is an edge from u to v if prefix of v
is the same as that of the suffix of u of length k if |u| = |v| = 2k or of length either
k + 1 or k if |u| = |v| = 2k + 1. We study the graphs for a special type of infinite
word of the form xω when x is primitive. We investigate the properties of such graphs.
We initially show that Rauzy and half range Rauzy graphs are different for such type
of words. The main result of this paper is the property that every component of such a
half range Rauzy graph is a cycle. We also give conditions under which such a graph
is strongly connected.

2 Preliminaries
In this section we recall some basic notions. For more information the reader can refer
to [3,12,16]. Let Σ = { a1, a2, · · · , al } be a finite alphabet. A wordw over an alphabet
Σ is a sequence (finite or infinite) of elements of Σ. The set of all finite words over an
alphabet Σ is Σ+ ∪ {λ} and is denoted by Σ∗, where Σ+ is the set of all non-empty
words and λ denotes the empty word. For w = a1a2 · · · ak, ai ∈ Σ, the number k is
the length of the word w and it is denoted by |w|. A word of finite length is called a
finite word, otherwise, it is infinite. We denote the set of all (right) infinite words by
ΣN. It is the set of sequence of symbols in Σ indexed by non-negative integers. We
denote Σ∗ ∪ ΣN by Σ∞, the set of finite or infinite words. A finite word x is a factor
or subword of an infinite (finite) word w if

w = uxv, u ∈ Σ∗, v ∈ Σ∞

If u = λ (v = λ) , then x is a prefix (suffix, respectively) of w. A set F ⊆ Σ∗

is said to be a factorial language if for any word w = uxv ∈ F ⇒ x ∈ F , where
u ∈ Σ∗, v ∈ Σ∞ and x ∈ Σ∗. The set of all factors of length l in F is denoted by F (l).

Let the ith letter in a word w be denoted by wi. A factor of w = w1w2 · · · can
also be represented as w[i, i + k] = wiwi+1 · · ·wi+k for any i, k ∈ N. Let x ∈ Σ+

and xω is defined as the concatenation of infinite copies of x, i.e, xω = xxx · · · . An
infinite word w = w1w2w3 · · · is said to be periodic if there exists an integer p such
that wn+p = wn ∀ n ∈ N and w can also be written as (w1w2 · · ·wp)ω . The least
number p which satisfies the above condition is called as the period of w. A non empty
word w ∈ Σ∞ is said to be primitive if there is no word x ∈ Σ∗ such that w = xn
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for n > 1. Any two words u, v ∈ Σ∗ are said to be conjugates if there exist words
x, y ∈ Σ∗ such that u = xy and v = yx. The set of all conjugates of a word w is called
as the conjugacy class of w and is denoted by c(w).

Let Σ = {a, b} be a binary alphabet. For any x ∈ Σ∞, xc is defined as the
word obtained by replacing a′s with b′s and vice-versa in x. For example, for a given
x = abba, xc = baab.

A graph G is an ordered pair (V (G), E(G)) consisting of a non empty set V (G) of
vertices of G, E(G) is the set of edges, where each edge is a pair of vertices. A walk
of length k in a graph is an alternating sequence of vertices and edges,

v0, e0, v1, e1, v2, . . . , vk−1, ek−1, vk,

which begins and ends with vertices. A trail is a walk in which all edges are distinct.
A path is a trail in which all vertices (except possibly the first and last) are distinct. A
cycle is a closed trail in which all the vertices are distinct except for the first and the
last vertex.

A graph is said to be connected if there is a path between every pair of vertices.
A graph on n vertices is said to be complete if every pair of vertices in a graph is
connected by a unique edge and is denoted by Kn. Complement of graph G is denoted
by G is defined by |V (G)| = |V (G)| and (u, v) ∈ E(G) ⇐⇒ (u, v) /∈ E(G). A
directed graph is a graph whose edges are ordered pairs of vertices. In a directed graph
edges are often called as arcs. For an arc (u, v) the first vertex u is called as the tail
of the arc and the second vertex v is called as the head of the arc. We also say that
the arc (u, v) leaves u and enters v. Indegree of a vertex v is defined as the number of
arcs entering v and is denoted by degin(v). Outdegree of a vertex v is defined as the
number of arcs leaving v and is denoted by degout(v). A directed graph is said to be
strongly connected graph if it has a path from each vertex to every other vertex. A loop
(or self-loop) is an edge from a vertex to itself.

