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Abstract. We introduce and study a new class of homotopy spheres called Farrell–Jones
spheres. Using Farrell–Jones sphere we construct examples of closed negatively curved
manifolds M 2n, where n D 7 or 8, which are homeomorphic but not diffeomorphic to
complex hyperbolic manifolds, thereby giving a partial answer to a question raised by
C. S. Aravinda and F. T. Farrell. We show that every exotic sphere not bounding a spin
manifold (Hitchin sphere) is a Farrell–Jones sphere. We also discuss the relationship be-
tween inertia groups of CPn and Farrell–Jones spheres.
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1 Introduction

Let ‚m be the group of homotopy spheres defined by M. Kervaire and J. Milnor
in [15].

Definition 1.1. We call †2n 2 ‚2n .n � 4/ a Farrell–Jones sphere if CPn #†2n

is not concordant to CPn.

The following theorem gives an equivalent definition of Farrell–Jones spheres,
which we prove in Section 3:

Theorem 1.2. Let†2n be an exotic sphere in‚2n (n � 4). Then†2n is a Farrell–
Jones sphere if and only if CPn #†2n is not diffeomorphic to CPn.

By [10, Lemma 3.17], there exists a Farrell–Jones sphere †m 2 ‚m for all
m D 8nC 2 (n � 1) and form D 8. Also we prove the following theorem in Sec-
tion 3:

Theorem 1.3. The non-zero element of ‚2n Š Z2 (n D 7 or 8) is a Farrell–Jones
sphere.
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The study of Farrell–Jones spheres is motivated by the following result, which
is a slight modification of [10, Theorem 3.20]:

Theorem 1.4. Let M 2n be any closed complex hyperbolic manifold of complex
dimension n. Let †2n 2 ‚2n be a Farrell–Jones sphere. Given a positive real
number �, there exists a finite sheeted cover N 2n of M 2n such that the following
is true for any finite sheeted cover N 2n of N 2n.

(i) The smooth manifold N 2n is not diffeomorphic to N 2n #†2n.

(ii) The connected sumN 2n#†2n supports a negatively curved Riemannian met-
ric whose sectional curvatures all lie in the closed interval Œ�4 � �;�1C ��.

The proof of the above Theorem 1.4 follows from [10, Corollary 3.14 and
Proposition 3.19]. By using Theorem 1.3 and Theorem 1.4, we also construct
in Section 2 examples of closed negatively curved manifolds M 2n, where n D 7
or 8, which are homeomorphic but not diffeomorphic to complex hyperbolic man-
ifolds, thereby giving a partial answer to a question raised by C. S. Aravinda
and F. T. Farrell [5].

Another source for Farrell–Jones spheres is the class of the so-called Hitchin
spheres. In [12], Hitchin showed that if † is a homotopy sphere with a metric
of positive scalar curvature, then ˛.†/ D 0, where ˛ W �spin

� ! KO� is the ring
homomorphism which associates to a spin bordism class the KO-valued index of
the Dirac operator of a representative spin manifold. The following definition can
be found in [19, Remark 3.4]:

Definition 1.5. An exotic sphere †m 2 ‚m .m � 1/ is called a Hitchin sphere
if ˛.†m/ ¤ 0.

We prove the following theorem in Section 3:

Theorem 1.6. Every Hitchin .8nC 2/-sphere (n � 1) is a Farrell–Jones sphere.

Recall that the collection of homotopy spheres which admit an orientation
preserving diffeomorphism M !M #† form the inertia group of M , denoted
by I.M/. There is a canonical topological identification � WM !M #† which is
the identity outside of the attaching region; the subset of the inertia group consist-
ing of homotopy spheres that admit a diffeomorphism homotopic to � is called the
homotopy inertia group Ih.M/. Similarly, the concordance inertia group of Mm,
Ic.M

m/ � ‚m, consists of those homotopy spheres†m such thatM andM #†m

are concordant. By Theorem 1.2, we have that †2n is a Farrell–Jones sphere iff
†2n … I.CPn/ iff †2n … Ic.CPn/ iff †2n … Ih.CPn/. In Section 4, we discuss
the group I.CP4nC1/.
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2 Exotic smooth structures on complex hyperbolic manifolds

The negatively curved Riemannian symmetric spaces are of four types: RHn,
CHn, HHn and OH2, where R, C, H, O denote the real, complex, quaternion and
Cayley numbers, i.e., the four division algebras K over the real numbers whose di-
mensions over R are d D 1, 2, 4 and 8 respectively. A Riemannian manifoldM dn

is called a real, complex, quarternionic or Cayley hyperbolic manifold provided
its universal cover is isometric to RHn, CHn, HHn and OH2, respectively. (Note
that we need to consider only the cases n � 2 and when K D O, n D 2.)

