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Abstract

This is a survey on known results and open problems about Smooth and PL-Rigidity Problem for negatively
curved locally symmetric spaces. We also review some developments about studying the basic topological
properties of the space of negatively curved Riemannian metrics and the Teichmuller space of negatively
curved metrics on a manifold.
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1. Introduction

A fundamental problem in geometry and topology is the following:

Problem 1.1. Let f : N → M denote a homotopy equivalence between two closed Riemannian manifolds.
Is f homotopic to a diffeomorphism, a PL-homeomorphism or a homeomorphism?

In an earlier article [99], we discussed Problem 1.1 for topological rigidity. In this paper, we review the status
of the above problem 1.1 for closed locally symmetric spaces of noncompact type, its recent developments
and many related interesting open question. We also discuss the constructions of counterexamples to
smooth and PL-rigidity Problem 1.1 for negatively curved locally symmetric spaces given by [40, 43, 44, 94,
47, 48, 92, 3, 4, 100].

Here is an outline of the material: In section 2, we give the notation and state the basic definitions and
results that will be used throughout the paper. In section 3, we review smooth and PL-rigidity problem 1.1
for closed real hyperbolic manifolds. We also discuss the constructions of examples given by [40, 94], which
provide counterexamples to the smooth (topological) Lawson-Yau Conjecture and the smooth analogue of
Borel’s Conjecture. Lawson and Yau conjecture states that if M and N are closed negatively curved such
that π1(M) � π1(N), then M is CAT(Diff, PL or Top)-isomorphic to N. Roughly speaking the manifold N in
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the above counterexample will be M#Σ, where Σ is an exotic sphere and M is a stably parallelizable, real
hyperbolic manifold (with m ≥ 5) and having sufficiently large injectivity radius [40]. Such manifold M
exists due to Sullivan, building on joint work with Pierre Deligne [106].

In section 4, we review smooth rigidity problem 1.1 for finite volume but non-compact real hyperbolic
manifolds and closed complex hyperbolic manifolds. We also discuss examples of negatively curved
Riemannian manifolds, which are homeomorphic but not diffeomorphic to finite volume real [40], or
closed complex [44, 100] hyperbolic manifolds. A possible way to change smooth structure on a smooth
manifold Mn, without changing its homeomorphism type, is to take its connected sum Mn#Σn with a
homotopy sphere Σn. A surprising observation reported in [43] is that connected sums can never change
the smooth structure on a connected, noncompact smooth manifold. Farrell and Jones used a different
method in [43], which can sometimes change the smooth structure on a noncompact manifold Mn. The
method is to remove an embedded tube S1

×Dn−1 from Mn and then reinsert it with a ”twist”. The problem
1.1 for closed complex hyperbolic manifolds is considered in [44] and was solved by using connected sums
method. Here we give the outline of these constructions.

In section 5, we discuss series of examples of exotic smooth structures on compact locally symmetric spaces
of noncompact type given by [92]. The examples are obtained by taking the connected sum with an exotic
sphere. To detect the change of the smooth structure Boris Okun [92] used a tangential map from the locally
symmetric space to its dual compact type symmetric space. This method was subsequently used by C.S.
Aravinda and F.T. Farrell [3, 4] in their construction of exotic smooth structures on certain quaternionic
and Cayley hyperbolic manifolds supporting metrics of strict negative curvature. Here we discuss how
we can look at the problem of detecting when Mn#Σn and Mn are not diffeomorphic, where M is a closed
locally symmetric space of noncompact type is essentially reduced to look at the problem of detecting
exotic structure on the dual symmetric space Mu of M. We also discuss how to recover exotic smoothings
of Farrell-Jones-Aravinda [40, 44, 3, 4] from Okun results [92].

LetMET sec<0(M) is the space of all Riemannian metrics on Mn that have all sectional curvatures less that
0 and T (M) and T ε(M) are the Teichmuller space of metric and ε-pinched negatively curved metrics on M
respectively. Msec<0(M) is the moduli space of negatively curved metrics on M.

In section 6, we want to study the space of negatively curved metrics and geometries. We also discuss the
following problems [53, 54].

• Is the spaceMET sec<0(M) path connected ?

• Is (each path component of ) the spaceMET sec<0(M) path connected ?

• Is πk(MET sec<0) trivial?

• Is the inclusion T ε(M) 7→ T (M) null homotopic ?

• Is the map πk(MET sec<0(M)) −→ πk(Msec<0(M)) non-zero?

• Is the map H̃k(MET sec<0(M)) −→ H̃k(Msec<0(M)) non-zero?

In section 7, we review many interesting open problems along this direction.

2. Basic definitions and results

In this section, we review some basic definitions, results and notation to be used throughout the article.

We write Diff for the category of smooth manifolds, PL for the category of piecewise-linear manifolds, and
Top for the category of topological manifolds. We generically write CAT for any one of these geometric
categories.
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LetK = R,C,H orO denote the real, complex, quaternion and Cayley numbers, viz., four division algebras
K over the real numbers whose dimensions over R are d = 1, 2, 4 and 8. For every prime p, the ring of
integers modulo p is a finite field of order p and is denotedZp. Let I = [0, 1] be the closed interval inR. Rn is
n-dimensional Euclidean space,Dn is the unit disk, Sn is the unit sphere, Σ1 is the closed orientable surface
of genus 1 and Tn = S1

×S1
× ....×S1 (n-factors) is n-dimensional torus with its natural smooth structures and

orientation. Let Hn = {(x1, x2, ..., xn) ∈ Rn : x1 ≥ 0}, Cn be the n-dimensional complex space, andHn be the
n-dimensional quaternionic space. Let Aut(G) denotes the group of automorphisms of group G and Out(G)
be the group of outer automorphisms of group G. Let Top(X) be the group of all self-homeomorphisms of
a topological space X, Isom(M) be the group of isometries of a Riemannian Manifold M. The general linear
group GL(n,K) is the group consisting of all invertible n × n matrices over the field K, and the group of
orthogonal n × n real matrices be denoted by O(n).

Topological spaces are typically denoted by X, Y, Z. Manifolds tend to be denoted by Mn, Nn, where n
indicates the dimension.

Definition 2.1. A Riemannian manifold Mdn is called a real, complex, quarternionic or Cayley hyperbolic
manifold provided its universal cover is isometric to RHn, CHn, HHn and OH2, respectively. (Note that
n ≥ 2 and whenK = O, n can only be 2.)

The following definition is taken from [91]:

Definition 2.2. Given a symmetric space G/K of non-compact type, we define the dual symmetric space in
the following manner. Let Gc denote the complexification of the semi-simple Lie group G, and let Gu denote
the maximal compact subgroup in Gc. Since K is compact, under the natural inclusions K ⊂ G ⊂ Gc, we can
assume that K ⊂ Gu (up to conjugation). The symmetric space dual to G/K is defined to be the symmetric
space Gu/K. By abuse of language, if X = Γ \ G/K is a locally symmetric space modelled on the symmetric
space G/K, we will say that X and Gu/K are dual spaces.

Remark 2.3. The dual symmetric spaces of real, complex, quarternionic or Cayley hyperbolic manifolds are
the sphere, complex projective space, quaternionic projective space or Cayley projective plane respectively.

Example 2.4. [91] Suppose G = Gc is a complex semi simple Lie group, and let Gu denote its maximal
compact subgroup. The complexification of Gc is then isomorphic to Gc × Gc :

(Gc)c = Gc × Gc

The maximal compact subgroup of the complexification is Gc × Gc. So we have dual symmetric spaces:

X = Γ \ Gc/Gu

Xu = Gu = Gc × Gc/Gu

In particular, if G = SL(n,C), we have a pair:

X = Γ \ SL(n,C)/SU(n)
Xu = SU(n)

Definition 2.5. The dimension of the maximal torus of a compact Lie group G is called the rank of G.

Theorem 2.6. (Whitney Embedding Theorem [109, 110]) If f : Nn
→Mm is a map of manifolds such that

either 2n + 1 ≤ m
or m = 2n ≥ 6 and π1(M) = 0

then f is homotopic to an embedding Nn ↪→Mm.
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Definition 2.7. A smooth manifold Mn is stably parallelizable if its tangent bundle TM is stably trivial.

Definition 2.8. A group G is residually finite if for every nontrivial element 1 in G there is a homomorphism
h from G to a finite group, such that h(1) , 1.

Theorem 2.9. (Sullivan, [106]) Every closed real hyperbolic manifold has a stably parallelizable finite
sheeted cover.

Theorem 2.10. (Borel, [16]) There exists closed real hyperbolic manifolds in every dimension n ≥ 2, as well
as closed complex hyperbolic manifolds in every even (real) dimension.

Theorem 2.11. (Malcev, [89]) Let M be a closed Riemannian manifold which is either real or complex
hyperbolic, then π1M is residually finite.

Definition 2.12. (Smooth structure sets) Let M be a closed topological manifold. We define the smooth
structure set Ss(M) to be the set of equivalence classes of pairs (N, f ) where N is a closed smooth manifold
and f : N→M is a homotopy equivalence. And the equivalence relation is defined as follows :

(N1, f1) ∼ (N2, f2) if there is a diffeomorphism h : N1 → N2
such that f2 ◦ h is homotopic to f1.

Definition 2.13. Let M be a topological manifold. Let (N, f ) be a pair consisting of a smooth manifold N
together with a homeomorphism f : N → M. Two such pairs (N1, f1) and (N2, f2) are concordant provided
there exists a diffeomorphism 1 : N1 → N2 such that the composition f2 ◦ 1 is topologically concordant to
f1 i.e., there exists a homeomorphism F : N1 × [0, 1]→M × [0, 1] such that F|N1×0 = f1 and F|N1×1 = f2 ◦ 1.
Equivalently, let N1, N2 be two smooth structures on M. N1 is said to be (topologically) concordant to N2
if there is a smooth structure M̄ on M × [0, 1] such that ∂−M̄ = N1 and ∂−M̄ = N2.. The set of all such
concordance classes is denoted by C(M).

The key to analyzing C(M) is the following result due to Kirby and Siebenmann :

Theorem 2.14. [75, p.194] There exists a connected H-space Top/O such that for any smooth manifold M
with dim M ≥ 5, there is a bijection between C(M) and [M; Top/O]. Furthermore, the equivalence class of
(M, idM) corresponds to the homotopy class of the constant map under this bijection.

We recall some terminology from [74] :

Definition 2.15. (a) A homotopy n-sphere Σn is an oriented smooth closed manifold homotopy equiva-
lent to Sn.

(b) A homotopy n-sphere Σn is said to be exotic if it is not diffeomorphic to Sn.

(c) Two homotopy n-spheres Σn
1 and Σn

2 are said to be equivalent if there exists an orientation preserving
diffeomorphism f : Σn

1 → Σn
2 .

The set of equivalence classes of homotopy n-spheres is denoted by Θn. The equivalence class of Σn is
denoted by [Σn]. When n ≥ 5, Θn forms an abelian group with group operation given by connected sum
# and the zero element represented by the equivalence class of the round sphere Sn. M. Kervaire and J.
Milnor [74] showed that each Θn is a finite group; in particular, Θ8, Θ14 and Θ16 are cyclic groups of order
2, Θ10 and Θ20 are cyclic groups of order 6 and 24 respectively and Θ18 is a group of order 16.

