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We show that the group of smooth homotopy 7-spheres acts freely on the set 
of smooth manifold structures on a topological manifold M which is homotopy 
equivalent to the real projective 7-space. We classify, up to diffeomorphism, all 
closed manifolds homeomorphic to the real projective 7-space. We also show that 
M has, up to diffeomorphism, exactly 28 distinct differentiable structures with the 
same underlying PL structure of M and 56 distinct differentiable structures with 
the same underlying topological structure of M .

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper Mm will be a closed oriented m-manifold and all homeomorphisms and dif-
feomorphisms are assumed to preserve orientation, unless otherwise stated. Let RPn be real projective 
n-space. López de Medrano [10] and C.T.C. Wall [17,18] classified, up to PL homeomorphism, all closed 
PL manifolds homotopy equivalent to RPn when n > 4. This was extended to the topological category by 
Kirby–Siebenmann [9, p. 331]. Four-dimensional surgery [4] extends the homeomorphism classification to 
dimension 4.

In this paper we study up to diffeomorphism all closed manifolds homeomorphic to RP7. Let M be 
a closed smooth manifold homotopy equivalent to RP7. In section 2, we show that if a closed smooth 
manifold N is PL-homeomorphic to M , then there is a unique homotopy 7-sphere Σ7 ∈ Θ7 such that N is 
diffeomorphic to M#Σ7, where Θ7 is the group of smooth homotopy spheres defined by M. Kervaire and 
J. Milnor in [7]. In particular, M has, up to diffeomorphism, exactly 28 distinct differentiable structures 
with the same underlying PL structure of M .
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In section 3, we show that if a closed smooth manifold N is homeomorphic to M , then there is a unique 
homotopy 7-sphere Σ7 ∈ Θ7 such that N is diffeomorphic to either M#Σ7 or M̃#Σ7, where M̃ represents 
the non-zero concordance class of PL-structure on M . We also show that the group of smooth homotopy 
7-spheres Θ7 acts freely on the set of smooth manifold structures on a manifold M .

2. Smooth structures with the same underlying PL structure of a fake real projective space

We recall some terminology from [7]:

Definition 2.1. ([7])

(a) A homotopy m-sphere Σm is a smooth closed manifold homotopy equivalent to the standard unit sphere 
Sm in Rm+1.

(b) A homotopy m-sphere Σm is said to be exotic if it is not diffeomorphic to Sm.
(c) Two homotopy m-spheres Σm

1 and Σm
2 are said to be equivalent if there exists a diffeomorphism f :

Σm
1 → Σm

2 .

The set of equivalence classes of homotopy m-spheres is denoted by Θm. The equivalence class of Σm is 
denoted by [Σm]. M. Kervaire and J. Milnor [7] showed that Θm forms a finite abelian group with group 
operation given by connected sum # except possibly when m = 4 and the zero element represented by the 
equivalence class of Sm.

Definition 2.2. Let M be a closed PL-manifold. Let (N, f) be a pair consisting of a closed PL-manifold N
together with a homotopy equivalence f : N → M . Two such pairs (N1, f1) and (N2, f2) are equivalent 
provided there exists a PL homeomorphism g : N1 → N2 such that f2 ◦ g is homotopic to f1. The set of all 
such equivalence classes is denoted by SPL(M).

Definition 2.3 (Cat = Diff or PL-structure sets). Let M be a closed Cat-manifold. Let (N, f) be a pair 
consisting of a closed Cat-manifold N together with a homeomorphism f : N → M . Two such pairs (N1, f1)
and (N2, f2) are concordant provided there exists a Cat-isomorphism g : N1 → N2 such that the composition 
f2 ◦ g is topologically concordant to f1, i.e., there exists a homeomorphism F : N1 × [0, 1] → M × [0, 1] such 
that F|N1×0 = f1 and F|N1×1 = f2 ◦ g. The set of all such concordance classes is denoted by CCat(M).

We will denote the class in CCat(M) of (N, f) by [N, f ]. The base point of CCat(M) is the equivalence 
class [M, Id] of Id : M → M .

We will also denote the class in CDiff (M) of (Mn#Σn, Id) by [Mn#Σn]. (Note that [Mn#Sn] is the class 
of (Mn, Id).)