Definition 1. A Rauzy graph of order k for a factorial language F is a directed graph
(V,E) where V = F (k) and (u, v) ∈ E iff

u2u3 · · ·uk = v1v2 · · · vk−1 and u1u2 · · ·ukvk ∈ F (k + 1)

A Rauzy graph of order k for an infinite word w is the Rauzy graph of order k for
the language of subwords of w. We denote a Rauzy graph of order k for a factorial
language F (for an infinite word w) by RF (k) (correspondingly, Rw(k)).

3 Half range Rauzy graphs
In this section we introduce a special variant of Rauzy graphs called as half range
Rauzy graphs. In [1], Adelman solved an instance of a Travelling salesman problem
using DNA strands. The encoding was done in such a way that vertices and edges
are encoded in to a 20 length DNA-strand and an edge e = xy between any two
given vertices x = x1x2 and y = y1y2 is encoded into a DNA strand x2y1 where
|x2| = |y1| = 10. Motivated by this encoding procedure of vertices and edges in to
DNA-strands we define a special class of graphs.

Definition 2. A half range Rauzy graph (HRR graph in short) of order k > 1, for
a factorial language F is a directed graph (V,E), where V = F (k) and edge set is
defined as follows:
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1. For an even k, (u, v) ∈ E iff
u k

2+1u k
2+2 · · ·uk = v1v2 · · · v k

2
and u1u2 · · ·ukv k

2+1 · · · vk ∈ F ( 3k
2 )

2. For an odd k, there are two types of graphs. (u, v) ∈ E iff
Type I: u k+1

2
u k+3

2
· · ·uk = v1v2 · · · v k+1

2
and u1u2 · · ·ukv k+3

2
· · · vk ∈ F ( 3k−1

2 )

Type II: u k+3
2
u k+5

2
· · ·uk = v1v2 · · · v k−1

2
and u1u2 · · ·ukv k+1

2
· · · vk ∈ F ( 3k+1

2 )

We denote an HRR graph forF as,HRF (k, ∗) =


HRF (k) : k is even
HRF (k, I) : k is odd and of TypeI
HRF (k, II) : k is odd and of TypeII

If the underlying language is a set of all factors of a given word w, thenHRF (k, ∗)
is simply represented as HRw(k, ∗).

u1 u2
u6 u3

u4u5

(a) HRw(12)

u1 u2

u3

u4u5

u6

(b) Rw(12)

Fig. 1: Rauzy and half range Rauzy graphs of order 12

Example 1. Let w = (abbaaa)ω be an infinite word. half range Rauzy graph of order
12 for an infinite word w is HRw(12) = (U,E), where U : {u1 = abbaaaabbaaa,
u2 = bbaaaabbaaaa, u3 = baaaabbaaaab, u4 = aaaabbaaaabb, u5 = aaabbaaaabba,
u6 = aabbaaaabbaa} and arcs in E are shown in Fig. 1a. Rauzy graph of order 12
for an infinite word w is Rw(12) = (U,E′) and arcs in E′ are shown in Fig. 1b.

Example 2. Let w = (aabababaabab)ω be an infinite word. Half range Rauzy graph
of order 3 has two types of directed graph HRw(3, I) = (V,E1) and HRw(3, II) =
(V,E2), where V = {v1 = aab, v2 = aba, v3 = bab, v4 = baa}. Arcs in E1 and E2

are shown in Fig. 2a and Fig. 2b respectively.

We observe that HRw(6) = (V ′, E3), where V ′ = {v′1 = aababa, v′2 = ababab,
v′3 = bababa, v′4 = ababaa, v′5 = babaab, v′6 = abaaba, v′7 = baabab} and arcs in
E3 is shown in Fig. 3a.