Start by noting that there is a homeomorphism h : Mn#Σn
→Mn (n ≥ 5) which is the inclusion map outside

of homotopy sphere Σn and well defined up to topological concordance. We will denote the class in C(M)
of (Mn#Σn, h) by [Mn#Σn]. (Note that [Mn#Sn] is the class of (Mn, idMn).) Let fM : Mn

→ Sn be a degree one
map. Note that fM is well-defined up to homotopy. Composition with fM defines a homomorphism

f ∗M : [Sn,Top/O]→ [Mn,Top/O],

and in terms of the identifications
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Θn = [Sn,Top/O] and C(Mn) = [Mn,Top/O]

given by Theorem 2.14, f ∗M becomes [Σn] 7→ [Mn#Σn].

Theorem 2.16. (Vanishing Theorem, [41]) Let M be a closed (connected) non-positively curved Riemannian
manifold. Then Wh(π1(M)) = 0, where Wh(G) denotes the whitehead group at any group G.

Theorem 2.17. [36] Let M be a closed aspherical manifold whose fundamental group is virtually nilpotent.
Let N be a topological manifold (possibly with boundary) and let H : N → M × Dm be a homotopy
equivalence which is a homeomorphism on the boundary. Assume m + n > 4. Then H is homotopic to a
homeomorphism H : N→M ×Dm relative to the boundary.

Theorem 2.18. (Topological Rigidity Theorem, [42]) Let M be a closed connected n-dimensional Riemannian
manifold with non positive sectional curvature. Let N be a topological manifold (possibly with boundary)
and let H : N→M×Dm be a homotopy equivalence which is a homeomorphism on the boundary. Assume
m + n , 3, 4. Then H is homotopic to a homeomorphism H : N→M ×Dm relative to the boundary.

Theorem 2.19. (Borel Conjecture, 1955) Let f : M → N be a homotopy equivalence where both M and N
are closed aspherical manifolds. Then f is homotopic to a homemorphism.

Theorem 2.20. (Bieberbach’s Rigidity Theorem, 1912) Let f : N → M be a homotopy equivalence between
closed flat Riemannian manifolds. Then f is homotopic to an affine diffeomorphism.

Theorem 2.21. (Mostow Rigidity Theorem, [87]) Let M and N be compact, locally symmetric Riemannian
manifolds with everywhere nonpositive curvature having no closed 1 or 2-dimensional geodesic subspaces
which are locally direct factors. If f : M→ N is a homotopy equivalence, then f is homotopic to an isometry.

3. Detecting exotic structures on hyperbolic manifolds

In this section we discuss smooth and PL-rigidity problem 1.1. In particular, we review Problem 1.1 for
negatively curved locally symmetric spaces. First we focus on the following problem :

Problem 3.1. Let f : N → M denote a homotopy equivalence between closed smooth manifolds. Is f
homotopic to a diffeomorphism ?

Remark 3.2.

1. Every homotopy equivalence of 2-dimensional closed manifolds is homotopic to a diffeomorphism,
by the classification of surfaces. A homotopy equivalence of 3-dimensional closed manifolds is
not in general homotopic to a diffeomorphism. The first examples of such homotopy equivalences
appeared in the classification of the 3-dimensional lens spaces in the 1930’s : the Reidemeister torsion
of a lens space is a diffeomorphism invariant which is not homotopy invariant([RA02]). Algebraic
K-theory invariants such as Reidemeister and Whitehead torsion are significant in the classification of
manifolds with finite fundamental group, and in deciding if h-cobordant manifolds are diffeomorphic
(via s-Cobordism Theorem), but they are too special to decide if an arbitrary homotopy equivalence
of closed manifolds is homotopic to a diffeomorphism.

2. In 1956, Milnor [81] constructed an exotic sphere Σ7 with homotopy equivalence (in fact a homeo-
morphism) Σ7

7→ S7 which is not homotopic to a diffeomorphism.

3. If both closed manifolds in Problem 3.1 are real hyperbolic and of dimension greater than 2, Mostows
Rigidity Theorem 2.21 says that they are isometric, in particular diffeomorphic. If M is flat manifold
in Problem 3.1, then it follows from the works of Gromoll and Wolf [65], and Yau [112], that N is
flat manifold; thus f in Problem 3.1 must be homotopic to an affine diffeomorphism by Bieberbach’s
Rigidity Theorem 2.20. If M is an irreducible locally symmetric space of rank ≥ 2, Gromov [10]
has shown that after rescaling the metric on M, f will be homotopic to an isometry. Eberlein [27, 28]
independently proved the same result under the hypothesis that the universal cover of M is reducible.
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Recall that by an infranilmanifold we mean the quotient of a simply-connected nilpotent Lie group G by
the action of a torsion free discrete subgroup Γ of the semidirect product of G with a compact subgroup of
Aut(G). A weaker property than flatness is admitting an infranil structure. Lee and Raymond [77] proved
the smooth rigidity for infranilmanifolds:

Theorem 3.3. Let f : M→ N be a homotopy equivalence between two closed infranilmanifolds M and N.
Then f is homotopic to a diffeomorphism.

Let Aff(S) denote the group of all affine motions of S; i.e., Aff(S) is the semi-direct product S oAut(S).

Definition 3.4. A compact infrasolvmanifold M is a compact orbit space of the form M = Γ \ S where S is
solvable and simply connected Lie group and closed torsion free subgroup Γ ⊂ Aff(S) satisfying

(i) Γ0 is contained in the nil radical of S and

(ii) the closure of the image of Γ in Aut(S) is compact.

Remark 3.5.

1. The notion of compact infrasolvmanifold generalizes the notion of compact Riemannian flat manifold
and compact infranilmanifold which are its special cases when S is respectively abelian and nilpotent.
It also generalizes the notion of compact solvmanifold which is the special case when Γ ⊂ S.

2. The fundamental group of an infrasolvmanifold is a virtually polycyclic group. A result of Farrell
and Jones [38] on aspherical manifolds with virtually polycyclic fundamental group shows that
infrasolvmanifolds are topologically rigid. A weaker property than that of admitting an infranil
structure is admitting an infrasolv structure. F. T. Farrell and L. E. Jones [46] proved the smooth
rigidity for infrasolvmanifolds: Here is the result:

Theorem 3.6. Any two compact infrasolvmanifolds, of dimension different from 4, whose fundamental
groups are isomorphic are smoothly diffeomorphic. In fact, any given isomorphism of fundamental groups
is induced by a smooth diffeomorphism.

Remark 3.7.

1. In the cases of compact Riemannian flat manifolds and compact infranilmanifolds, Theorem 3.6 was
previously proven by Bieberbach [13] and Lee-Raymond [77], respectively. The isomorphism in these
cases is in fact induced by an affine diffeomorphism (see [13] and [18]) (A map is affine provided it
sends geodesics to geodesics). And Mostow [86] previously showed that Theorem 3.6 is also true for
solvmanifolds; however an affine diffeomorphism is not always possible in this case. One difficulty
preventing an affine diffeomorphism is that a group Γ can be lattice in two different simply connected
solvable Lie groups; but in atmost one simply connected nilpotent Lie group because of Malcev’s
Rigidity Theorem [97].

2. Wilking [111] improved on Theorem 3.6 by showing the condition dim = 4 can be dropped. Results
of Wilking on rigidity properties of isometric actions on solvable Lie-groups [111] imply the smooth
rigidity of infrasolvmanifolds in all dimensions.

3. In well known cases, smooth rigidity properties of geometric manifolds are closely connected to
rigidity properties of lattices in Lie groups. Oliver Baues [8] proved the smooth rigidity of infrasolv-
manifolds from natural rigidity properties of virtually polycyclic groups in linear algebraic groups.
More generally, he proved rigidity results for manifolds which are constructed using affine, not nec-
essarily isometric, actions of virtually polycyclic groups on solvable Lie groups. This approach leads
us to a new proof of the rigidity of infrasolvmanifolds, and also to a geometric characterization of
infrasolvmanifolds in terms of polynomial actions on the affine space Rn.
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4. Indeed, the theory of harmonic maps had been very successful in showing rigidity results, see for
instance Siu [105], Sampson [102], Hernandez [68], Corlette [23], Gromov and Schoen [63], Jost and
Yau [73], and Mok, Sui and Yeung [90]. Because of this evidence it seems reasonable that Lawson and
Yau conjectured that the answer to Problem 3.1 was affirmative.

Conjecture 3.8. (Lawson-Yau Conjecture) Let M1 and M2 be negatively curved manifolds. If π1(M1) =
π1(M2), then M1 is diffeomorphic to M2.

Recall that the obvious smooth analogue of Borel’s Conjecture is false. Namely, Browder had shown in [18]
that it is false even in the basic case where M = Tn is the n-torus (see also [99, Remark 4.7]). In fact, it was
shown in [108] that Tn and Tn#Σn (n ≥ 5) are homeomorphic but not diffeomorphic if n ≥ 5 and Σn is any
exotic n-sphere. However, when it is assumed that both M and N in Borel Conjecture 2.19 are non-positively
curved Riemannian manifolds, then smooth rigidity frequently happens. The most fundamental instance of
this is an immediate consequence of Mostow’s Strong Rigidity Theorem 2.21. Mostow’s Rigidity Theorem
for hyperbolic space forms gives a positive answer to Lawson-Yau Conjecture when both M1 and M2 have
constant sectional curvature and more generally when both M1 and M2 are locally symmetric spaces. See
Siu [105] and Hamenstadt [67] for generalizations of Mostow’s Rigidity Theorem relevant to Lawson-Yau
Conjecture. Also see Mostow and Siu [88] and Gromov and Thurston [64] for other examples of negatively
curved manifolds which are not diffeomorphic to a locally symmetric space. For Lawson-Yau Conjecture,
Farrell and Jones gave counterexamples [40], which was loosely motivated by Farrell and Jones construction
[37] used to prove the following results:

Definition 3.9. Let M be a closed smooth manifold. A self-map f : M → M is said to be an expanding
endomorphism provided M supports a Riemannian metric such that |d f (v)| > |v| for every non-zero vector
v tangent to M.

Here is the following important result relative to this definition:

Theorem 3.10. (Cartan) Let M be non-positively curved and x0 ∈M be a base point. Then exp : Tx0M→M
is an expanding map. Furthermore it is a covering projection and hence a diffeomorphism when π1(M) = 0.

Question 3.11. What closed smooth manifolds support expanding endomorphisms?

The question is answered up to topological classification as follows by results due to Shub [104], Franks
[57] and Gromov [62].

Theorem 3.12. If a closed smooth manifold M supports an expanding endomorphism, then M is homeo-
morphic to an infranilmanifold.

