

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Smooth structures on a fake real projective space

Ramesh Kasilingam

Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Bangalore, India

ARTICLE INFO

Article history: Received 9 June 2015 Received in revised form 26 March 2016 Accepted 26 March 2016 Available online xxxx

MSC: 57R55 57R50

Keywords: Fake real projective spaces The Eells–Kuiper μ invariant Inertia groups Concordance

ABSTRACT

We show that the group of smooth homotopy 7-spheres acts freely on the set of smooth manifold structures on a topological manifold M which is homotopy equivalent to the real projective 7-space. We classify, up to diffeomorphism, all closed manifolds homeomorphic to the real projective 7-space. We also show that M has, up to diffeomorphism, exactly 28 distinct differentiable structures with the same underlying PL structure of M and 56 distinct differentiable structures with the same underlying topological structure of M.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper M^m will be a closed oriented m-manifold and all homeomorphisms and diffeomorphisms are assumed to preserve orientation, unless otherwise stated. Let $\mathbb{R}\mathbf{P}^n$ be real projective n-space. López de Medrano [10] and C.T.C. Wall [17,18] classified, up to PL homeomorphism, all closed PL manifolds homotopy equivalent to $\mathbb{R}\mathbf{P}^n$ when n > 4. This was extended to the topological category by Kirby-Siebenmann [9, p. 331]. Four-dimensional surgery [4] extends the homeomorphism classification to dimension 4.

In this paper we study up to diffeomorphism all closed manifolds homeomorphic to $\mathbb{R}\mathbf{P}^7$. Let M be a closed smooth manifold homotopy equivalent to $\mathbb{R}\mathbf{P}^7$. In section 2, we show that if a closed smooth manifold N is PL-homeomorphic to M, then there is a unique homotopy 7-sphere $\Sigma^7 \in \Theta_7$ such that N is diffeomorphic to $M \# \Sigma^7$, where Θ_7 is the group of smooth homotopy spheres defined by M. Kervaire and J. Milnor in [7]. In particular, M has, up to diffeomorphism, exactly 28 distinct differentiable structures with the same underlying PL structure of M.

In section 3, we show that if a closed smooth manifold N is homeomorphic to M, then there is a unique homotopy 7-sphere $\Sigma^7 \in \Theta_7$ such that N is diffeomorphic to either $M \# \Sigma^7$ or $\widetilde{M} \# \Sigma^7$, where \widetilde{M} represents the non-zero concordance class of PL-structure on M. We also show that the group of smooth homotopy 7-spheres Θ_7 acts freely on the set of smooth manifold structures on a manifold M.

2. Smooth structures with the same underlying PL structure of a fake real projective space

We recall some terminology from [7]:

Definition 2.1. (7)

- (a) A homotopy m-sphere Σ^m is a smooth closed manifold homotopy equivalent to the standard unit sphere \mathbb{S}^m in \mathbb{R}^{m+1} .
- (b) A homotopy m-sphere Σ^m is said to be exotic if it is not diffeomorphic to \mathbb{S}^m .
- (c) Two homotopy m-spheres Σ_1^m and Σ_2^m are said to be equivalent if there exists a diffeomorphism $f: \Sigma_1^m \to \Sigma_2^m$.

The set of equivalence classes of homotopy m-spheres is denoted by Θ_m . The equivalence class of Σ^m is denoted by $[\Sigma^m]$. M. Kervaire and J. Milnor [7] showed that Θ_m forms a finite abelian group with group operation given by connected sum # except possibly when m=4 and the zero element represented by the equivalence class of \mathbb{S}^m .

Definition 2.2. Let M be a closed PL-manifold. Let (N, f) be a pair consisting of a closed PL-manifold N together with a homotopy equivalence $f: N \to M$. Two such pairs (N_1, f_1) and (N_2, f_2) are equivalent provided there exists a PL homeomorphism $g: N_1 \to N_2$ such that $f_2 \circ g$ is homotopic to f_1 . The set of all such equivalence classes is denoted by $\mathcal{S}^{PL}(M)$.