Note thatRw(3) = HRw(3, I), since |V (Rw(3))| = |V (HRw(3, I))| and (u, v) ∈
Fw(4) for both the graphs. So, Fig. 2a is Rw(3). Also, the Rauzy graph of order 6 for
w, Rw(6) = (V ′, E4), where E4 is shown in Fig. 3b
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v1 v2

v3v4

(a) HRw(3, I)

v1 v2

v3v4

(b) HRw(3, II)

Fig. 2: HRw(3)

v′1 v′2

v′3

v′4

v′5
v′6

v′7

(a) HRw(6)

v′1 v′2

v′3

v′4

v′5
v′6

v′7

(b) Rw(6)

Fig. 3: HRw(6) and Rw(6)

Example 3. Let w = (abbaaa)ω be an infinite word. Then the HRR graph of order
7 for an infinite word w has two types of directed graph HRw(7, I) = (V,E1) and
HRw(7, II) = (V,E2), where V : {v1 = abbaaaa , v2 = bbaaaab, v3 = baaaabb,
v4 = aaaabba, v5 = aaabbaa, v6 = aabbaaa} and the arcs in the set E1 and E2 are
shown in Fig. 4a and Fig. 4b respectively.

v1 v2

v5

v6v3

v4

(a) HRw(7, I)

v1 v3

v5
v2

v6 v4

(b) HRw(7, II)

Fig. 4: HRw(7)

In the next section we consider properties of HRR graphs for words of the form xω

when x is a binary primitive word.

4 Properties of Half Range Rauzy graphs
Through out this section, we consider words x ∈ Σ∗ that are primitive over a binary
alphabet Σ = {a, b}, with |x| = n. If x is not primitive, then there exists a primitive
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root u such that x = ui for some i and xω = uω . So, it is enough to consider words of
the form xω when x is primitive.

Example 4. Let x = b4a and w = xω .

w[1, 3] = b3 = w[2, 4], w[3, 5] = b2a, w[4, 6] = bab, w[5, 7] = ab2.

There are only 4 subwords of length 3 in xω i.e, |V (HRw(3))| = 4 < |x|.

We have the following observations.

Lemma 1. For a given w = xω , HRw(k) ' HRw(k) ∀ k ∈ N.

Proof. Let w = xω and w = (xc)ω . A morphism φ : HRw(k)→ HRw(k) is given by
φ(y) = yc, where y ∈ V (HRw(k)). Also the arcs (u, v) ∈ E(HRw(k))⇔ (uc, vc) ∈
E(HRw(k)). Hence φ is an isomorphism and HRw(k) ' HRw(k) for all k ∈ N.

Lemma 2. Let w = xω . If y ∈ c(x), the conjugacy class of x, then HRyω (k) =
HRxω (k).

Proof. Let x = x1x2 · · ·xn be a primitive word and y(i) = xixi+1 · · ·xn+i−1 for
1 ≤ i ≤ n are the conjugates of x. For each w(i) = (y(i))ω for 1 ≤ i ≤ n we have
V (HRw(i)(k)) = {w(1)[1, k], w(1)[2, k + 1], · · · , w(1)[j, k + j − 1]}, 1 ≤ i ≤ n, for
some j ≤ n and hence, HRw(i)(k) = HRw(1)(k), 2 ≤ i ≤ n.

In the following we show that the maximum number of vertices in any HRR graph
of order k is atmost n.

Proposition 1. Letw = xω be an infinite word. Then |V (HRw(k))| ≤ n, in particular
|V (HRw(k))| = n, ∀ k ≥ n− 1.

Proof. We note that |V (HRw(k))| is the number of distinct k-length subwords of xω ,
where x = x1x2 · · ·xn. If a word of length k starting with xi is different from the one
starting with xj for i 6= j for any i, j ≤ n, then there are n distinct subwords of length
k. Thus if for any k, subwords of length k are repeated in the prefix of xω of length
(n+ k − 1), then |V (HRw(k))| < n.

It is well known that for a primitive word x, the number of distinct subwords of
length k in xω is n ∀k ≥ n− 1 and hence |V (HRw(k))| = n, ∀ k ≥ n− 1.

We also count the number of edges any HRw(k, ∗) can have in the following.

Proposition 2. Let w = xω be an infinite word. Then |E(HRw(k, ∗))| = n, ∀ k ≥
2n−1

3 .

Proof. We only prove for the case when k is even. The cases when k is odd is similar.
Each arc e ∈ E(HRw(k)) implies that e ∈ Fw( 3k

2 ). Given k ≥ 2n−1
3 , length of each

arc e is 3k
2 ≥

3
2 ×

2n−1
3 > n − 1. By Proposition 1, there are n distinct subwords of

length 3k
2 , if 3k

2 ≥ n− 1. Hence there are n distinct arcs ∀ k ≥ 2n−1
3 .