Remark 3.13. Shub showed that the universal cover M̃ of M is diffeomorphic to Rn where n = dim M.
Then Franks showed that π1M has polynomial growth and that M is homeomorphic to an infranilmanifold
provided π1M is virtually solvable. Gromov completed the proof of Theorem 3.12 by showing that a
group of polynomial growth must be virtually nilpotent. Gromov’s result was motivated by Hirsch’s paper
[70] where it is shown that the solution to Hilbert’s fifth problem is related to Theorem 3.12. Hirsch also
implicitly poised Question 3.11 in his Remark 1; i.e., whether the word “homeomorphism” can be replaced
by “diffeomorphism” in Theorem 3.12. But Farrell and Jones showed in [37] that this is not the case; namely,
they proved the following result:

Theorem 3.14. Let Tn be the n-torus (n > 4) and Σn an arbitrary homotopy sphere, then the connected sum
Tn#Σn admits an expanding endomorphism.

Remark 3.15. By Theorem 3.14 and Theorem 3.12, Tn#Σn is homeomorphic to an infranilmanifold.

Theorem 3.16. [32] Let Mn be a closed Riemannian manifold (with n ≥ 5) which is a locally symmetric
space whose sectional curvatures are either identically zero or all negative. Let Nn be a smooth structure
on Mn. If Nn is diffeomorphic to Mn, then Nn and Mn represent the same element in C(M); i.e., they are
topologically concordant.
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We have the following result due to Browder [18] and Brumfiel [20]:

Theorem 3.17. [32] Assume that Mn is an oriented closed (connected) smooth manifold which is stably
parallelizable and that n ≥ 5. Then f ∗M : Θn → [Mn,Top/O] is monic.

Proof. Since X → [X,Top/O] is a homotopy functor on the category of topological spaces, Theorem 3.17
would follow immediately if fM : Mn

→ Sn is homotopically split. That is, if there exists a map 1 : Sn
→Mn

such that fM ◦ 1 is homotopic to idSn . Unfortunately, fM is only homotopically split when M is a homotopy
sphere. But we can use the fact that M is stably parallelizable to always stably split fM up to homotopy; to
show that the (n + 1)-fold suspension

Σn+1( fM) : Σn+1Mn
→ S2n+1

of fM is homotopically split. This is done as follows. Note first that Mn
×Dn+1 can be identified with a

codimension-0 smooth submanifold of S2n+1 by using the Whitney embedding theorem together with the
fact that M is stably parallelizable. Let ? be a base point in M. Then dual to the inclusion

Mn
×Dn+1

⊂ S2n+1

is a quotient map φ : S2n+1
→ Σn+1Mn realizing the (n + 1)-fold reduced suspension Σn+1Mn of Mn as a

quotient space of S2n+1. Namely, φ collapses everything outside of Mn
× Int(Dn+1) together with ? ×Dn+1

to the base point of Σn+1Mn, and is a bijection between the remaining points. And it is easy to see that the
composition Σn+1( fM) ◦ φ is homotopic to idSn ; i.e., Σn+1( fM) is homotopically split. But this is enough to
show that f ∗M is monic since Top/O is an∞-loop space [22]; in particular, there exists a topological space Y
such that Ωn+1(Y) = Top/O. This fact is used to identify the functor

X→ [X,Top/O] = [X,Ωn+1(Y)]

with the functor X→ [Σn+1Mn,Y]. Consequently,

f ∗M : [Sn,Top/O]→ [Mn,Top/O]

is identified with

(Σn+1( fM))∗ : [S2n+1,Y]→ [Σn+1Mn,Y].

But, this last homomorphism is monic since Σn+1( fM) is homotopically split. �

The following result is an immediate consequence of Theorem 3.16 and Theorem 3.17; it will be used to
construct exotic smoothings of some symmetric spaces.

Theorem 3.18. [32] Let Mn be a closed,oriented (connected) stably parallelizable Riemannian locally sym-
metric space (with n ≥ 5) whose sectional curvatures are either identically zero or all negative. Let Σn be
an exotic sphere, then M#Σn is not diffeomorphic to Mn.

Remark 3.19.

1. Since Tn is a stably parallelizable flat Riemannian manifold, by Theorem 3.18, Tn#Σn is not diffeomor-
phic to Tn where Σn is an exotic sphere.

2. The Malcev’s Rigidity Theorem [79], shows that any closed infranilmanifold with abelian funda-
mental group must be Riemannian flat. And Bieberbach’s Rigidity Theorem 2.20 shows that any
such manifold is diffeomorphic to a torus. This implies that Tn#Σn is not diffeomorphic to any
infranilmanifold.

By Theorem 2.10, Theorem 2.9 and Theorem 3.18, we have the following exotic smoothings of Farrell-Jones
[40]:
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Theorem 3.20. Let Σn be an exotic sphere (n ≥ 5). Then there exists a closed real hyperbolic manifold Mn

such that Mn#Σn and Mn are not diffeomorphic.

In fact, Farrell and Jones proved the following results [40]:

Let Σ1, Σ2 , ..., Σk be a complete list of inequivalent exotic spheres of dimension n, where two exotic
spheres are equivalent provided they are diffeomorphic, but not necessarily via an orientation preserving
diffeomorphism. (The standard sphere Sn is not included in this list.) The set of equivalence classes of
homotopy n-spheres under this relation is denoted by Θ+

n .

Theorem 3.21. Let Mn be a closed real hyperbolic manifold with dimension n ≥ 5. Given any real number
δ > 0, there is a finite sheeted covering space M̂ of M which satisfies the following properties:

(i) No two of the manifolds M̂, M̂#Σ1, M̂#Σ2, ... , M̂#Σk are diffeomorphic, but they are all homeomorphic
to one another.

(ii) Each of the manifolds M̂#Σ1, M̂#Σ2 , ... , M̂#Σk supports a Riemannian metric, all of whose sectional
curvature values lie in the interval (−1 − δ,−1 + δ).

Remark 3.22.

1. This result is startling for a number of reasons. First, note that the manifolds are obviously home-
omorphic. Second, by Mostow Rigidity Theorem 2.21, M̂n#Σn cannot admit a metric of constant
negative curvature, or else it would be isometric, hence diffeomorphic to M̂n. Thus these manifolds
can be added to the short list of closed manifolds which have (pinched) negative curvature and are
not diffeomorphic to a locally symmetric space. Third, the examples of Farrell and Jones given by
Theorem 3.21 provide counterexamples to the Lawson-Yau Conjecture.

2. Theorem 3.21 gives interesting counterexamples for smooth analogue of Borel’s Conjecture 2.19.

The proof of Theorem 3.21 depends on the following two theorem:

Theorem 3.23. Let Mn be a closed real hyperbolic manifold with dimension n ≥ 5. Suppose that the finite
sheeted covering space M̂ of M is stably parallelizable. Then no two of the manifolds M̂, M̂#Σ1, M̂#Σ2 , ...,
M̂#Σk are diffeomorphic.

Theorem 3.24. Given a real number δ > 0, there is a real number α > 0 which depends only on n = dim M
and δ such that the following is true. Suppose that the finite sheeted covering space M̂ of M has radius of
injectivity greater than 3α at some point p ∈ M̂. Then each of the manifolds M̂#Σ1, M̂#Σ2,...., M̂#Σk supports
a Riemannian metric, all of whose sectional curvature values lie in the interval (−1 − δ,−1 + δ).

Proof of Theorem 3.21 assuming Theorem 3.23 and Theorem 3.24 :. First, we use Theorem 2.9 that there is a
finite covering space M̃ of M such that M̃ is stably parallelizable. Let 11, 12, ... ,1x be a list of all the closed
geodesics in M̃ which have length less than or equal to 6α, where α comes from Theorem 3.24. Choose a
point q ∈ M̃ and elements β1, β2, ... ,βx ∈ π1(M̃, q) such that each βi is represented by a map fi : S1

→ M̃ which
is freely homotopic to 1i. By Theorem 2.11, π1(M̃, q) is residually finite and so there is a homomorphism
h : π1(M̃, q)→ G onto a finite group G such that h(βi) , 1 for all indices i. Let M̂ denote the finite covering
space of M̃ corresponding to the kernel of h, which is a subgroup of π(M̃, q). Note that M̂ is a finite sheeted
covering space of M which is stably parallelizable and which has radius of injectivity greater than 3α at
each of its points. Thus, we may apply Theorem 3.23 and Theorem 3.24 to M̂ to conclude the proof of this
theorem. Note that in (a) of this theorem, we use the general fact that the topological type of a manifold is
not changed by forming a connected sum of it with an exotic sphere.

We shall now prove Theorems 3.23. For that we need the following lemma:
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Theorem 3.25. Let Mn be a closed real hyperbolic manifold with dimension n ≥ 5 and let M̂ be a finite
sheeted orientable covering space of M. Set N = M̂, N1 = M̂#Σi, and N2 = M̂#Σ j. Then N1 is concordant to
N2 if and only if N1 is diffeomorphic to N2 via an orientation-preserving diffeomorphism.

Proof. First suppose that N1 is concordant to N2 via a smooth structure N̄ for N × [0, 1]. Since N̄ is
topologically a product, it follows from Theorem 2.16 and from the smooth s-cobordism theorem that N̄ is
a product in the smooth category. Thus, N1 is orientation-preserving diffeomorphic to N2, since N1 = ∂−N̄
and N2 = ∂−N̄.

We can assume that the connected sums of M̂ with Σi and Σ j are taking place on the boundary of a
small metric ball B in M̂, so we think of N1 and N2 as being topologically identified with M̂, and the
changes in the smooth structure happen inside B. Let f : M̂#Σi → M̂#Σ j be a diffeomorphism. First
we consider a special case, where f : M̂ → M̂ is homotopic to the identity. Thus we have a homotopy
f : M̂ × [0, 1] → M̂ with h|M̂×1 = f and h|M̂×0 = id. Define H : M̂ × [0, 1] → M̂ × [0, 1] by H(x, t) = (h(x, t), t).
Note that H is a homotopy equivalence which restricts to a homeomorphism on the boundary. Therefore,
by Farrell and Jones Topological Rigidity Theorem 2.18, H is homotopic rel boundary to a homeomorphism
Ĥ : M̂× [0, 1]→ M̂× [0, 1]. We put the smooth structure N2 × [0, 1] on the range of Ĥ and, by pulling it back
via Ĥ, obtain the smooth structure N on the domain of Ĥ. Since, by construction, Ĥ : N → N2 × [0, 1] is a
diffeomorphism, Ĥ|M̂×1 = f and Ĥ|M̂×0 = id, N is a concordance between N1 and N2.

The general case reduces to the above special case as follows: If f : M̂ → M̂ is an orientation preserving
homeomorphism, then, by the Strong Mostow Rigidity Theorem 2.21, f−1 is homotopic to an orientation
preserving isometry 1. Since one can move around small metric balls in M̂ by smooth isotopies, M̂ is
homotopic to a diffeomorphism 1̂ : M̂→ M̂ such that 1̂|B = id. Since N2 is obtained by taking the connected
sum along the boundary of B and 1̂|B = id and 1̂|M\B is a diffeomorphism, it follows that 1̂ : N2 → N2 is
also a diffeomorphism. Therefore the composition 1̂ ◦ f : N1 → N2 is a diffeomorphism homotopic to the
identity and it follows from the previous special case that N1 and N2 are concordant. If f is an orientation
reversing homeomorphism, then similar argument produces a diffeomorphism 1̂ : N2 → N2 and it follows
that N1 is concordant to N2. �

Theorem 3.26. Let Mn be a closed real hyperbolic manifold with dimension n ≥ 5 and let M̂ be a finite
sheeted covering space of M. Suppose M̂#Σi is diffeomorphic to M̂#Σ j, then either M̂#Σi is concordant to
M̂#Σ j or to M̂#(−Σ j). Also, if M̂#Σi is diffeomorphic to M̂, then M̂#Σi is concordant to M̂.