Definition 2.3 (Cat = Diff or PL-structure sets). Let M be a closed Cat-manifold. Let (N, f) be a pair consisting of a closed Cat-manifold N together with a homeomorphism $f: N \to M$. Two such pairs (N_1, f_1) and (N_2, f_2) are concordant provided there exists a Cat-isomorphism $g: N_1 \to N_2$ such that the composition $f_2 \circ g$ is topologically concordant to f_1 , i.e., there exists a homeomorphism $F: N_1 \times [0, 1] \to M \times [0, 1]$ such that $F_{|N_1 \times 0} = f_1$ and $F_{|N_1 \times 1} = f_2 \circ g$. The set of all such concordance classes is denoted by $\mathcal{C}^{Cat}(M)$.

We will denote the class in $\mathcal{C}^{Cat}(M)$ of (N, f) by [N, f]. The base point of $\mathcal{C}^{Cat}(M)$ is the equivalence class [M, Id] of $Id: M \to M$.

We will also denote the class in $\mathcal{C}^{Diff}(M)$ of $(M^n \# \Sigma^n, \mathrm{Id})$ by $[M^n \# \Sigma^n]$. (Note that $[M^n \# \mathbb{S}^n]$ is the class of (M^n, Id) .)

Definition 2.4. Let M be a closed PL-manifold. Let (N, f) be a pair consisting of a closed smooth manifold N together with a PL-homeomorphism $f: N \to M$. Two such pairs (N_1, f_1) and (N_2, f_2) are PL-concordant provided there exists a diffeomorphism $g: N_1 \to N_2$ such that the composition $f_2 \circ g$ is PL-concordant to f_1 , i.e., there exists a PL-homeomorphism $F: N_1 \times [0,1] \to M \times [0,1]$ such that $F_{|N_1 \times 0} = f_1$ and $F_{|N_1 \times 1} = f_2 \circ g$. The set of all such concordance classes is denoted by $\mathcal{C}^{PDiff}(M)$.

Definition 2.5. Let M^m be a closed smooth m-dimensional manifold. The inertia group $I(M) \subset \Theta_m$ is defined as the set of $\Sigma \in \Theta_m$ for which there exists a diffeomorphism $\phi: M \to M \# \Sigma$.

The concordance inertia group $I_c(M)$ is defined as the set of all $\Sigma \in I(M)$ such that $M \# \Sigma$ is concordant to M.

The key to analyzing $\mathcal{C}^{Diff}(M)$ and $\mathcal{C}^{PDiff}(M)$ are the following results.

Theorem 2.6. (Kirby and Siebenmann, [9, p. 194]) There exists a connected H-space Top/O such that there is a bijection between $C^{Diff}(M)$ and [M, Top/O] for any smooth manifold M with dim $M \geq 5$. Furthermore, the concordance class of given smooth structure of M corresponds to the homotopy class of the constant map under this bijection.

Theorem 2.7. (Cairns–Hirsch–Mazur, [6]) Let M^m be a closed smooth manifold of dimension $m \geq 1$. Then there exists a connected H-space PL/O such that there is a bijection between $C^{PDiff}(M)$ and [M, PL/O]. Furthermore, the concordance class of the given smooth structure of M corresponds to the homotopy class of the constant map under this bijection.

Theorem 2.8. (/7/) $\Theta_7 \cong \mathbb{Z}_{28}$.

We now use the Eells–Kuiper μ invariant [3,15] to study the inertia group of smooth manifolds homotopy equivalent to $\mathbb{R}\mathbf{P}^7$. We recall the definition of the Eells–Kuiper μ invariant in dimension 7. Let M be a 7-dimensional closed oriented spin smooth manifold such that the 4-th cohomology group $H^4(M;\mathbb{R})$ vanishes. Since the spin cobordism group Ω_7^{Spin} is trivial [11], M bounds a compact oriented spin smooth manifold N. Then the first Pontrjagin class $p_1(N) \in H^4(N,M;\mathbb{Q})$ is well-defined. The Eells–Kuiper differential invariant $\mu(M) \in \mathbb{R}/\mathbb{Z}$ of M is given by

$$\mu(M) = \frac{p_1^2(N)}{2^7 \times 7} - \frac{\text{Sign}(N)}{2^5 \times 7} \mod(\mathbb{Z}),$$

where $p_1^2(N)$ denotes the corresponding Pontrjagin number and Sign(N) is the signature of N.