In [5, p. 2], C. S. Aravinda and F. T. Farrell ask the following:

Question 2.1. For each division algebra K over the reals and each integer n � 2
(n D 2 when K D O), does there exist a closed negatively curved Riemannian
manifold M dn(where d D dimR K) which is homeomorphic but not diffeomor-
phic to a K-hyperbolic manifold.

Remark 2.2. For K D R and n D 2, 3, this is impossible since homeomorphism
implies diffeomorphism in these dimensions [17]. Also when K D R, it was shown
in [11] that the answer is yes provided n � 6. When K D C, it was shown in [10]
that the answer is yes for n D 4mC 1 for any integerm � 1 and for n D 4. When
K D H, the answer is yes for n D 2, 4 and 5, see [5]. The answer to this question
is yes for K D O by [4] since only one dimension needs to be considered in this
case. In this section, we consider the case K D C and show that the answer is yes
for n D 7; 8.

Since Borel [6] has constructed closed complex hyperbolic manifolds in every
complex dimension m � 1 and by Theorem 1.3 and Theorem 1.4, we have the
following result:

Theorem 2.3. Let n be either 7 or 8. Given any positive number � 2 R, there
exists a pair of closed negatively curved Riemannian manifolds M and N having
the following properties:

(i) M is a complex n-dimensional hyperbolic manifold.

(ii) The sectional curvatures of N are all in the interval Œ�4 � �;�1C ��.

(iii) The manifolds M and N are homeomorphic but not diffeomorphic.

3 Farrell–Jones spheres and Hitchin sphere

In this section, we give proofs of the Theorems 1.2, 1.3 and 1.6.

Authenticated | rameshk@math.iitb.ac.in author's copy
Download Date | 2/3/16 7:47 AM



3008 K. Ramesh

Definition 3.1. Let M be a topological manifold. Let .N; f / be a pair consist-
ing of a smooth manifold N together with a homeomorphism f W N !M . Two
such pairs .N1; f1/ and .N2; f2/ are concordant provided there exists a diffeomor-
phism g W N1 ! N2 such that the composition f2 ı g is topologically concordant
to f1, i.e., there exists a homeomorphism F W N1 � Œ0; 1�!M � Œ0; 1� such that
FjN1�0 D f1 and FjN1�1 D f2 ı g. The set of all such concordance classes is de-
noted by C.M/.

We recall some terminology from [15]:

Definition 3.2. (a) A homotopy m-sphere †m is an oriented smooth closed man-
ifold homotopy equivalent to Sm.

(b) A homotopym-sphere†m is said to be exotic if it is not diffeomorphic to Sm.

(c) Two homotopy m-spheres †m1 and †m2 are said to be equivalent if there exists
an orientation preserving diffeomorphism f W †m1 ! †m2 .

The set of equivalence classes of homotopy m-spheres is denoted by ‚m. The
equivalence class of †m is denoted by [†m]. When m � 5, ‚m forms an abelian
group with group operation given by the connected sum # and the zero element
represented by the equivalence class of the round sphere Sm. M. Kervaire and
J. Milnor [15] showed that each ‚m is a finite group; in particular, ‚8, ‚14 and
‚16 are cyclic groups of order 2,‚10 and‚20 are cyclic groups of order 6 and 24
respectively and ‚18 is a group of order 16.

Start by noting that there is a homeomorphism h WM n #†n !M n (n � 5)
which is the inclusion map outside of the homotopy sphere †n and well de-
fined up to topological concordance. We will denote the class of .M n #†n; h/
in C.M/ by ŒM n #†n�. (Note that ŒM n # Sn� is the class of .M n; idMn/.) Let
fM WM

n ! Sn be a degree one map. Note that fM is well defined up to homo-
topy. Composition with fM defines a homomorphism

f �M W ŒS
n;Top=O�! ŒM n;Top=O�;

and in terms of the identifications

‚n D ŒS
n;Top=O� and C.M n/ D ŒM n;Top=O�

given by [16, p. 25 and p. 194], f �M becomes Œ†m� 7! ŒMm #†m�.

Definition 3.3. If M is homotopy equivalent to CPn, we will call a generator
of H 2.M IZ/ a c-orientation of M .
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Hereafter g denotes the conjugation map

.z0; z1; z2; z3; z4; : : : ; zn/ 7! . Nz0; Nz1; Nz2; Nz3; Nz4; : : : ; Nzn/

(the complex conjugation) induces the diffeomorphism g W CPn ! CPn such
that g�.c1/ D �c1 where c1 is the c-orientation of CPn.