In the following we show that there exists no isolated vertices in an HRw(k, ∗)
graph of w = xω .

Proposition 3. Let v ∈ V (HRw(k, ∗)), where w = xω , k ∈ N. Then,

1. degout(v) ≥ 1.
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2. degin(v) ≥ 1.

Proof. In HRw(k), each vertex v ∈ Fw(k) and an arc (u, v) ∈ E(HRw(k)). By
Proposition 1, there are atmost n-vertices

w[1, k], w[2, k + 1], w[3, k + 2], · · · , w[n, k + n− 1].

We only show for the case when k is even as the proof is similar for an odd k.

1. Since x is primitive, the infinite word w has period |x|(= n) and hence

w[ln+ j, k + ln+ j − 1] = w[j, k + j − 1]

for 1 ≤ j ≤ n and l ∈ N. If k is even, then for each vertex u = w[i, k + i− 1],
there always exists a vertex v = w[k2 + i, k + k

2 + i − 1] such that (u, v) ∈
E(HRw(k)). Thus, degout(u) ≥ 1.

2. Let k be even and k ≤ n. For each vertex v = w[j, k + j − 1], 1 ≤ j ≤ k
2 there

exists a vertex u = w[n− k
2 +j, n+ k

2 +(j−1)] such that (u, v) ∈ E(HRw(k)).
Note that since, w is of period n, u = w[n − k

2 + j, n + k
2 + (j − 1)] =

w[n− k
2 + j, n]w[1, k2 + j − 1] and hence (u, v) ∈ E. Similarly, for each vertex

v = w[k2 +j, k+ k
2 +j−1], 1 ≤ j ≤ n− k

2 , there exists a vertex u = w[j, k+j−1]
such that (u, v) ∈ E(HRw(k)). Now, let k ≥ n and k = in+r, i > 0, 0 ≤ r <
n. Then for each vertex v = w[j, k+j−1] there exist a vertex u = w[(in− k

2 +j

mod n), n + k
2 + (j − 1)] such that (u, v) ∈ E(HRw(k)) for 1 ≤ j ≤ k

2 and
similarly for each vertex v = w[k2 + j, k + k

2 + (j − 1)] there exist a vertex
u = w[j, k + (j − 1)] such that (u, v) ∈ E(HRw(k)) for 1 ≤ j ≤ n− k

2 . Thus
degin(v) ≥ 1.

It is clear from Proposition 1 and Proposition 2 that for k ≥ n−1 the corresponding
HRR graph has exactly n vertices and n edges. Thus we have the following corollary.

Corollary 1. Let w = xω . If k ≥ n−1, then for each v ∈ V (HRw(k, ∗)), degin(v) =
degout(v) = 1.

Corollary 2. Let w = xω . If k ≥ n − 1, then each component of HRw(k, ∗) is a
directed cycle with atleast 2 vertices or a self loop.

Proof. By Corollary 1, none of the vertices in HRw(k, ∗) are isolated. If any of its
component is a tree, then there exist atleast two vertices u, v such that degin(u) =
1 = degin(v) and degout(u) = 0 = degout(v), which is a contradiction. If any of its
component contains a cycle along with some more arcs (say (u, v)), then degout(u) >
1 or degin(v) > 1 or both, which is again a contradiction. Hence each component of
HRw(k, ∗) is a directed cycle with atleast 2 vertices or a self loop.

We know that for any w of the form xω , the HRR graph of w has only either a self
loop or a directed cycle with atleast 2 vertices as its components. We investigate the
total number of components in any given graph and the number of such components
that are t-cycles for some t.

Theorem 1. Let w = xω .

1. HRw(2k), HRw(2k+ 1, I) has only self loops ⇐⇒ 2k = rn, where r ∈ 2N.
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2. HRw(2k − 1, II) has only self loops ⇐⇒ 2k = rn > 2, where r ∈ 2N.

Proof. Case 1: n = 1. In HRw(l, ∗) where l ∈ N\{1}, there is only one vertex as a
word of length l. And this vertex has a self loop for all l. As |x| = 1, 2k = r is always
even.