Proof of Theorem 3.23 :. Because of Theorem 3.26, it suffices to prove that, for any pair (Σ, Σ̂) of distinct
elements in Θ+

n , M̂#Σ is not concordant to M̂#Σ̂. By Theorem 2.14, there is a one-to-one correspondence
between concordance classes of smooth structures on M and the homotopy classes of maps from M̂ to Top/0
(denoted by [M,Top/0]) with the hyperbolic structure on M̂ corresponding to the class of the constant map
[KS77]. For the same reasons, there is a one-to-one correspondence between Θ+

n and [Sn,Top/0] with Sn

corresponding to the constant class. Let β1 and β2 in [Sn,Top/0] correspond to Σ and Σ̂, respectively. Since
Top/0 is an infinite loop space [22]; in particular, there exists a topological space X such that Top/0 = Ω2(X).
If β is the class of a map from Sn to Top/0, then β∗ denotes the class of its composite with a degree-one
map f from M̂ to Sn. The naturality of this construction, one can compute that the smooth structures M̂#Σ

and M̂#Σ̂ correspond to the elements β∗1 and β∗2, respectively. Thus, to complete the proof, it suffices to
show that the map f ∗ : [Sn,Top/0] → [M̂,Top/0] (given by sending β to β∗) is monic, i.e., β∗1 = β∗2. But, the
homomorphism f ∗ is monic by Theorem 3.17. This completes the proof of Theorem 3.23.

Before beginning the proof of Theorem 3.24, we will recall a fact about manifolds of constant negative
curvature and state a lemma [40]:
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Let A(, ) denote the Riemannian metric on Sn−1
× (0, 3) which is the product of the standard Riemannian

metric on the unit (n − 1)-sphere Sn−1 with the standard Riemannian metric on the interval (0, 3). Let ξ, γ
denote the distributions on Sn−1

× (0, 3) which are tangent to the first and second factors, respectively. Let
P1 : T(Sn−1

× (0, 3)) → ξ, P2 : T(Sn−1
× (0, 3)) → γ be the A-orthogonal projections. Define 2-tensors Ai(, ),

i = 1, 2 on Sn−1
× (0, 3) by Ai(v,w) = A(Pi(v),Pi(w)). Define a Riemannian metric A(, ) on Sn−1

× (0, 3) as
follows:

Property 1 : A(v,w) = sinh2(αt)A1(v,w) + α2A2(v,w) for any pair of vectors v, w tangent to Sn−1
× (0, 3) at a

point (q, t) ∈ Sn−1
× (0, 3). It is well known that if M̂ has radius of injectivity greater than 3α at p ∈ M̂, there

is a smooth map h : Sn−1
× (0, 3)→ M̂ which satisfies the following properties:

Property 2 :

(a) h is an embedding.

(b) For each q ∈ Sn−1, the path 1(t) = h(q, t) is a geodesic of speed with

lim
t→0
1(t) = p

(c) The pull back along h : Sn−1
× (0, 3)→ M̂ of the Riemannian metric 〈, 〉M̂ is equal to A(, ).

Note that since 〈, 〉M̂ has constant sectional curvature equal to −1, it follows by Property 2(c) that A also
has constant sectional curvature equal to −1. We let B(, ) be any Riemannian metric on Sn−1

× [1, 2] which
satisfies the following:
Property 3 :

(a) For any v ∈ ξ|Sn−1×[1,2], w ∈ γ|Sn−1×[1,2], we have that B(v,w) = 0.

(b) If t denotes the second coordinate variable in the product Sn−1
× [1, 2], then we have that B( ∂

∂t ,
∂
∂t ) = 1.

We define a new Riemannian metric B(, ) on Sn−1
× [1, 2] as follows:

Property 4 : B(v,w) = sinh2(αt)B1(v,w) + α2B2(v,w) for any pair of vectors v, w tangent to Sn−1
× [1, 2] at a

point (q, t) ∈ Sn−1
× [1, 2], where Bi(v,w) = B(Pi(v),Pi(w)).

Lemma 3.27. We let P denote a 2-plane tangent to Sn−1
× [1, 2], and we let KB(P) denote the sectional

curvature of P with respect to B(, ). Then
lim
α→∞

KB(P) = −1

uniformly in P.

Proof. The proof of the theorem relies upon the following claim:

Claim A : For any (p0, t0) ∈ Sn−1
×[1, 2], there are two coordinated system (x̄1, x̄2, ...., x̄n−1) and (ȳ1, ȳ2, ...., ȳn−1)

for Sn−1 near p0, and a linear coordinate t̄ for [1, 2] near t0 such that the following hold true:

(a) A(, ) = 1̄a
i jdx̄idx̄ j + dt̄2, B(, ) = 1̄b

i jdȳidȳ j + dt̄2, where 1̄a
i j = A( ∂

∂x̄i
, ∂
∂x̄ j

), and 1̄b
i j = B( ∂

∂ȳi
, ∂
∂ȳ j

).

(b) 1̄a
i j(p0, t0) = 1̄b

i j(p0, t0).

(c) Let k and s denote any non-negative integers satisfying k + s < 2, and let Xi, j,i1....ik,s and Yi, j,i1....ik,s denote

the partial derivatives (through second order)
∂k+s1̄a

i j

∂x̄i1 ...∂x̄ik∂t̄s (p0, t0) and
∂k+s1̄b

i j

∂ȳi1 ...∂ȳik∂t̄s (p0, t0).
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Then we must have
lim
α→∞

Xi, j,i1....ik,s = 0k2sδi
j

and
lim
α→∞

Yi, j,i1....ik,s = 0k2sδi
j

uniformly in (p0, t0) (where 00 = 1 and 0k = 0 if k ≥ 1). We shall first complete the proof of this theorem
based on Claim A. Then we shall verify Claim A. Choose an orthonormal basis v1, v2 for the 2-plane P,
and write vi =

∑
j ai j

∂
∂x̄ j

+ ain
∂
∂t̄ . Set v̂i =

∑
j ai j

∂
∂ȳ j

+ ain
∂
∂t̄ and let P̂ denote the 2-plane spanned by v̂1, v̂2.

Note that it follows from Claim A(a) and A(b) and from the classical relation between the coefficients of the
curvature tensor and of the first fundamental form [69] that KA(P̂) is a polynomial in the Xi, j,i1....ik,s, ai j and
that KB(P) is the same polynomial in the Yi, j,i1....ik,s, ai j. Thus, by Claim 7(c), we have that

lim
α→∞

(KB(P) − (KA(P̂))) = 0

uniformly in P. Since KA(P̂) = −1,
lim
α→∞

KB(P) = −1

uniformly in P. It remains to construct the coordinates (x̄1, x̄2, ...., x̄n−1) and (ȳ1, ȳ2, ...., ȳn−1) and t̄ and to
verify Claim A. Towards this end, we choose normal coordinates (x1, x2, ...., xn−1) and (y1, y2, ...., yn−1) for
Sn−1 near p0 with respect to the metric A|Sn−1×t0

and B|Sn−1×t0
respectively so that the following hold:

Property 5 :

(a) A( , ) = 1a
i jdxidx j + dt2 ; B( , ) = 1b

i jdyidy j + dt2.

(b) 1a
i j(p0, t0) = 1b

i j(p0, t0).

(c) There is a number C > 0, which is independent of (p0, t0), such that for all non negative integers k, s
satisfying k + s ≤ 2, the following must hold:∣∣∣∣∣∣∣ ∂k+s1a

i j

∂xi1 ...∂xik∂ts (p0, t0)

∣∣∣∣∣∣∣ < C and

∣∣∣∣∣∣∣ ∂k+s1b
i j

∂yi1 ...∂yik∂ts (p0, t0)

∣∣∣∣∣∣∣ < C.

Now define the coordinates x̄i, ȳi and t̄ as follows :
Property 6 :

(a) t̄ = αt, t̄0 = αt0, x̄i = sinh(t̄0)xi, ȳi = sinh(t̄0)yi.
Then we also have the following equalities :

(b) dt̄ = αdt, dx̄i = sinh(t̄0)dxi, dȳi = sinh(t̄0)dyi.

(c) ∂
∂t̄ = 1

α
∂
∂t , ∂

∂x̄i
= 1

sinh(t̄0)
∂
∂xi

, ∂
∂ȳi

= 1
sinh(t̄0)

∂
∂yi

.

It follows from Property 5(a), 5(b) and from Property 6(a), 6(b) that Claim A(a), A(b) are satisfied and that
the 1̄a

i j, 1̄
b
i j of Claim A(a) can be computed in terms of the 1a

i j, 1
b
i j of Property 5(a) as follows:

Property 7 : 1̄a
i j =

sinh(t̄)
sinh(t̄0)

2
1a

i j, 1̄
b
i j =

sinh(t̄)
sinh(t̄0)

2
1b

i j.

Finally, note that it follows from Property 5(c), Property 6(c) and Property 7 that Claim A(c) is satisfied.
This completes the proof of Lemma 3.27. �
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Proof of Theorem 3.24 :. Let En
+, En

−
denote the northern and southern hemi-spheres of the unit n-sphere Sn.

Each exotic sphere Σi can be constructed by gluing En
+ to En

−
along a diffeomorphism fi : ∂En

+ → ∂En
−

. Since
∂En

+ = Sn, it follows from Property 2 that M̂#Σi can be constructed by gluing Sn−1
× [1, 2] to M̂\h(Sn−1

× (1, 2))
along the maps h : Sn−1

× 1 → M̂ \ h(Sn−1
× (1, 2)) and h ◦ f̄i : Sn−1

× 2 → M̂ \ h(Sn−1
× (1, 2)), where

f̄i(x, 2) = ( fi(x), 2). Choose a metric B(, ) on Sn−1
× [1, 2] which satisfies Property 3 and the following

properties: Let B1(, ) be constructed from B(, ) as in Property 4.

Property 8 :

(a) B1(, )|Sn−1×1 = A1(, )|Sn−1×1.

(b) B1(, )|Sn−1×2 equals the pull back along f̄i : Sn−1
× 2→ Sn−1

× 2 of A1(, )|Sn−1×2.

(c) B1 is constant in t near t = 1, 2. We define a metric 〈, 〉i on M̂#Σi as follows:

Property 9 :

(a) 〈, 〉i |M̂\h(Sn−1×(1,2)) = 〈, 〉M̂ |M̂\h(Sn−1×(1,2)).

(b) 〈, 〉i |Sn−1×[1,2]=B1
, where B1 is constructed from B as in Property 8. It follows from Property 2, 8, and 9

that 〈, 〉i is well defined. By Property 9 and Theorem 3.27,

lim
α→∞

K〈,〉i(P) = −1

uniformly in P, where P is any 2-sphere tangent to M̂#Σi and where K〈,〉i(P) is the sectional curvature
of P with respect to 〈, 〉i. This completes the proof of Theorem 3.24.