Proof of Theorem 1.2. Assume that †2n is a Farrell–Jones sphere. Suppose CPn

and CPn #†2n are diffeomorphic. If f W CPn #†2n ! CPn is a diffeomor-
phism, then f induces an isomorphism on cohomology

f � W H�.CPn;Z/! H�.CPn #†2n;Z/

such that f �.c1/ D ˙c2, where c1, c2 are c-orientations of CPn, CPn#†2n re-
spectively. If f �.c1/ D c2, then f is a c-orientation preserving diffeomorphism.
If f �.c1/ D �c2, then g ı f is a c-orientation preserving diffeomorphism, where
g W CPn ! CPn is the conjugation map. In both cases, we have that CPn #†2n

is c-orientation diffeomorphic to CPn. By [18, Corollary 3, p. 97], CPn #†2n is
concordant to CPn. This is a contradiction since †2n is a Farrell–Jones sphere.
Thus CPn#†2n and CPn are not diffeomorphic. Conversely, suppose CPn#†2n

and CPn are not diffeomorphic. Then, by [18, Corollary 3, p. 97], CPn #†2n is
not concordant to CPn. This shows that †2n is a Farrell–Jones sphere. This com-
pletes the proof of Theorem 1.2.

Proof of Theorem 1.3. Let †2n be the generator of ‚2n (with n D 7 or 8). Sup-
pose †2n is not a Farrell–Jones sphere. Then CPn #†2n is concordant to CPn.
By [18, Corollary 3, p. 97], CPn #†2n is c-orientation diffeomorphic to CPn. Let
f W CPn#†2n ! CPn be a c-orientation diffeomorphism such that f �.c1/D c2,
where c1 and c2 are c-orientations of CPn and CPn #†2n respectively. Using
properties of the cup product, we have f �.cn1 / D c

n
2 . If c1 D c2 in H 2.CPn;Z/,

then f is an orientation preserving diffeomorphism. If c1 ¤ c2 in H 2.CPn;Z/,
then g ı f is an orientation preserving diffeomorphism with the property that
.g ı f /�.c1/ D f

�.g�.c1// D �c2 D c1, where g W CPn ! CPn is the conju-
gation map. In both cases, we have that CPn #†2n is an orientation preserv-
ing diffeomorphic to CPn. This is a contradiction because, by [13, Theorem 1],
CPn #†2n cannot be orientation preserving diffeomorphic to CPn. Thus †2n is
a Farrell–Jones sphere. This completes the proof of Theorem 1.3.

Recall that the ˛-invariant is the ring homomorphism ˛ W �
spin
� ! KO� which

associates to a spin bordism class the KO-valued index of the Dirac operator of
a representative spin manifold. We also write ˛ for the corresponding invariant on
a framed bordism:

˛ W �
f
� ! �

spin
� ! KO�
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Under the Pontryagin–Thom isomorphism �
f
� Š �

s
�, the ˛-invariant has the

following interpretation as Adams d -invariant dR W �
s
r ! KO�, which was used

already in [12, p. 44] and [9, Lemma 2.12].

Lemma 3.4. Under the Pontryagin–Thom isomorphism�f� Š �s�, the ˛-invariant
˛ W �

f
8nC2 ! KO8nC2 may be identified with dR W �

s
8nC2 ! KO8nC2.

We start by recalling some facts from smoothing theory [7], which were used
already in [10, Lemma 3.17]. There are H -spaces SF , F=O and Top=O and
H -space maps � W SF ! F=O ,  W Top=O ! F=O such that

 � W ‚8nC2 D �8nC2.Top=O/! �8nC2.F=O/ (3.1)

is an isomorphism for n � 1. The homotopy groups of SF are the stable homotopy
groups of spheres �sm, i.e., �m.SF / D �sm for m � 1. For n � 1,

�� W �
s
8nC2 ! �8nC2.F=O/ (3.2)

is an isomorphism. Since every homotopy sphere has a unique spin-structure, we
obtain the ˛-invariant on �s8nC2 Š �8nC2.F=O/ Š ‚8nC2:

˛ W �s8nC2
��
���! �8nC2.F=O/

 �1
�
���! ‚8nC2 ���! �

spin
8nC2 ���! KO8nC2;

where  � and �� are the isomorphisms as in equation (3.1) and (3.2) respectively.
Let Ker.dR/ denote the kernel of the Adams d -invariant dR W �

s
8nC2 ! Z2.