Theorem 2.9. Let M be a closed smooth spin 7-manifold such that $H^4(M; \mathbb{R}) = 0$. Then the Θ_7 -action on $\mathcal{C}^{PDiff}(M)$ of the form $M \mapsto M \# \Sigma$ is free and transitive. In particular, if N is a closed smooth manifold (oriented) PL-homeomorphic to M, then there is a unique homotopy 7-sphere $\Sigma^7 \in \Theta_7$ such that N is (oriented) diffeomorphic to $M \# \Sigma^7$.

Proof. For any degree one map $f_M: M^7 \to \mathbb{S}^7$, we have a homomorphism

$$f_M^*: [\mathbb{S}^7, PL/O] \to [M^7, PL/O]$$

and in terms of the identifications

$$\Theta_7 = [S^7, PL/O]$$
 and $\mathcal{C}^{PDiff}(M) = [M^7, PL/O]$

given by Theorem 2.7, f_M^* becomes $[\Sigma] \mapsto [M \# \Sigma]$. Therefore, to show that Θ_7 acts freely and transitively on $\mathcal{C}^{PDiff}(M)$, it is enough to prove that

$$f_M^*: [\mathbb{S}^7, PL/O] \to [M, PL/O]$$

is bijective. Let $M^{(6)}$ be the 6-skeleton of a CW-decomposition for M containing just one 7-cell. Such a decomposition exists by [16]. Let $f_M: M \to M/M^{(6)} = \mathbb{S}^7$ be the collapsing map. Now consider the Barratt–Puppe sequence for the inclusion $i: M^{(6)} \hookrightarrow M$ which induces the exact sequence of abelian groups on taking homotopy classes [-, PL/O]

$$\cdots \rightarrow [SM^{(6)}, PL/O] \rightarrow [S^7, PL/O] \xrightarrow{f_M^*} [M, PL/O] \xrightarrow{i^*} [M^{(6)}, PL/O] \cdots,$$

where SM is the suspension of M. As PL/O is 6-connected [1,7], it follows that any map from $M^{(6)}$ to PL/O is null-homotopic (see [2, Theorem 7.12]). Therefore $i^*:[M,PL/O]\to[M^{(6)},PL/O]$ is the zero homomorphism and so $f_M^*:[\mathbb{S}^7,PL/O]\to[M,PL/O]$ is surjective. Since our assumption on M and using the additivity of the Eells–Kuiper differential invariant μ with respect to connected sums, if $\Sigma\in I(M)$, then

$$\mu(M) = \mu(M \# \Sigma) = \mu(M) + \mu(\Sigma).$$

Therefore $\mu(\Sigma) = 0$ in \mathbb{R}/\mathbb{Z} would imply that Σ is diffeomorphic to \mathbb{S}^7 , since Eells and Kuiper [3] showed that $\mu(\Sigma_M^{\# m}) = \frac{m}{28}$, where Σ_M is a generator of Θ_7 , and $\Theta_7 \cong \mathbb{Z}_{28}$. Therefore I(M) = 0 and hence the homomorphism $f_M^* : [\mathbb{S}^7, PL/O] \to [M, PL/O]$ is injective, proving the first part of the theorem. The second part of the theorem follows easily from the first part. \square

Remark 2.10. By Theorem 2.9, we can now prove the following.

- (i) If a closed smooth manifold M is homotopy equivalent to $\mathbb{R}\mathbf{P}^7$, then M is a spin manifold with $H^4(M;\mathbb{R})=0$ and hence I(M)=0.
- (ii) If M is a closed 2-connected 7-manifold such that the group $H_4(M; \mathbb{Z})$ is torsion, then M is a spin manifold with $H^4(M; \mathbb{R}) = 0$ and hence I(M) = 0.

Applying Theorem 2.9, we immediately obtain

Corollary 2.11. Let M be a closed smooth manifold homotopy equivalent to $\mathbb{R}\mathbf{P}^7$. Then M has, up to (oriented) diffeomorphism, exactly 28 distinct differentiable structures with the same underlying (oriented) PL structure of M.

Remark 2.12. If a closed smooth manifold M is homotopy equivalent to $\mathbb{R}\mathbf{P}^n$, where n=5 or 6, then M has exactly 2 distinct differentiable structures up to diffeomorphism [5,6,8,9].