Remark 3.28. Since there are no exotic spheres in dimensions < 7 this does not give counterexamples to
Lawson-Yau Conjecture in dimensions less than 7. (Also note that, for example, there are no exotic 12-
dimensional spheres.) Moreover, since the Diff category is equivalent to the PL category in dimensions
less than 7, changing the differentiable structure is equivalent to changing the PL structure. Hence for
dimensions < 7 the Smooth Rigidity Problem 3.1 is equivalent to the following PL version :

Problem 3.29. Let f : N → M denote a homotopy equivalence between closed smooth manifolds. Is f
homotopic to a PL homeomorphism?

Remark 3.30. For a general dimension n, a negative answer to Problem 3.29 implies a negative answer for
Problem 3.1, because diffeomorphic manifolds are PL-homeomorphic. The converse is not true in general,
but, as mentioned before, it is true for dimensions < 7. For example an (smoothly) exotic sphere Σ is not
diffeomorphic to the corresponding sphere (by definition) but it is PL-homeomorphic to it, provided dim Σ ,
4. In fact, there are no PL-exotic spheres in any dimension, 4. It follows that Z is PL-homeomorphic to Z#Σ
for any manifold Z, and exotic sphere Σ, dim Σ , 4. Therefore, Theorem 3.21 does not answer Problem 3.29.
Note that, since diffeomorphism implies PL-homeomorphism and this in turn implies homeomorphism,
we have that Problem 3.29 for non-positively curved manifolds lies between the Topological Rigidity
for negative curvature (which is true, by Theorem 2.18) and the Smooth Rigidity ( which is false, by
Theorem 3.21). The Theorem 3.21 was generalized by Ontaneda in [94] to dimension 6, by changing the PL
structure, which gives answer to Problem 3.29 for non-positively curved manifolds to be negative. Also the
constructions in [94] give counterexamples to Lawson-Yau Conjecture in dimension 6. Here is the result:

Theorem 3.31. There are closed real hyperbolic manifolds M of dimension 6 such that the following holds.
Given ε > 0, M has a finite cover M̂ that supports an exotic (smoothable) PL-structure that admits a
Riemannian metric with all sectional curvatures in the interval (−1 − ε,−1 + ε).

Remark 3.32.
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1. An exotic (smoothable) PL-structure on M̂ means that there exists a closed smooth manifold N such
that M̂ and N are not piecewise linearly homeomorphic; i.e., the underlying simplicial complex of
any PL triangulation compatible with the given smooth structure of M̂ must be different from that of
any PL triangulation compatible with the given smooth structure of N. In particular, M̂ and N are not
diffeomorphic. This gives counterexamples to Lawson-Yau Conjecture in dimension 6. On the other
hand, the counterexamples to smooth-rigidity Problem 3.1 for negatively curved manifolds given by
Theorem 3.23 are piecewise linearly homeomorphic.

2. P. Ontaneda’s construction builds on the ideas used in the construction of the counterexamples given
by Theorem 3.23; but employs the Kirby-Siebenmann obstruction to PL-equivalence, which lies in
H3(M,Z2) [75], instead of exotic spheres. By using such PL obstruction, P. Ontaneda proved the
following theorem [94]:

Theorem 3.33. Consider the following data. For each k = 1, 2, 3, .... we have closed hyperbolic manifolds
M0(k), M1(k), M2(k), M3(k) such that the following hold :

(i) dim M0(k) = 6, dim M1(k) = 5, dim M2(k) = 3, dim M3(k) = 3.

(ii) M2(k) ⊂M1(k) ⊂M0(k) and M3(k) ⊂M0(k). All the inclusions are totally geodesic.

(iii) M2(k) and M3(k) intersect at one point transversally.

(iv) For each k there is a finite covering map p(k) : M0(k) → M0(1) such that p(k)(Mi(k)) = Mi(1), for
i = 0, 1, 2, 3.

(v) M1(k) has a tubular neighborhood in M0(k) of width r(k) and r(k)→∞ as k→∞.

Then, given ε > 0, there is a K such that all M0(k), k ≥ K, have exotic (smoothable) triangulations admitting
Riemannian metrics with all sectional curvatures in the interval (−1 − ε,−1 + ε).

Remark 3.34.

1. To prove Theorem 3.31, we have to show that there are manifolds satisfying the hypothesis of Theorem
3.33. P. Ontaneda constructed such manifolds, for every n ≥ 4, Mi(k), i = 0, 1, 2, 3 and k = 1, 2, 3, ...
with dim M0(k) = n, dim M1(k) = n − 1, dim M2(k) = n − 3, dim M3(k) = 3 satisfying (ii), (iii), (iv) and
(v) of the Theorem 3.33. When n = 6 they also satisfied (i) ([94, p.15]). These manifolds are the ones
that appear at the end of [89] for the real hyperbolic case.

2. The following Theorem 3.35 showed that the answer to Question 3.29 for non-positively curved
manifolds to be negative for dimensions greater than 5:

Theorem 3.35. For n ≥ 6, there are closed non-positively curved manifolds of dimension n that support
exotic (smoothable) PL structures admitting Riemannian metrics with non-positive sectional curvatures.

Remark 3.36.

1. Theorem 3.35 follows by taking one of the examples of Theorem 3.31 and multiply it by Tn. To
see this we note that if (M, τ0) and (M, τ1) are two non-positively curved triangulations on M, then
(M×Tn, τ0×τTn) and (M×Tn, τ1×τTn) are also non-positively curved. Moreover, if (M, τ0) and (M, τ1)
are non-concordant, then (M×Tn, τ0 × τTn) and (M×Tn, τ1 × τTn) are also so, for the Kunneth formula
tells us thatZ2-cohomology classes do not vanish when we take products. Finally we can prove these
triangulations are not equivalent [94].

2. Theorem 3.31 was generalized by Farrell, Jones and Ontaneda in [47] for every dimension > 5. Here
is the result:
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Theorem 3.37. There are closed real hyperbolic manifolds M in every dimension n, n > 5, such that the
following holds. Given ε > 0, M has a finite cover M̂ that supports an exotic (smoothable) PL structure that
admits a Riemannian metric with all sectional curvatures in the interval (−1 − ε,−1 + ε).

Remark 3.38.

1. The counterexamples constructed in the proof of Theorem 3.37 use the results of Millson and Raghu-
nathan [89], based on previous work of Millson [82].

2. Theorem 3.21 and Theorem 3.37 were the first in a sequence of results that shed some light on the
relationship between the analysis, geometry and topology of negatively curved manifolds. These
results showed certain limitations of well-known powerful analytic tools in geometry, such as the
Harmonic Map technique, the Ricci flow technique, the Elliptic deformation technique as well as
Besson-Courtois-Gallot’s Natural Map technique [9]. A more complete exposition on this area and
how it evolved in time can be found in the survey article [50].

4. Smooth rigidity for finite volume real hyperbolic and complex hyperbolic manifolds

In this section we give three different variants of Theorem 3.21 : first for non-compact finite volume complete
hyperbolic manifolds, the second for negatively curved manifolds not homotopy equivalent to a closed
locally symmetric space and the third for complex hyperbolic manifolds. Let us begin with the first.

A possible way to change smooth structure on a smooth manifold Mn, without changing its homeomorphism
type, is to take its connected sum Mn#Σn with a homotopy sphere Σn. A surprising observation reported
in [43] is that connected sums can never change the smooth structure on a connected, non-compact smooth
manifold:

Theorem 4.1. Let Mn, n ≥ 5 be a complete, connected and non-compact smooth manifold. Let the homotopy
sphere Σn represent an element in Θn. Then Mn#Σn is diffeomorphic to Mn.

Proof. We will denote the concordance class in C(M) of Mn#Σ by [Mn#Σ].(Note that [Mn#Sn] is the class of
Mn.) Let fM : Mn

→ Sn be a degree one map and note that fM is well-defined up to homotopy. Composition
with fM defines a homomorphism f ∗M : [Sn,Top/O] → [Mn,Top/O]. And in terms of the identifications
Θn = [Sn,Top/O] and C(Mn) = [Mn,Top/O] given by Theorem 2.14, f ∗M becomes [Σn] → [Mn#Σn]. But
every map Mn

→ Sn is homotopic to a constant map. Therefore Mn#Σn is concordant to Mn and hence
diffeomorphic to Mn. �

Remark 4.2. Note that taking the connected sum of a non-compact manifold M with an exotic sphere can
never change the differential structure of M. Therefore we do not have an exact analogue of Theorem 3.21
for the finite volume non-compact case. F.T. Farrell and L.E. Jones used a different method in [43], which
can sometimes change the smooth structure on a non-compact manifold Mn. The method is to remove an
embedded tube S1

×Dn−1 from Mn and then reinsert it with a twist. More precisely, the method is as follows
:

Definition 4.3. (Dehn surgery method) Pick a smooth embedding f : S1
×Dn−1

→ Mn and an orientation
preserving diffeomorphism φ : Sn−2

→ Sn−2. Then a new smooth manifold M f ,φ is obtained as the quotient
space of the disjoint union

S1
×Dn−1

tMn
\ f (S1

× int(Dn−1)),

where we identify points

(x, v) and f (x, φ(v)) if (x, v) ∈ S1
× Sn−2.
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The smooth manifold M f ,φ is canonically homeomorphic to Mn but is not always diffeomorphic to Mn. F.T.
Farrell and L.E. Jones [43] proved the following result in this way:

Theorem 4.4. [43] Let n be any integer such that Θn−1 , 1, and ε be any positive real number. Then
there exists an n-dimensional complete Riemannian manifold Mn with finite volume and all its sectional
curvatures contained in the interval [−1−ε,−1+ε], and satisfying the following: Mn is not diffeomorphic to
any complete Riemannian locally symmetric space; but it is homeomorphic to RHn/Γ where Γ is a torsion
free non uniform lattices in Iso(RHn).

Remark 4.5.

1. Theorem 4.4 showed that the answer to Problem 3.1 for finite volume but non-compact Riemannian
locally symmetric spaces to be negative.

2. Recall that Kervaire and Milnor [74] and Browder [19] showed that Θ2n−1 is non trivial for every
integer n > 2 which does not have the form n = 2i

− 1. On the other hand Θ12 is trivial. Therefore
if M12 is a closed real hyperbolic manifold, M12#Σ12 must be diffeomorphic to M12 where Σ12 is any
homotopy 12-sphere. The Theorem 3.21 consequently fails to yield an exotic smooth structure on
a negatively curved 12-manifold which is homeomorphic to a real hyperbolic manifold. But Dehn
surgery method does. In particular, F.T. Farrell and L.E. Jones [43] proved the following result:

Theorem 4.6. [43] Let n be any integer such that either Θn or Θn−1 is not trivial. Then there exists a closed
Riemannian manifold Mn whose sectional curvatures are all pinched within ε of −1 and such that

(i) dim Mn = n.

(ii) Mn is homeomorphic to a real hyperbolic manifold.

(iii) Mn is not diffeomorphic to any Riemannian locally symmetric space.