By Lemma 3.4, Ker.dR/ consists of framed manifolds which bound spin mani-
folds.

Proof of Theorem 1.6. Consider the following commutative of diagram:

ŒS2m;Top=O� D ‚2m
f �CPm

//

 �
��

ŒCPm;Top=O� D C.CPm/

 �
��

ŒS2m; F=O�
f �CPm

// ŒCPm; F=O�

ŒS2m; SF � D �s2m
f �CPm

//

��

OO

ŒCPm; SF �.

��

OO

(3.3)

In this diagram, �� and  � are induced by theH -space maps � W SF ! F=O and
 W Top=O ! F=O respectively and the homomorphism

�� W ŒCPm; SF �! ŒCPm; F=O�
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is monic for all m � 1 by a result of Brumfiel [8, p. 77]. Recall that the concor-
dance class ŒCPm #†� 2 ŒCPm;Top=O� of CPm #† is f �CPm.Œ†�/whenm > 2

and that ŒCPm� D ŒCPm # S2m� is the zero element of this group.
Let †8nC2 2 ‚8nC2 be a Hitchin .8nC 2/-sphere (with n � 1) and further let

� 2 �s8nC2 D ŒS
8nC2; SF � be such that

 �1� .��.�// D †
8nC2:

Recall that ŒX; SF � can be identified with the 0th stable cohomotopy group �0.X/.
Let h W SqC8nC2 ! Sq represent �. Since†8nC2 is a Hitchin sphere and by Lem-
ma 3.4, we have

0 ¤ ˛.†8nC2/ D dR.h/ D h
�
2 Hom.eKOq.Sq/;eKOq.SqC8nC2//:

Also Adams and Walker [2] showed that †qfCP4nC1 W †qCP4nC1 ! SqC8nC2

induces a monomorphism on eKOq. � /. Consequently the composite map

h ı†qfCP4nC1 W †qCP4nC1 ! Sq

induces a non-zero homomorphism on eKOq. � /. This shows that

f �CP4nC1.�/ D Œh ı†
qfCP4nC1 � ¤ 0;

where
f �CP4nC1 W ŒS

8nC2; SF �! ŒCP4nC1; SF �:

Since the homomorphism �� W ŒCPm; SF �! ŒCPm; F=O� is monic, by the com-
mutative diagram (3.3) where m D 4nC 1, we have

 �.f
�

CP4nC1.†
8nC2// D ��.f

�

CP4nC1.�// ¤ 0:

This implies that
f �CP4nC1.†

8nC2/ ¤ 0

and hence CP4nC1#†8nC2 is not concordant to CP4nC1. This shows that†8nC2

is a Farrell–Jones sphere and this completes the proof of Theorem 1.6.

Remark 3.5. (1) Let us note that the homotopy sphere †8nC2 (n � 1) given
by [10, Lemma 3.17] is the image of the Adams element �8nC2 of order 2 under
the composed isomorphism  �1� ı ��, where  � and �� are the isomorphisms as
in equations (3.1) and (3.2) respectively (see [10, equation (3.17.4)]). By [1, The-
orem 1.2] and Lemma 3.4, we have

dR.�8nC2/ D ˛.†
8nC2/ D 1:

This shows that †8nC2 is a Hitchin sphere of order 2 in ‚8nC2. By Theorem 1.6,
†8nC2 is a Farrell–Jones sphere.
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(2) Since ‚18 Š Ker.˛/˚ Z2, where the ˛-invariant ˛ W ‚18 ! Z2 satisfies
Ker.˛/ D Z8 (see [9, p. 12]), this shows that there are exotic spheres of order¤ 2
in‚18 which are not in the kernel of ˛. This implies that there are Hitchin spheres
of order¤ 2 in ‚18 which are all Farrell–Jones sphere by Theorem 1.6.

(3) In [3], Anderson, Brown and Peterson proved that one has ˛.†m/ ¤ 0 iff
m D 8k C 1 or 8k C 2 iff †m is an exotic sphere not bounding a spin mani-
fold, where ˛ W ‚m ! �

spin
m ! KOm is the ˛-invariant. This implies that †m is

a Hitchin sphere in‚m iff†m is an exotic sphere not bounding a spin manifold. By
Theorem 1.6, every exotic sphere not bounding a spin manifold †8nC2 in ‚8nC2
is a Farrell–Jones sphere.