3. The classification of smooth structures on a fake real projective space

The following theorem was proved in [13, Example 3.5.1] for $M = \mathbb{R}\mathbf{P}^7$. This proof works verbatim for an arbitrary manifold M as in Theorem 3.1.

Theorem 3.1. Let M be a closed smooth manifold homotopy equivalent to $\mathbb{R}\mathbf{P}^7$. Then there is a closed smooth manifold \widetilde{M} such that

- (i) \widetilde{M} is homeomorphic to M.
- (ii) \widetilde{M} is not (PL homeomorphic) diffeomorphic to M.

Proof. Let $j_{TOP}: \mathcal{C}^{PL}(M) \to [M, TOP/PL] = H^3(M; \mathbb{Z}_2)$ be a bijection given by [8,9] and $j_F: \mathcal{S}^{PL}(M) \to [M, F/PL]$ be the normal invariant map defined by Sullivan, see [12,14]. Then the maps j_{TOP} and j_F can be included in the commutative diagram

$$\begin{array}{cccc} \mathcal{C}^{PL}(M) & \xrightarrow{j_{TOP}} & [M, TOP/PL] \\ & \downarrow & & \downarrow a_* \\ & \mathcal{S}^{PL}(M) & \xrightarrow{j_{E}} & [M, F/PL] \end{array}$$

where \mathcal{F} is the obvious forgetful map and a_* is induced by the natural map $a: TOP/PL \to F/PL$. Consider an element $[\widetilde{M}, k] \in \mathcal{C}^{PL}(M)$, where \widetilde{M} is a closed PL-manifold and $k: \widetilde{M} \to M$ is a homeomorphism such that

$$j_{TOP}([\widetilde{M}, k]) \neq 0 \in [M, TOP/PL] = H^3(M; \mathbb{Z}_2) \cong \mathbb{Z}_2. \tag{1}$$

Notice that the Bockstein homomorphism

$$\delta: \mathbb{Z}_2 = H^3(M; \mathbb{Z}_2) \to H^4(M; \mathbb{Z}[2]) = \mathbb{Z}_2$$

is an isomorphism, where $\mathbb{Z}[2]$ is the subring of \mathbb{Q} consisting of all irreducible fractions with denominators relatively prime to 2. Hence

$$\delta(j_{TOP}([\widetilde{M},k])) \neq 0.$$

So, by [13, Corollary 3.2.5], $a_*(j_{TOP}([\widetilde{M},k])) \neq 0$. In view of the above commutativity of the diagram,

$$j_F(\mathcal{F}([\widetilde{M},k])) = a_*(j_{TOP}([\widetilde{M},k])),$$

i.e., $j_F(\mathcal{F}([\widetilde{M},k])) \neq 0$. This implies that $\mathcal{F}([\widetilde{M},k]) \neq 0$. Hence $[\widetilde{M},k] \neq [M,Id]$ in $\mathcal{S}^{PL}(M)$. On the other hand, it follows from the obstruction theory that every orientation-preserving homotopy equivalence $h: M \to M$ is homotopic to the identity map. This shows that \widetilde{M} is not PL homeomorphic to M. By an obstruction theory given by [6], every PL-manifold of dimension 7 possesses a compatible differentiable structure. This implies that \widetilde{M} is smoothable such that \widetilde{M} cannot be diffeomorphic to M. This proves the theorem. \square

Theorem 3.2. Let M be a closed smooth manifold homotopy equivalent to $\mathbb{R}\mathbf{P}^7$. Then

$$\mathcal{C}^{\mathit{Diff}}(M) = \left\{ [M\#\Sigma, \mathit{Id}], [\widetilde{M}\#\Sigma, k \circ \mathit{Id}] \mid \Sigma \in \Theta_7 \right\},$$

where \widetilde{M} is the specific closed smooth manifold given by Theorem 3.1 and $k:\widetilde{M}\to M$ is the homeomorphism as in Equation (1). In particular, M has exactly 56 distinct differentiable structures up to concordance.