Definition 2.4. Let M be a closed PL-manifold. Let (N, f) be a pair consisting of a closed smooth manifold 
N together with a PL-homeomorphism f : N → M . Two such pairs (N1, f1) and (N2, f2) are PL-concordant 
provided there exists a diffeomorphism g : N1 → N2 such that the composition f2 ◦ g is PL-concordant 
to f1, i.e., there exists a PL-homeomorphism F : N1 × [0, 1] → M × [0, 1] such that F|N1×0 = f1 and 
F|N1×1 = f2 ◦ g. The set of all such concordance classes is denoted by CPDiff (M).

Definition 2.5. Let Mm be a closed smooth m-dimensional manifold. The inertia group I(M) ⊂ Θm is 
defined as the set of Σ ∈ Θm for which there exists a diffeomorphism φ : M → M#Σ.

The concordance inertia group Ic(M) is defined as the set of all Σ ∈ I(M) such that M#Σ is concordant 
to M .

The key to analyzing CDiff (M) and CPDiff (M) are the following results.
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Theorem 2.6. (Kirby and Siebenmann, [9, p. 194]) There exists a connected H-space Top/O such that there 
is a bijection between CDiff (M) and [M, Top/O] for any smooth manifold M with dimM ≥ 5. Furthermore, 
the concordance class of given smooth structure of M corresponds to the homotopy class of the constant map 
under this bijection.

Theorem 2.7. (Cairns–Hirsch–Mazur, [6]) Let Mm be a closed smooth manifold of dimension m ≥ 1. Then 
there exists a connected H-space PL/O such that there is a bijection between CPDiff (M) and [M, PL/O]. 
Furthermore, the concordance class of the given smooth structure of M corresponds to the homotopy class 
of the constant map under this bijection.

Theorem 2.8. ([7]) Θ7 ∼= Z28.

We now use the Eells–Kuiper μ invariant [3,15] to study the inertia group of smooth manifolds homo-
topy equivalent to RP7. We recall the definition of the Eells–Kuiper μ invariant in dimension 7. Let M
be a 7-dimensional closed oriented spin smooth manifold such that the 4-th cohomology group H4(M ; R)
vanishes. Since the spin cobordism group ΩSpin

7 is trivial [11], M bounds a compact oriented spin smooth 
manifold N . Then the first Pontrjagin class p1(N) ∈ H4(N, M ; Q) is well-defined. The Eells–Kuiper differ-
ential invariant μ(M) ∈ R/Z of M is given by

μ(M) = p2
1(N)

27 × 7 − Sign(N)
25 × 7 mod(Z),

where p2
1(N) denotes the corresponding Pontrjagin number and Sign(N) is the signature of N .

Theorem 2.9. Let M be a closed smooth spin 7-manifold such that H4(M ; R) = 0. Then the Θ7-action on 
CPDiff (M) of the form M �→ M#Σ is free and transitive. In particular, if N is a closed smooth manifold 
(oriented) PL-homeomorphic to M , then there is a unique homotopy 7-sphere Σ7 ∈ Θ7 such that N is 
(oriented) diffeomorphic to M#Σ7.

Proof. For any degree one map fM : M7 → S7, we have a homomorphism

f∗
M : [S7,PL/O] → [M7,PL/O]

and in terms of the identifications

Θ7 = [S7,PL/O] and CPDiff (M) = [M7,PL/O]

given by Theorem 2.7, f∗
M becomes [Σ] �→ [M#Σ]. Therefore, to show that Θ7 acts freely and transitively 

on CPDiff (M), it is enough to prove that

f∗
M : [S7,PL/O] → [M,PL/O]

is bijective. Let M (6) be the 6-skeleton of a CW-decomposition for M containing just one 7-cell. Such 
a decomposition exists by [16]. Let fM : M → M/M (6) = S7 be the collapsing map. Now consider the 
Barratt–Puppe sequence for the inclusion i : M (6) ↪→ M which induces the exact sequence of abelian groups 
on taking homotopy classes [−, PL/O]

· · · → [SM (6),PL/O]→[S7,PL/O] f∗
M→ [M,PL/O] i∗→ [M (6),PL/O] · · · ,
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where SM is the suspension of M . As PL/O is 6-connected [1,7], it follows that any map from M (6) to 
PL/O is null-homotopic (see [2, Theorem 7.12]). Therefore i∗ : [M, PL/O] → [M (6), PL/O] is the zero 
homomorphism and so f∗

M : [S7, PL/O] → [M, PL/O] is surjective. Since our assumption on M and using 
the additivity of the Eells–Kuiper differential invariant μ with respect to connected sums, if Σ ∈ I(M), 
then

μ(M) = μ(M#Σ) = μ(M) + μ(Σ).