(4) By [1, Theorem 7.2],‚10 Š Ker.dR/˚Z2 such that Ker.dR/ D Z3. If†10

is a generator of Ker.dR/, then dR.†
10/ D ˛.†10/ D 0. This shows that †10 is

not a Hitchin sphere. But, by [10, Lemma 3.17], †10 is a Farrell–Jones sphere.

4 The inertia groups of complex projective spaces

In this section, we discuss the relationship between inertia groups of CPn and
Farrell–Jones spheres.

Definition 4.1. Let Mm be a closed smooth, oriented m-dimensional manifold.
Let† 2 ‚m and g W Sm�1 ! Sm�1 be an orientation preserving diffeomorphism
corresponding to†. WritingM #† as .Mmnint.Dm//[g Dm, let � WM !M #†
denote the PL homeomorphism defined by �jMnint.Dm/ D id and �jDm D Cg, where
Cg W Dm ! Dm is the cone extension of g.

The inertia group I.M/ � ‚m is defined as the set of † 2 ‚m for which there
exists an orientation preserving diffeomorphism � WM !M #†.

Define the homotopy inertia group Ih.M/ to be the set of all † 2 I.M/ such
that there exists a diffeomorphism M !M #† which is homotopic to �.

Define the concordance inertia group Ic.M/ to be the set of all † 2 Ih.M/

such that M #† is concordant to M . Clearly, Ic.M/ � Ih.M/ � I.M/.

Note that for M D CPn, Theorem 1.2 can be restated as:

Theorem 4.2. A sphere †2n 2 ‚2n is a Farrell–Jones sphere iff †2n … I.CPn/.

Remark 4.3. Since Ic.CPn/ � Ih.CPn/ � I.CPn/ and by Theorem 4.2, we
have that

Ic.CPn/ D Ih.CPn/ D I.CPn/:

The proof of Theorem 1.6 leads one to the following question.
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Question 4.4. Let f W CP4nC1 ! S8nC2 be any degree one map .n � 1/. Does
there exist an element � 2 Ker.dR/ � �

s
8nC2 D ‚8nC2 such that the following is

true?

(?) If any map h W SqC8nC2 ! Sq represents �, then

h ı†qf W †qCP4nC1 ! Sq

is not null homotopic.

Remark 4.5. (1) By [14, Lemma 9.1], I.CP4nC1/ � Ker.dR/. If the answer to
Question 4.4 is yes, then we have I.CP4nC1/ ¤ Ker.dR/, i.e., there exists an ex-
otic sphere † bounding spin manifold in ‚8nC2 such that † … I.CP4nC1/. This
can be seen as follows: Let � 2 Ker.dR/ and let h W SqC8nC2 ! Sq represent �
such that h ı†qf W †qCP4nC1 ! Sq is not null homotopic. This implies that

f �CP4nC1.h/ D Œh ı†
qfCP4nC1 � ¤ 0;

where f �
CP4nC1 W �

0.S8nC2/! �0.CP4nC1/. A similar argument given in the
proof of Theorem 1.6 using the commutative diagram (3.3) shows that there ex-
ists an exotic sphere† 2 ‚8nC2 such that  �1� ı ��.�/ D †, dR.�/ D ˛.†/ D 0

and CP4nC1 #† is not concordant to CP4nC1, where  � and �� are the isomor-
phisms as in (3.1) and (3.2) respectively. This implies that † is a Farrell–Jones
sphere such that † 2 Ker.dR/. By Theorem 4.2, I.CP4nC1/ ¤ Ker.dR/.

(2) If all non-zero elements in Ker.dR/ satisfy the condition (?) in Question 4.4,
then, by the above remark (1),† … I.CP4nC1/ for all exotic sphere† 2 Ker.dR/

and hence I.CP4nC1/ D 0.

Theorem 4.6. Let n be a positive integer such that ‚8nC2 is a cyclic group of
order 2. Then I.CP4nC1/ D 0.

Proof. Let †8nC2 be the generator of ‚8nC2 Š Z2. Let

 � W ‚8nC2 ! �8nC2.F=O/ and �� W �
s
8nC2 ! �8nC2.F=O/

be the isomorphisms as in (3.1) and (3.2). By [1, Theorem 1.2], there exists an
element �8nC2 of order 2 in �s8nC2. This shows that

��1� ı  �.†
8nC2/ D �8nC2:

By [1, Theorem 1.2] and Lemma 3.4, dR.�8nC2/ D ˛.†
8nC2/ D 1. This implies

that †8nC2 is a Hitchin sphere. By Theorems 1.6 and 1.2, CP4nC1 #†8nC2 is
not diffeomorphic to CP4nC1. This implies that I.CP4nC1/ D 0.
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