Case 2: n > 1. In HRw(2k), every vertex is an rth power of conjugate y of x. If r
is even, then every vertex yr = y

r
2 y

r
2 has prefix y

r
2 of each vertex is same as suffix y

r
2

of the same vertex.
Conversely, if there are only self loops in HRw(2k). Suppose r is odd, then any

vertex is of the form y
r−1
2 y[1, n2 ]y[n2 + 1, n]y

r−1
2 and y[n2 + 1, n]y

r−1
2 = y

r−1
2 y[1, n2 ]

which impies y[1, n2 ] = y[n2 + 1, n]. This is a contradiction to the fact that y is a
primitive word (as it is conjugate to primitive word x). Hence r must be even.

In HRw(2k − 1, II), every vertex is of the form yr−1y[1, n − 1] where y is the
conjugate of x. If r is even, then every vertex yr−1y[1, n − 1] = y

r
2 y

r
2−1y[1, n − 1]

has the prefix and suffix word of length k − 1 to be the same word y
r
2−1y[1, n− 1].

Conversely, suppose there are only self loops in HRw(2k − 1, II). If r is odd,
then, any vertex is of the form y

r−1
2 y[1, n2 ]y[n2 + 1, n]y

r−3
2 y[1, n − 1] and the suffix

y[n2 + 1, n]y
r−3
2 y[1, n − 1] is same as that of the prefix y

r−1
2 y[1, n2 − 1] of length n

2
(Comparing the prefix words of lengths n

2 ). This is a contradiction to the fact that y is
a primitive word (as it is conjugate to primitive word x). Hence r is even.

The case is similar for HRw(2k + 1, I) and hence we omit the proof.

Let v1v2 · · · vjv1 represent a cycle in HRw(2k). We associate a word to this cycle
as follows:

v1[1, 2k]v2[k + 1, 2k] · · · vj−1[k + 1, 2k]

Here we concatenate only suffix of length k of the vertices v2, · · · , vj−1 as vi[1, k] =
vi−1[k+ 1, 2k] for 2 ≤ i ≤ j− 1. Also vj [1, k] = vj−1[k+ 1, 2k] and vj [k+ 1, 2k] =
v1[1, k]. And the length of the word formed by the cycle v1v2 · · · vjv1 is jk. Similarly,
if u1u2 · · ·uju1 is a cycle in HRw(2k − 1, II), then the word associated to this cycle
is

u1[1, 2k − 1]u2[k, 2k − 1] · · ·uj−1[k, 2k − 1]uj [k, k]

Here we concatenate suffix of length k of the vertices u2, u3, · · · , uj−1 and kth letter
of uj is taken neither in uj [1, k − 1] nor in uj [k + 1, 2k − 1], so we concatenate kth

letter of uj in the last. The length of the word formed by the cycle u1u2 · · ·uju1 is
2k − 1 + (j − 2)k + 1 = kj.

In HRw(2k + 1, I), the word associated with the cycle y1y2 · · · yjy1 is

y1[1, 2k + 1]y2[k + 2, 2k + 1] · · · yj−2[k + 2, 2k + 1]yj−1[k + 2, 2k]

Here we concatenate suffix of length k of the vertices y2, y3, · · · , yj−2. Note that,
yj−2[k+ 2, 2k+ 1] = yj−1[2, k+ 1] and yj [k+ 1, 2k+ 1] = y1[1, k+ 1], so it enough
to consider the subword yj−1[k+2, 2k] of yj−1[k+2, 2k+1] = yj [2, k+1] at last. The
length of the word formed by the cycle y1y2 · · · yjy1 is 2k+1+(j−3)k+(k−1) = kj.

Theorem 2. Let w = xω . If 2 < n < 2k and 2k 6= rn where r ∈ 2N , then
HRw(2k − 1, II), HRw(2k) and HRw(2k + 1, I) have α-components and each
component is a β-cycle, where α = g.c.d (k, n) and β = l.c.m (k,n)

k .
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Proof. By corollary 2, each ofHRw(2k−1, II),HRw(2k),HRw(2k+1, I) contain a
cycle with atleast two vertices or a loop. By Theorem 1, existence of loop is eliminated
and so it contains only cycle with atleast two vertices.