We shall now need the following definitions and results to prove Theorem 4.4:

Definition 4.7. A tube f : S1
×Dn−1

→ Mn determines a framed simple closed curve α : S1
→ Mn where

α(y) = f (y, 0) for each y ∈ S1. The framing of α consists of the vector fields X1, X2,..., Xn−1 where Xi(y) is the
vector tangent to the curve at t → f (y, tei) at t = 0. Here ei denotes the point in Rn−1 whose ith coordinate
is 1 and all other coordinates are 0. We use α to denote the curve equipped with this framing. It is called
the core of f . The concordance class of M f ,φ depends only on Mn, the core α of f , and the (pseudo)-isotopy
class of φ denoted by x. We consequently denote the concordance class of M f ,φ byM(α, x). Recall that the
isotopy classes of orientation-preserving diffeomorphisms of Sn−2 are in one-one correspondence with the
elements in the abelian group Θn−1 which is also identified with πn−1(Top/O); therefore, x ∈ Θn−1.
Let α̂ : Mn

→ Sn−1 be the result of applying the Pontryagin-Thom construction to the framed 1-manifold α.
It is explicitly described by α̂( f (y, v)) = q(v) where (y, v) ∈ S1

×Dn−1, and q : Dn−1
→ Dn−1/∂Dn−1 = Sn−1 is

the canonical quotient map if y < image f , then α̂(y) = q(∂Dn−1).

Definition 4.8. Let Mn be a complete (connected) Riemannian manifold with finite volume and whose all
sectional curvatures −1. We say that an element γ ∈ π1(M) is cuspidal if there are arbitrarily short closed
curves in Mn which are freely homotopic to a curve representing γ.

Definition 4.9. Let Mn be a complete (connected) Riemannian manifold with finite volume and whose all
sectional curvatures −1. A closed geodesic γ : S1

→ Mn is said to be t-simple if γ̇ : S1
→ TM is simple, i.e.,

a one-to-one function.

Theorem 4.10. [43] Let Mn, with n ≥ 2, be a complete (connected) Riemannian manifold with finite volume
and all sectional curvatures −1. Let Nn be a complete Riemannian locally symmetric space. If M and N
are homeomorphic, then they are isometrically equivalent (after rescaling the metric on N by a positive
constant).
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Theorem 4.11. [43] Let Mn be a complete (connected) Riemannian manifold with finite volume and all
sectional curvatures −1. Assume Mn is orientable and φ : π1(M) → Z is an epimorphism. Then there is a
t-simple closed geodesic γ : S1

→Mn such that φ([γ]) , 0 where [γ] denotes the free homotopy class of γ.

Proposition 4.12. [43] Given a semi simple element A ∈ SO+(n, 1,Z) of infinite order and a positive integer
m, there exists a finite group G and a homomorphism χ : SO+(n, 1,Z)→ G with the following properties:

(i) The order of χ(A) is divisible by m.

(ii) Let β be any unipotent element in SO+(n, 1,Z) such that χ(B) = χ(A)s where s ∈ Z, then m divides s.

Theorem 4.13. [43] Assume that Mn, with n ≥ 6, is closed (connected) Riemannian manifold with all
sectional curvatures −1 and has positive first Betti number. Given ε > 0 and an infinite order element
y ∈ H1(Mn,Z), there exist a (connected) finite sheeted covering space P : Mn

→ Mn and a simple framed
geodesic α inMn with the following properties:

(i) Some multiple of the homology class represented by α maps to a non zero multiple of y via P∗ :
H1(Mn,Z)→ H1(Mn,Z).

(ii) There is no manifold diffeomorphic to Nn#Σn in the concordance class M(α, x) provided Nn is a
Riemannian locally symmetric space, Σn represents an element in Θn and x is a non zero element in
Θn−1.

(iii) Each concordance classM(α, x) contains a complete and finite volume Riemannian manifold whose
sectional curvatures are all in the interval [−1 − ε,−1 + ε].

Theorem 4.14. [43] Let Mn, with n ≥ 6, be complete (connected) Riemannian manifold with all sectional
curvatures −1. Assume that Mn is a π- manifold (non necessarily compact), γ is a t-simple framed closed
geodesic in Mn and λ : π1(M)→ Z is a homomorphism such that

(i) λ([γ]) = 1 where [γ] denotes the free homotopy class of γ and

(ii) λ(β) is divisible by the order of Θn−1 for each cuspidal element β in π1(Mn). Given a positive real
number ε, there exist a (connected) finite sheeted covering space P :Mn

→ Mn and a simple framed
geodesic α inMn such that the composite p ◦ α = γ.

(iii) There is no manifold diffeomorphic to Nn#Σn in the concordance class M(α, x) provided Nn is a
Riemannian locally symmetric space, Σn represents an element in Θn and x is a non zero element in
Θn−1.

(iv) Each concordance classM(α, x) contains a complete and finite volume Riemannian manifold whose
sectional curvatures are all in the interval [−1 − ε,−1 + ε].

Theorem 4.15. [82] For each integer n > 1, there exist two complete (connected) finite volume Riemannian
manifolds Kn and Nn of dimension n which satisfy the following properties:

(i) All the sectional curvatures of both Kn and Nn are −1.

(ii) Both Kn and Nn have positive first Betti number.

(iii) Kn is compact.

(iv) Nn is not compact.

(v) π1(Nn) is isomorphic to a finite index subgroup of SO+(n, 1,Z).
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Proof of Theorem 4.4 :. Define two sequences of positive integers am and bm as follows: Let am be the order of
the finite group Θm and let bm be the least common multiple of the orders of the holonomy groups of lattices
in the lie group of all rigid motions of Euclidean m-dimensional space. Bieberbach [12] showed that bm
exists and divides the order of the finite group GLm(Z3) because of Minkowski’s theorem [83]. Let Nn be the
Millson manifold in Theorem 4.15. Because of Theorem 2.9, there is a finite sheeted (connected) covering
space P : Nn

→ Nn such that every covering space of Nn is a π-manifold. There is an epimorphism
φ : π1(Nn) → Z since Nn has positive first Betti number. Because of Theorem 4.11, there is a t-simple
framed closed geodesic w in Nn such that φ([w]) , 0 where [w] denotes the fundamental group element
corresponding to w. (Note that [w] is well defined upto conjugacy). Let A ∈ SO+(n, 1,Z) denote the semi
simple matrix corresponding to [w] under an identification of π1(Nn) with a subgroup of SO+(n, 1,Z). Let
χ : SO+(n, 1,Z) → G be a homomorphism satisfying the conclusions of Theorem 4.12 relative to A and
n = an−1bn−1. Note that 1b

n−1 is unipotent for every cuspidal element 1 ∈ π1(Nn). Hence conclusion (2) of
Theorem 4.12 yields the following fact:

(i) if χ(B) = χ(A)s where B is a cuspidal element of π1(Nn), then an−1 divides s.

Consider the homomorphism φ × χ : π1(Nn) → Z × G and let B denote the infinite cyclic subgroup
generated by φ×χ(A) = (φ(A), χ(A)). Let q : Mn

→N
n be the covering space corresponding to (φ×χ)−1

# (B)
and λ : π1(Mn)→ Z be the composite of q#, φ×χ and the identification ofBwithZ determined by making
(φ(A), χ(A)) correspond to 1 ∈ Z. Let Γ be a lift of w to Mn. Since the conditions of Theorem 4.14 are clearly
satisfied, the examples posited in this theorem can now be drawn from the conclusions of Theorem 4.14.

Proof of Theorem 4.6 :. When Θn is non trivial, this result follows from Theorem 3.21 and Theorem 4.10. When
Θn−1 is non trivial, it follows from Theorem 4.13 by setting Mn (in Theorem 4.13) equal to the manifold Kn

of Theorem 4.15.

Remark 4.16.

1. A given topological manifold M can often support many distinct smooth structures. F.T. Farrell and
L.E. Jones constructed in [45] examples of topological manifolds M supporting at least two distinct
smooth structures M1 and M2, where M1 is a complete, finite volume, real hyperbolic manifold,
whileM2 cannot support a complete, finite volume, pinched negatively curved Riemannian metric.
This paper [45] supplements the results of papers [40] and [43] where the opposite phenomenon
was studied. Namely, in these earlier papers examples of distinct smoothings M1 and M2 were
constructed, whereM1 is as above butM2 also supports a complete, finite volume, pinched negatively
curved Riemannian metric. Compact examples were constructed in [40] (see Theorem 3.21) and
noncompact examples in [43] (see Theorem 4.4).

2. Since a finite volume pinched negatively curved metric on a manifold induce an infranil structure on
the cross section of the cusps, we have that the Smooth Rigidity Theorem 3.3 of infranilmanifolds can
be used to prove the following result of Farrell and Jones [45] :

Theorem 4.17. Let n > 5 such that Θn−1 is non trivial. Then there exists a connected smooth manifold Nn

such that

(i) N is homeomorphic to a complete, non-compact, finite volume real hyperbolic manifold.

(ii) N does not admit a finite volume complete pinched negatively curved Riemannian metric.

We shall now need the following definitions and results to prove Theorem 4.17

Definition 4.18. Let Mn be a connected smooth manifold (with n > 5) and f : R ×Dn−1
→ Mn a smooth

embedding which is also a proper map. We call f a proper tube. Let φ : Sn−2
→ Sn−2 be an orientation-

preserving diffeomorphism of the sphere Sn−2 and identify Sn−2 with Dn−1. Then a new smooth manifold
Mn

f ,φ is obtained as a quotient space of the disjoint union
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R ×Dn−1
tMn

\ f (R × int(Dn−1)),

where we identify points

(t, x) and f (t, φ(x)) if (t, x) ∈ R × Sn−2.

Recall that the isotopy class [φ] is identified with an element in Θn−1.

Definition 4.19. Let f : R × Dn−1
→ Mn be a proper tube. We say that it connects different ends of

Mn if there exist a compact subset K in Mn and a positive real number r such that f ([r,+∞) ×Dn−1) and
f ((−∞,−r] ×Dn−1) lie in different components of Mn

\ K.

Theorem 4.20. Let Mn (n > 5) be a parallelizable complete real hyperbolic manifold with finite volume and
f : R×Dn−1

→Mn a proper tube which connects different ends of Mn. If the diffeomorphismφ : Sn−2
→ Sn−2

represents a nontrivial element of Θn−1, then the smooth manifold Mn
f ,φ is

(i) homeomorphic to Mn and

(ii) does not support a complete pinched negatively curved Riemannian metric with finite volume.

Proof of Theorem 4.17 assuming Theorem 4.20:. Let Z denote the additive group of integers. The argument
in the proof of Theorem 4.4 is easily modified to yield a connected, complete, non-compact, parallelizable,
real hyperbolic manifold Mn and an epimorphism λ : π1Mn

→ Z such that λ(β) is divisible by 2 for every
cuspidal element β in π1Mn. Let Nn be the finite sheeted covering space of Mn corresponding to the
subgroup λ−1(2Z) of π1Mn. Then Nn has twice as many cusps as Mn. Consequently, Nn is connected
and has at least two distinct cusps. Therefore, we can construct a proper tube f : R × Dn−1 connecting
different ends ofNn. Let Nn beNn

f ,φ where φ represents a nontrivial element of Θn−1. Now applying Theo-
rem 4.20, in whose statement Mn is replaced byNn, we see that Nn satisfies the conclusions of Theorem 4.17.