Proof. Let $[N, f] \in \mathcal{C}^{Diff}(M)$, where N is a closed smooth manifold and $f: N \to M$ be a homeomorphism. Then (N, f) represents an element in

$$\mathcal{C}^{PL}(M) \cong H^3(M;\mathbb{Z}_2) = \mathbb{Z}_2 = \left\{ [M, \operatorname{Id}], [\widetilde{M}, k] \right\},$$

where \widetilde{M} is the specific closed smooth manifold given by Theorem 3.1 and $k:\widetilde{M}\to M$ be a homeomorphism as in Equation (1). This implies that (N,f) is either equivalent to (M,Id) or (\widetilde{M},k) in $\mathcal{C}^{PL}(M)$. Suppose that (N,f) is equivalent to (M,Id) in $\mathcal{C}^{PL}(M)$, then there is a PL-homeomorphism $h:N\to M$ such that $Id\circ h:N\to M$ is topologically concordant to $f:N\to M$. Now consider a pair (N,h) which represents an element in $\mathcal{C}^{PDiff}(M)$. By Theorem 2.9, there is a unique homotopy sphere Σ such that (N,h) is PL-concordant to $(M\#\Sigma,Id)$. Hence there is a diffeomorphism $\phi:N\to M\#\Sigma$ such that $Id\circ\phi:N\to M$ is topologically concordant to $f:N\to M$. Note that $Id\circ h:N\to M$ is topologically concordant to $f:N\to M$. This implies that $Id\circ\phi:N\to M$ is topologically concordant to $f:N\to M$. Therefore, (N,f) and $(M\#\Sigma,Id)$ represent the same element in $\mathcal{C}^{Diff}(M)$.

On the other hand, suppose that (N, f) is equivalent to (\widetilde{M}, k) in $\mathcal{C}^{PL}(M)$. This implies that there is a PL-homeomorphism $h: N \to \widetilde{M}$ such that $k \circ h: N \to M$ is topologically concordant to $f: N \to M$. By

using the same argument as above, we have that there is a unique homotopy sphere Σ and a diffeomorphism $\phi: N \to \widetilde{M} \# \Sigma$ such that

$$k \circ Id \circ \phi : N \to \widetilde{M} \# \Sigma \to \widetilde{M} \to M$$

is topologically concordant to $f: N \to M$. Therefore, (N, f) and $(\widetilde{M} \# \Sigma, k \circ Id)$ represent the same element in $\mathcal{C}^{Diff}(M)$.

Thus, there is a unique homotopy sphere Σ such that (N, f) is either concordant to $(M \# \Sigma, Id)$ or $(\widetilde{M} \# \Sigma, k \circ Id)$ in $\mathcal{C}^{Diff}(M)$. This shows that

$$\mathcal{C}^{\mathit{Diff}}(M) = \left\{ [M\#\Sigma, \mathit{Id}], [\widetilde{M}\#\Sigma, k \circ \mathit{Id}] \ | \ \Sigma \in \Theta_7 \right\}.$$

In particular, M has exactly 56 distinct differentiable structures up to concordance. \Box

Theorem 3.3. Let M be a closed smooth manifold homotopy equivalent to $\mathbb{R}\mathbf{P}^7$. Then Θ_7 acts freely on $\mathcal{C}^{Diff}(M)$.

Proof. Suppose $[N\#\Sigma, f] = [N, f]$ in $\mathcal{C}^{Diff}(M)$. Then $N\#\Sigma \cong N$. Since by Theorem 3.2, there is a homotopy sphere Σ_1 such that $N \cong \overline{M}\#\Sigma_1$, where $\overline{M} = M$ or \widetilde{M} . This implies that

$$\overline{M} \# \Sigma_1 \# \Sigma^{-1} \cong \overline{M} \# \Sigma_1$$

and hence $\Sigma_1 \# \Sigma^{-1} \# \Sigma_1^{-1} \in I(\overline{M})$. But, by Remark 2.10(i), $I(\overline{M}) = 0$. This shows that $\Sigma_1 \# \Sigma^{-1} \# \Sigma_1^{-1} \cong \mathbb{S}^7$. Hence $\Sigma \cong \mathbb{S}^7$. This proves that Θ_7 acts freely on $\mathcal{C}^{Diff}(M)$. \square

Remark 3.4. Let M and \widetilde{M} be as in Theorem 3.2. Then Θ_7 does not act transitively on $\mathcal{C}^{Diff}(M)$, since M and \widetilde{M} are not PL-homeomorphic.