Therefore μ(Σ) = 0 in R/Z would imply that Σ is diffeomorphic to S7, since Eells and Kuiper [3] showed 
that μ(Σ#m

M ) = m
28 , where ΣM is a generator of Θ7, and Θ7 ∼= Z28. Therefore I(M) = 0 and hence the 

homomorphism f∗
M : [S7, PL/O] → [M, PL/O] is injective, proving the first part of the theorem. The second 

part of the theorem follows easily from the first part. �
Remark 2.10. By Theorem 2.9, we can now prove the following.

(i) If a closed smooth manifold M is homotopy equivalent to RP7, then M is a spin manifold with 
H4(M ; R) = 0 and hence I(M) = 0.

(ii) If M is a closed 2-connected 7-manifold such that the group H4(M ; Z) is torsion, then M is a spin 
manifold with H4(M ; R) = 0 and hence I(M) = 0.

Applying Theorem 2.9, we immediately obtain

Corollary 2.11. Let M be a closed smooth manifold homotopy equivalent to RP7. Then M has, up to 
(oriented) diffeomorphism, exactly 28 distinct differentiable structures with the same underlying (oriented) 
PL structure of M .

Remark 2.12. If a closed smooth manifold M is homotopy equivalent to RPn, where n = 5 or 6, then M
has exactly 2 distinct differentiable structures up to diffeomorphism [5,6,8,9].

3. The classification of smooth structures on a fake real projective space

The following theorem was proved in [13, Example 3.5.1] for M = RP7. This proof works verbatim for 
an arbitrary manifold M as in Theorem 3.1.

Theorem 3.1. Let M be a closed smooth manifold homotopy equivalent to RP7. Then there is a closed smooth 
manifold M̃ such that

(i) M̃ is homeomorphic to M .
(ii) M̃ is not (PL homeomorphic) diffeomorphic to M .

Proof. Let jTOP : CPL(M) → [M, TOP/PL] = H3(M ; Z2) be a bijection given by [8,9] and jF : SPL(M) →
[M, F/PL] be the normal invariant map defined by Sullivan, see [12,14]. Then the maps jTOP and jF can 
be included in the commutative diagram

CPL(M)
jTOP

F

[M,TOP/PL]

a∗

SPL(M)
jF

[M,F/PL]
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where F is the obvious forgetful map and a∗ is induced by the natural map a : TOP/PL → F/PL. Consider 
an element [M̃, k] ∈ CPL(M), where M̃ is a closed PL-manifold and k : M̃ → M is a homeomorphism such 
that

jTOP([M̃, k]) 	= 0 ∈ [M,TOP/PL] = H3(M ;Z2) ∼= Z2. (1)

Notice that the Bockstein homomorphism

δ : Z2 = H3(M ;Z2) → H4(M ;Z[2]) = Z2

is an isomorphism, where Z[2] is the subring of Q consisting of all irreducible fractions with denominators 
relatively prime to 2. Hence

δ(jTOP([M̃, k])) 	= 0.

So, by [13, Corollary 3.2.5], a∗(jTOP([M̃, k])) 	= 0. In view of the above commutativity of the diagram,

jF (F([M̃, k])) = a∗(jTOP([M̃, k])),

i.e., jF (F([M̃, k])) 	= 0. This implies that F([M̃, k]) 	= 0. Hence [M̃, k] 	= [M, Id] in SPL(M). On the 
other hand, it follows from the obstruction theory that every orientation-preserving homotopy equivalence 
h : M → M is homotopic to the identity map. This shows that M̃ is not PL homeomorphic to M . By 
an obstruction theory given by [6], every PL-manifold of dimension 7 possesses a compatible differentiable 
structure. This implies that M̃ is smoothable such that M̃ cannot be diffeomorphic to M . This proves the 
theorem. �
Theorem 3.2. Let M be a closed smooth manifold homotopy equivalent to RP7. Then

CDiff (M) =
{

[M#Σ, Id], [M̃#Σ, k ◦ Id] | Σ ∈ Θ7

}
,

where M̃ is the specific closed smooth manifold given by Theorem 3.1 and k : M̃ → M is the homeomorphism 
as in Equation (1). In particular, M has exactly 56 distinct differentiable structures up to concordance.