The proof of Theorem 4.20 requires some preliminary results :

Lemma 4.21. [45] Let Nn (n > 4) be a closed infranilmanifold which is also a π-manifold. Let Σn be a
homotopy sphere which is not diffeomorphic to Sn. Then the connected sum Nn#Σn is not diffeomorphic
to any infranilmanifold.

Proof. By Theorem 3.3, it is sufficient to show that Nn#Σn is not diffeomorphic to Nn. Recall from Theorem
2.14 that the concordance classes of smooth structures on (the topological manifold) Nn can be put in
bijective correspondence with the homotopy classes of maps from Nn to Top/O denoted [Nn,Top/O] with
the infranilmanifold structure corresponding to the constant map. Let γ : Nn

→ Sn be a degree one map. It
induces a map

γ∗ : Θn = [Sn,Top/O]→ [Nn,Top/O],

and it can be shown that γ∗(Σn) is the concordance class of Nn#Σn. Since Nn is a π-manifold, the argument
given in Theorem 3.23 due to Browder [18] and Brumfiel [20] applies to show that γ∗ is monic. Hence Nn#Σn

is not concordant to Nn. Then a slight modification of the argument given to prove Addendum 3.26 shows
that Nn#Σn is not diffeomorphic to Nn. The modification consists of using Theorem 3.3 in place of Mostow’s
Rigidity Theorem 2.21 and Theorem 2.17 in place of Farrell and Jones Topological Rigidity Theorem 2.18.
This completes the proof of Lemma 4.21. �

By using Theorem 4.21, F.T. Farrell and A. Gogolev recently proved the following result [33]:

Theorem 4.22. Let M be an n-dimensional (n , 4) orientable infranilmanifold with a q-sheeted cover
N which is a nilmanifold. Let Σ be an exotic homotopy sphere of order d from Θn. Then M#Σ is not
diffeomorphic to any infranilmanifold if d does not divide q. In particular, M#Σ is not diffeomorphic to M
if d does not divide q.
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The following final preliminary result for proving Theorem 4.20 strings together facts contained in [14] and
[101]:

Lemma 4.23. [45] Let Mn be a connected complete pinched negatively curved Riemannian manifold with
finite volume. Then there exists a compact smooth manifold M

n
such that

(i) the interior of M
n

is diffeomorphic to Mn and

(ii) the boundary of M
n

is the disjoint union of a finite number of infranilmanifolds.

Remark 4.24. Almost flat Riemannian manifolds are defined and investigated by Gromov in [61]. Buser and
Karcher [14] showed that there exists a compact smooth manifold M satisfying

(i) int(M
n
) = Mn and

(ii) each component of ∂M
n

is an almost flat Riemannian manifold.

Their construction is a consequence of concatenating results from [60], [26], and [71]. But Ruh [101]
(extending results of Gromov [61]) showed that every almost flat manifold is an infranilmanifold.

Lemma 4.23 now follows from the above Remark 4.24.

Definition 4.25. We consider the class C of poly-(finite or cyclic) groups : Γ ∈ C if it has normal series

Γ = Γ1 ⊇ Γ2 ⊇ ..........Γn = 1

such that each factor group Γi \Γi+1 is either a finite group or an infinite cyclic group. If all the factor groups
are infinite cyclic, then Γ is a poly-Z group; a group is virtually poly-Z (poly-Z by finite) if it contains a
poly-Z subgroup of finite index.

Remark 4.26. It is well known ([108]) that C is the same as the class of virtually poly-Z group. F. T. Farrell
and W. C. Hsiang [35] proved the following result :

Theorem 4.27. Let Γ be a torsion-free, poly-(finite or cyclic) group; then Wh(Γ) = 0 and K0(ZΓ) = 0.

Remark 4.28. Theorem 4.27 extends F. T. Farrell and W. C. Hsiang earlier result [34, Theorem 3.1], where
they showed that Wh(Γ) = 0 if Γ is a Bieberbach group, that is, if Γ is torsion-free and contains a finitely
generated abelian subgroup of finite index.

Proof of Theorem 4.20:. Let M
n

be the compactification of Mn posited in Lemma 4.23. Note that M
n

is a
π-manifold since Mn is parallelizable. Let Nn−1 denote the boundary component of M

m
corresponding to

that cusp of Mn which contains the sets f (t ×Dn−1) for all sufficiently large real numbers t. Hence, there
clearly exists a compact smooth manifold Wn with the following properties:

(i) The interior of Wn is diffeomorphic to Mn
f ,φ.

(ii) One of the components of ∂Wn is diffeomorphic to Nn−1#Σn−1, where Σn−1 is an exotic homotopy
sphere representing the element of Θn−1 determined by φ : Sn−1

→ Sn−1.
We assume that Mn

f ,φ, supports a complete pinched negatively curved Riemannian metric with finite
volume. Then, Lemma 4.23 yields a second compactification of Mn

f ,φ, i.e., a compact smooth manifold

M
n
f ,φ satisfying properties (i) and (ii) of the conclusion of Lemma 4.23 with Mn and M

n
replaced

respectively by Mn
f ,φ and M

n
f ,φ. But one easily sees that the boundaries of two smooth compactifications

of the same manifold are smoothly h-cobordant. In particular, Nn−1#Σn−1 is smoothly h-cobordant to an
infranilmanifold. Hence Nn−1#Σn−1 is diffeomorphic to an infranilmanifold because of Theorem 4.27,
where it is shown that Wh(π1Nn−1) = 0. But this contradicts Lemma 4.21 since Nn−1 is a π-manifold.
This completes the proof of Theorem 4.20.
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Remark 4.29.

1. Note that this process can not be used for closed hyperbolic (or negatively curved) manifolds because
they do not have cusps. There are a couple of canonical constructions of closed non-positively curved
manifolds from non-compact finite volume hyperbolic manifolds : (1) the double of a hyperbolic
manifold and (2) the ones obtained by cusp closing due to Schroeder [103].

2. C.S. Aravinda and F.T. Farrell [2] constructed examples of compact topological manifolds M with two
different smooth structuresM1 andM2 such thatM1 carries a Riemannian metric with non-positive
sectional curvature and geometric rank one whileM2 cannot support a nonpositively curved metric.
The examples (M,M1) are of two types. The first class is obtained from Heintzes examples of compact
non-positively curved manifolds, and the second class is obtained using a cusp closing construction.

3. A non-compact finite volume real hyperbolic n-manifold is homeomorphic to the interior of a compact
manifold with boundary. Each boundary component is a flat manifold of dimension n-1. The compact
manifold with boundary can be doubled along its boundary to form DM, the double of M. It is well
known that the hyperbolic metric can be modified on each cusp to produce a metric of non-positive
curvature. In [95], P. Ontaneda constructed examples of non-compact finite volume real hyperbolic
manifolds of dimension greater than five, such that their doubles admit at least three non-equivalent
smoothable PL structures, two of which admit a Riemannian metric of non-positive curvature while
the other does not. Here is the result:

Theorem 4.30. There are examples of non-compact finite volume real hyperbolic n-manifolds M, n > 5,
such that

(i) DM has, at least, three non-equivalent (smoothable) PL structures Σ1, Σ2, Σ3.

(ii) Σ1, Σ2 admit a Riemannian metric with non-positive curvature, and negative curvature outside a
hypersurface.

(iii) Σ3 does not admit a Riemannian metric with non-positive curvature. In fact, Σ3 does not even admit
a piecewise flat metric of non-positive curvature.

Remark 4.31.

1. In [2], examples are given of doubles of non-compact finite volume hyperbolic manifolds with exotic
differentiable structures not admitting a non-positively curved metric. In these examples, the PL
structure does not change.

2. Now, the negatively curved manifolds mentioned up to this point were homeomorphic (hence ho-
motopy equivalent) to hyperbolic manifolds. We call these manifolds of hyperbolic homotopy type.
In [6], Ardanza gave a version of Theorem 3.21 for manifolds that are not homotopy equivalent to
a closed locally symmetric space; in particular, they do not have a hyperbolic homotopy type. We
call these manifolds of non-hyperbolic homotopy type. His constructions use branched covers of
hyperbolic manifolds. Recall that Gromov and Thurston [64] proved that large branched covers of
hyperbolic manifolds do not have the homotopy type of a closed locally symmetric space. Here is the
statement of Ardanza’s result :

Theorem 4.32. For all n = 4k − 1, k ≥ 2, there exist closed Riemannian n-dimensional manifolds M and N
with negative sectional curvature such that they do not have the homotopy type of a locally symmetric
space and

(i) M is homeomorphic to N.

(ii) M is not diffeomorphic to N.
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Remark 4.33. Up to now the hyperbolic manifolds considered were real hyperbolic manifolds. We now
consider Rigidity Questions for complex, quaternionic and Cayley hyperbolic manifolds. Recall that these
are Riemannian m-manifolds whose universal covers, with the pulled back metric, are isometric to complex
hyperbolic space CHm, quaternionic hyperbolic space HHm (m = 4n), or Cayley hyperbolic plane OH2

(m = 16), respectively. These manifolds have sectional curvatures in the interval [−4,−1] and they also
are isometric rigid due to Mostow Rigidity Theorem 2.21. In fact they satisfy the following superrigidity
property in the quaternionic and Cayley cases.

Theorem 4.34. (Hernández [68] and Yau and Zheng [114]) Assume that Mm and Nm are homeomorphic
closed Riemannian manifolds. If Mm is complex, quaternionic (m = 4n,n ≥ 2) or Cayley hyperbolic (m = 16)
and Nm has sectional curvatures in [−4,−1], then Mm and Nm are isometric.

Theorem 4.35. (Corlette [23]) Assume that Mm and Nm are homeomorphic closed Riemannian manifolds.
If Mm is quaternionic (m = 4n,n ≥ 2) or Cayley hyperbolic (m = 16) and Nm has non-positive curvature
operator, then Mm and Nm are isometric (up to scaling).

Theorem 4.36. (Mok, Siu and Yeung [90]) Assume that Mm and Nm are homeomorphic closed Riemannian
manifolds. If Mm is quaternionic (m = 4n,n ≥ 2) or Cayley hyperbolic (m = 16) and the complexified
sectional curvatures of Nm are nonpositive, then Mm and Nm are isometric (up to scaling).

Remark 4.37.

1. The conditions in Theorem 4.34 or Theorem 4.35 for Nm imply the condition in Theorem 4.36 for Nm.

2. For the complex case in Theorem 4.34, Farrell and Jones [44] proved that this Rigidity can not be
strengthened to requiring that the curvatures lie in the interval [−4 − ε,−1 + ε], for some ε > 0 :

Theorem 4.38. Let m be either 4 or any integer of the form 4n + 1 where n ≥ 1 and n is an integer. Given a
positive real number ε, there exists a closed smooth manifold N2m and a homotopy sphere Σ2m

∈ Θ2m such
that the following is true:

(i) N2m is a complex hyperbolic manifold of complex dimension m.

(ii) The smooth manifolds N2m and N2m#Σ2m are homeomorphic but not diffeomorphic.