Theorem 3.5. Let M be a closed smooth manifold which is homotopy equivalent to $\mathbb{R}\mathbf{P}^7$. Then M has exactly 56 distinct differentiable structures up to diffeomorphism. Moreover, if N is a closed smooth manifold homeomorphic to M, then there is a unique homotopy sphere $\Sigma \in \Theta_7$ such that N is either diffeomorphic to $M\#\Sigma$ or $\widetilde{M}\#\Sigma$, where \widetilde{M} is the specific closed smooth manifold given by Theorem 3.1.

Proof. Let N be a closed smooth manifold homeomorphic to M and let $f: N \to M$ be a homeomorphism. Then (N, f) represents an element in $\mathcal{C}^{Diff}(M)$. By Theorem 3.2, there is a unique homotopy sphere $\Sigma \in \Theta_7$ such that N is either concordant to $(M\#\Sigma, Id)$ or $(\widetilde{M}\#\Sigma, k \circ Id)$. This implies that N is either diffeomorphic to $M\#\Sigma$ or $\widetilde{M}\#\Sigma$. By Remark 2.10(i), $I(M) = I(\widetilde{M}) = 0$. Therefore there is a unique homotopy sphere $\Sigma \in \Theta_7$ such that N is either diffeomorphic to $M\#\Sigma$ or $\widetilde{M}\#\Sigma$. This implies that M has exactly 56 distinct differentiable structures up to diffeomorphism. \square

References

- [1] J. Cerf, Sur les difféomorphismes de la sphére de dimension trois ($\Gamma_4=0$), Lecture Notes in Mathematics, vol. 53, Springer-Verlag, Berlin–New York, 1968.
- [2] J.F. Davis, P. Kirk, Lecture Notes in Algebraic Topology, Graduate Studies in Mathematics, vol. 35, American Mathematical Society, 2001.
- [3] J. Eells, N.H. Kuiper, An invariant for certain smooth manifolds, Ann. Mat. Pura Appl. 60 (1962) 93-110.
- [4] M.H. Freedman, F. Quinn, Topology of 4-Manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990.
- [5] M.W. Hirsch, Obstruction theories for smoothing manifolds and maps, Bull. Amer. Math. Soc. 69 (1963) 352–356.
- [6] M.W. Hirsch, B. Mazur, Smoothings of Piecewise Linear Manifolds, Annals of Mathematics Studies, vol. 80, Princeton University Press/University of Tokyo Press, Princeton, NJ/Tokyo, 1974.

- [7] M.A. Kervaire, J.W. Milnor, Groups of homotopy spheres, I, Ann. of Math. 77 (2) (1963) 504-537.
- [8] R.C. Kirby, L.C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969) 742–749.
- [9] R.C. Kirby, L.C. Siebenmann, Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, with Notes by John Milnor and Michael Atiyah, Annals of Mathematics Studies, vol. 88, Princeton University Press/University of Tokyo Press, Princeton, NJ/Tokyo, 1977.
- [10] S. López de Medrano, Involutions on Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 59, Springer-Verlag, New York, 1971.
- [11] J. Milnor, Spin structures on manifolds, Enseign. Math. (2) 9 (1963) 198–203.
- [12] A. Ranicki, The Hauptvermutung Book, Kluwer, 1996.
- [13] Yuli B. Rudyak, Piecewise Linear Structure on Topological Manifolds, World Scientific, New Jersey, 2016.
- [14] D. Sullivan, On the Hauptvermutung for manifolds, Bull. Amer. Math. Soc. 73 (1967) 598-600.
- [15] Z. Tang, W. Zhang, η -invariant and a problem of Bérard–Bergery on the existence of closed geodesics, arXiv:1302.2792, 2013
- [16] C.T.C. Wall, Poincaré complexes I, Ann. of Math. (2) 86 (1967) 213–245.
- [17] C.T.C. Wall, Free piecewise linear involutions on spheres, Bull. Amer. Math. Soc. 74 (1968) 554-558.
- [18] C.T.C. Wall, Surgery on Compact Manifolds, second edition, Mathematical Surveys and Monographs, vol. 69, American Mathematical Society, Providence, RI, 1999, Edited and with a foreword by A.A. Ranicki.