Proof. Let [N, f ] ∈ CDiff (M), where N is a closed smooth manifold and f : N → M be a homeomorphism. 
Then (N, f) represents an element in

CPL(M) ∼= H3(M ;Z2) = Z2 =
{

[M, Id], [M̃, k]
}
,

where M̃ is the specific closed smooth manifold given by Theorem 3.1 and k : M̃ → M be a homeomorphism 
as in Equation (1). This implies that (N, f) is either equivalent to (M, Id) or (M̃, k) in CPL(M). Suppose 
that (N, f) is equivalent to (M, Id) in CPL(M), then there is a PL-homeomorphism h : N → M such 
that Id ◦ h : N → M is topologically concordant to f : N → M . Now consider a pair (N, h) which 
represents an element in CPDiff (M). By Theorem 2.9, there is a unique homotopy sphere Σ such that (N, h)
is PL-concordant to (M#Σ, Id). Hence there is a diffeomorphism φ : N → M#Σ such that Id ◦φ : N → M

is topologically concordant to h : N → M . Note that Id ◦ h : N → M is topologically concordant to 
f : N → M . This implies that Id ◦φ : N → M is topologically concordant to f : N → M . Therefore, (N, f)
and (M#Σ, Id) represent the same element in CDiff (M).

On the other hand, suppose that (N, f) is equivalent to (M̃, k) in CPL(M). This implies that there is a 
PL-homeomorphism h : N → M̃ such that k ◦ h : N → M is topologically concordant to f : N → M . By 
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using the same argument as above, we have that there is a unique homotopy sphere Σ and a diffeomorphism 
φ : N → M̃#Σ such that

k ◦ Id ◦ φ : N → M̃#Σ → M̃ → M

is topologically concordant to f : N → M . Therefore, (N, f) and (M̃#Σ, k ◦ Id) represent the same element 
in CDiff (M).

Thus, there is a unique homotopy sphere Σ such that (N, f) is either concordant to (M#Σ, Id) or 
(M̃#Σ, k ◦ Id) in CDiff (M). This shows that

CDiff (M) =
{

[M#Σ, Id], [M̃#Σ, k ◦ Id] | Σ ∈ Θ7

}
.

In particular, M has exactly 56 distinct differentiable structures up to concordance. �
Theorem 3.3. Let M be a closed smooth manifold homotopy equivalent to RP7. Then Θ7 acts freely on 
CDiff (M).

Proof. Suppose [N#Σ, f ] = [N, f ] in CDiff (M). Then N#Σ ∼= N . Since by Theorem 3.2, there is a homotopy 
sphere Σ1 such that N ∼= M#Σ1, where M = M or M̃ . This implies that

M#Σ1#Σ−1 ∼= M#Σ1

and hence Σ1#Σ−1#Σ−1
1 ∈ I(M). But, by Remark 2.10(i), I(M) = 0. This shows that Σ1#Σ−1#Σ−1

1
∼= S7. 

Hence Σ ∼= S7. This proves that Θ7 acts freely on CDiff (M). �
Remark 3.4. Let M and M̃ be as in Theorem 3.2. Then Θ7 does not act transitively on CDiff (M), since M
and M̃ are not PL-homeomorphic.

Theorem 3.5. Let M be a closed smooth manifold which is homotopy equivalent to RP7. Then M has 
exactly 56 distinct differentiable structures up to diffeomorphism. Moreover, if N is a closed smooth manifold 
homeomorphic to M , then there is a unique homotopy sphere Σ ∈ Θ7 such that N is either diffeomorphic 
to M#Σ or M̃#Σ, where M̃ is the specific closed smooth manifold given by Theorem 3.1.

Proof. Let N be a closed smooth manifold homeomorphic to M and let f : N → M be a homeomorphism. 
Then (N, f) represents an element in CDiff (M). By Theorem 3.2, there is a unique homotopy sphere Σ ∈ Θ7
such that N is either concordant to (M#Σ, Id) or (M̃#Σ, k◦Id). This implies that N is either diffeomorphic 
to M#Σ or M̃#Σ. By Remark 2.10(i), I(M) = I(M̃) = 0. Therefore there is a unique homotopy sphere 
Σ ∈ Θ7 such that N is either diffeomorphic to M#Σ or M̃#Σ. This implies that M has exactly 56 distinct 
differentiable structures up to diffeomorphism. �
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