In HRw(2k), choose a vertex v1 (say v1 = w[i, 2k + i − 1]) and it belongs to a
component which is a cycle. Since every vertex is a word of length 2k, the word formed
by a cycle v1v2 · · · vjv1 is v1[1, 2k]v2[k + 1, 2k] · · · vj−1[k + 1, 2k] = w[i, 2k + i −
1]w[2k+ i, 3k+ i− 1] · · ·w[(j− 1)k+ i, jk+ i− 1] = w[i, jk+ i− 1] and the length
of the word formed is jk. As the vertex vj makes an arc with v1, the length of the word
formed by cycle is also a multiple of n since w is of period n.

In HRw(2k − 1, II), choose a vertex u1 (say u1 = w[i, 2k − 1 + (i− 1)]) and it
belongs to a component which is a cycle. Since every vertex is a word of length 2k−1,
the word formed by a cycle u1u2 · · ·uju1 is u1[1, 2k−1]u2[k, 2k−1] · · ·uj−1[k, 2k−
1]uj [k, k] = w[i, 2k − 1 + (i − 1)]w[i + 2k − 1, 3k − 1 + (i − 1)] · · ·w[(j − 1)k +
i − 1, jk − 1 + (i − 1)]wi+jk−1 = w[i, i + jk − 1]. Here kth letter of uj is taken
neither in uj [1, k − 1] nor in uj [k + 1, 2k − 1] and uj [k + 1, 2k − 1] = u1[1, k − 1]
because (vj , v1) is an arc in the cycle. And the length of the word formed by the cycle
u1u2 · · ·uju1 is 2k − 1 + (j − 2)k + 1 = kj. As the vertex uj makes an arc with u1,
the length of the word formed by cycle is also a multiple of n since w is of period n.
Similarly one can show for HRw(2k + 1, I).

Length of the word formed by a cycle is a multiple of k and also a multiple of n in
all the cases. Thus least common multiple of k and n, l.c.m(k, n) is the required length
of the word formed by cycle which starts and ends with a vertex u1 or v1 or y1. Since
we are counting only suffix word of length k in each vertex, we need j = l.c.m(k,n)

k
number of vertices to form a cycle.

We have chosen a vertex arbitrarily and the component containing the vertex is
l.c.m(k,n)

k -cycle. Thus each component in HRw(2k − 1, II), HRw(2k), HRw(2k +

1, I) is a β- cycle, where β = l.c.m (k,n)
k .

Each component in HRw(2k − 1, II), HRw(2k), HRw(2k + 1, I) have β =
l.c.m(k,n)

k vertices, so the number of components in HRw(2k − 1, II), HRw(2k),
HRw(2k + 1, I) is

Total no. of vertices

No. of vertices in each component
=

n
l.c.m(k,n)

k

=
n.k

l.c.m(k, n)
= g.c.d(k, n).

Thus each of HRw(2k − 1, II), HRw(2k), HRw(2k + 1, I) have α-components,
where α = g.c.d(k, n).

Corollary 3. Let w = xω . Then, for 2 < n < 2k and (k, n) = 1, HRw(2k − 1, II),
HRw(2k) and HRw(2k + 1, I) are strongly connected.

Proof. If (k, n) = 1, then HRw(2k) has 1-component and by Theorem 2, it is an n−
cycle. Hence it is strongly connected.

Corollary 4. Let w = xω . If 2 < n < 2k and 2k 6= rn where r ∈ 2N, then

HRw(2k − 1, II) ' HRw(2k) ' HRw(2k + 1, I).

Proof. |V (HRw(2k − 1, II))| = |V (HRw(2k))| = |V (HRw(2k + 1, I))| = n by
Proposition 1. Each component ofHRw(2k− 1, II),HRw(2k),HRw(2k+ 1, I) is a
β-cycle and there are α-components by Theorem 2. Hence they are isomorphic to each
other.
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5 Conclusion
In this paper we define HRR and study several interesting properties of the structure
of graphs that are formed. We consider one particular infinite sequence and study the
properties. However, there are several special sequences that are needed to be analysed.
Pattern avoidance in a set of words over an alphabet is an important combinatorial
problem. A word w over an alphabet contains a pattern l if w contains sequence order-
isomorphic to l. It will be interesting to see this concept and its properties reflected in
HRR. Also one can determine all Wilf-equivalence classes of words patterns of length
t, t ≤ 6. Several problems with in the set of integer composition can be analogously
studied.
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