(iii) The connected sum N2m#Σ2m supports a negatively curved Riemannian metric whose sectional cur-
vatures all lie in the closed interval [−4 − ε,−1 + ε].

Remark 4.39.

1. Note that ε cannot be 0 in the Theorem 4.38 due to Theorem 4.34.

2. Theorem 4.38 showed that the answer to Problem 3.1 for closed complex hyperbolic manifolds is
negative.

2. The idea of the proof of Theorem 4.38 can be paraphrased as follows:
Recall that N and N#Σ are always homeomorphic since dim Σ > 4. Hence we need only choose N
and Σ in Theorem 4.38 so that N and N#Σ are not diffeomorphic in order to satisfy (ii). Letting [M]
denote the concordance class of M, Theorem 3.16 shows that it is sufficient to choose N and Σ so that
[N#Σ] , [N] in C(N); i.e., so that f ∗([Σ]) , 0. It would be convenient at this point to be able to use
Theorem 3.17; but unfortunately this can’t be done since a closed complex n-dimensional hyperbolic
manifold N is never stably parallelizable when n > 1; in fact, its first Pontryagin class is never zero.
This last fact is a result of the close relationship between the tangent bundle TM of M and that of its
positively curved dual symmetric space CPn. In fact, the following result was proven in [44].
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Theorem 4.40. [44] Let M be any closed complex n-dimensional hyperbolic manifold. Then there exists a
finite sheeted coverM of M and a map f :M→ CPn such that the pullback bundle f ∗(TCPn) and TM are
stably equivalent complex vector bundles.

Theorem 4.40 and the Whitney Embedding Theorem yield the following useful result:

Theorem 4.41. [44] Let M2n be a closed complex n-dimensional hyperbolic manifold. Then there exists a
finite sheeted coverM2no f M2n such that the following is true for any finite sheeted cover N2n ofM2n. The
manifold N2n

×D2n+1 is orientation preserving diffeomorphic to a codimension 0-submanifold contained
in the interior of CPn

×D2n+1.

Let fN : N2n
→ S2n and fCPn : CPn

→ S2n denote degree 1 maps. By using Theorem 4.41 and Theorem
2.14, we have the following useful analogue of Theorem 3.17 :

Corollary 4.42. [44] Let M2n be a closed complex n-dimensional hyperbolic manifold andM2n be the finite
sheeted cover of M2n posited in Theorem 4.41. Then the following is true for every finite sheeted cover N2n

ofM. The group homomorphism f ∗
CPn : Θ2n → C(CPn) factors through f ∗N : Θ2n → C(N); i.e., there exists a

homomorphism η : C(N)→ C(CPn) such that

η ◦ f ∗N = f ∗
CPn .

Theorem 4.43. [44] Let M2n be a closed complex n-dimensional hyperbolic manifold with n > 2 andM2n

be the finite sheeted cover of M2n posited in Theorem 4.41. Let N2n be a finite sheeted cover ofM2n and
Σ1,Σ2 ∈ Θ2n; i.e., Σ1 and Σ2 are a pair of homotopy 2n-spheres. If the connected sums N2n#Σ1 and N2n#Σ2
are diffeomorphic, then CPn#Σ1 is concordant to either CPn#Σ2 or CPn#(−Σ2).

Proof. The argument given to prove Addendum 3.26 shows that N2n#Σ1 is concordant to either N2n#Σ2 or
N2n#(−Σ2). But in this argument one must note that both Mostow’s Rigidity Theorem 2.21 and Topological
Rigidity Theorem 2.18 remain valid for compact complex hyperbolic manifolds of (real) dimension greater
than 4. Next by Theorem 2.14 that concordance classes of smooth structures on a smooth manifold X
are in bijective correspondence with homotopy classes of maps from X to Top/O provided dim X > 4. In
particular, Θ2n = π2m(Top/O) and N2n#Σ1 is concordant to either N2n#Σ2 or N2n#(−Σ2) can be interpreted as
showing that

f ∗N(Σ1) = f ∗N(±Σ1). (4.1)

By using Equation (4.1) together with Corollary 4.42 and arguing analogous to the proof of Theorem 3.17,
we see that

f ∗
CPn(Σ1) = f ∗

CPn(±Σ1); (4.2)

i.e., CPn#Σ1 is concordant to either CPn#Σ2 or CPn#(−Σ2). �

Theorem 4.44. [1] Suppose that r ≡ 1 or 2 mod 8 and r > 0. Then πs
r contains an element µr, of order 2, such

that any map h : Sq+r
→ Sq representing µr, induces a non-zero homomorphism of K̃O

q
.

Lemma 4.45. [44] For each positive integer n, there exists a homotopy sphere Σ8n+2
∈ Θ8n+2 such that

CP4n+1#Σ8n+2 is not concordant to CP4n+1. Furthermore there exists a homotopy sphere Σ8
∈ Θ8 such that

CP4#Σ8 is not concordant to CP4. Also for any two elements Σ1, Σ2 ∈ Θ10, CP5#Σ1 is concordant to CP5#Σ2
if and only if Σ1 = Σ2. (Recall that Θ10 is a cyclic group of order 6.)

Proof. We start by recollecting some facts from smoothing theory [20]. There are H-spaces SF, F/O and
Top/O and H-space maps φ : SF→ F/O, ψ : Top/O→ F/O such that

ψ∗ : Θm = πm(Top/O)→ πm(F/O) (4.3)
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is an isomorphism if m = 8n + 2 where n ≥ 1, and is a monomorphism when m = 8. The homotopy groups
of SF are the stable homotopy groups of spheres πs

m ; i.e., πm(SF) = πs
m for m ≥ 1. And

φ∗ : πs
8n+2 → π8n+2(F/O) (4.4)

is an isomorphism for n ≥ 1. Also the image of the homeomorphism

φ∗ : πs
8 → π8(F/O) (4.5)

is ψ∗(Θ8) and its kernel is a cyclic group of order 2. (Recall that πs
8 is the Klein 4-group.) Consider the

following commutative of diagram :

[S2m,Top/O] = Θ2m
f ∗
CPm
−−−−−→ [CPm,Top/O] = C(CPm)yψ∗ yψ∗

[S2m,F/O]
f ∗
CPm
−−−−−→ [CPm,F/O]xφ∗ xφ∗

[S2m,SF]
f ∗
CPm
−−−−−→ [CPm,SF]

(4.6)

In this diagram, the homomorphism φ∗ : [CPm,SF] → [CPm,F/O] is monic for all m ≥ 1 by a result of
Brumfiel [21, p.77]. Recall that the concordance class [CPm#Σ] ∈ [CPm,Top/O] of CPm#Σ is f ∗

CPm([Σ]) when
m > 2, and that [CPm] = [CPm#S2m] is the zero element of this group.
Let µ8n+2 be the element of order 2 in πs

8n+2 (n ≥ 1) given by Theorem 4.44. Let Σ8n+2
∈ Θ8n+2 such that

Σ8n+2 = ψ−1
∗ (φ∗(µ8n+2)). (4.7)

We also set Σ8 = ψ−1
∗ (φ∗(x)) where x is any element which is not in the kernel of the homomorphism (4.5).

Recall that [X, SF] can be identified with the 0th stable cohomotopy group π0(X). Let h : Sq+8n+2
→ Sq

represent µ8n+2 ∈ πs
8n+2. By Theorem 4.44, h induces a non-zero homomorphism on K̃O

q
(). Adams and

Walker [7] showed that Σq fCP4n+1 : ΣqCP4n+1
→ Sq+8n+2 induces a monomorphism on K̃O

q
(). Then the

composite map
h ◦ Σq fCP4n+1 : ΣqCP4n+1

→ Sq (4.8)

induces a non-zero homomorphism on K̃O
q
(). This shows that

f ∗
CP4n+1(µ8n+2) = [h ◦ Σq fCP4n+1] , 0.

Since the homomorphism φ∗ : [CPm,SF]→ [CPm,F/O] is monic, by the commutative diagram (4.6) where
m = 4n + 1, we have

ψ∗( f ∗
CP4n+1(Σ8n+2)) = φ∗( f ∗

CP4n+1(µ8n+2)) , 0.

This implies that f ∗
CP4n+1(Σ8n+2) , 0 and hence CP4n+1#Σ8n+2 is not concordant to CP4n+1. This completes

the proof of the first sentence of Lemma 4.45.
A similar argument but using [20, Lemma I.9] in place of Theorem 4.44 and [7] shows that the second
sentence of Lemma 4.45 is also true. Consider the homomorphism induced by f ∗

CP5

Θ10 = [S10,Top/O]→ [CP5,Top/O] (4.9)

It becomes a monomorphism when localized at the prime 3 since πi(Top/O) localized at 3 is the zero group
for all i < 10. This monomorphism together with the first sentence of Lemma 4.45 and the fact that Θ10 is
cyclic of order 6 imply the truth of the last sentence of Lemma 4.45. �
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Lemma 4.46. [44] Given a positive integer n, there exists a family br(, ) of complete Riemannian metrics on
R2n which is parameterized by the real number r ≥ e and has the following three properties:

(i) The sectional curvatures of br(, ) are all contained in [−4 − ε(r),−4 + ε(r)] where ε(r) is a R+ valued
function such that

lim
r→∞

ε(r) = 0.

(ii) The ball of radius r about 0 in (R2n, br) is isometric to a ball of radius r inH2n.

(iii) There is a diffeomorphism f from (R2n, br) to CHn which maps the complement of the ball of radius
r2 centered at 0 isometrically to the complement of the ball of radius r2 centered at f (0).

Since the proof of Theorem 3.24 was local in nature, one sees by examining it that the following stronger
result was actually proven:

Lemma 4.47. [44] Given a positive integer n > 4 and a positive real number ε, there exists a positive real
number α such that the following is true. Let Mn be any n-dimensional Riemannian manifold whose sec-
tional curvatures are contained in the interval [a, b]. Suppose that Mn contains a codimension 0-submanifold
which is isometric to an open ball of radius α inHn. Then given any homotopy sphere Σ ∈ Θn, there exists
a Riemannian metric on Mn#Σ whose sectional curvatures are all contained in the interval [a′, b′] where
a′ = min{a,−1 − ε} and b′ = max{b,−1 + ε}.

Lemma 4.47 and Theorem 4.46 have the following important consequence:

Theorem 4.48. Let M2n be a closed complex hyperbolic manifold of complex dimension n and letM2n be
the finite sheeted cover of M2n posited in Theorem 4.41. Given ε > 0, there exists a finite sheeted coverN2n

ofM2n such that, for any finite sheeted cover N2n ofN2n and any homotopy sphere Σ ∈ Θ2n, the connected
sum N2n#Σ supports a Riemannian metric all of whose sectional curvatures lie in the interval [−4−ε,−4+ε].

Proof. Let α be the number posited in Lemma 4.47 relative to 2n and ε. Fix a number r ≥ αwhose magnitude
will be presently determined. By Theorem 2.11, π1M

2n is residually finite. Arguing as in Proof of Theorem
3.21, we construct a finite sheeted cover N2n ofM2n such that N2n contains a codimension-0 submanifold
which is isometric to an open ball of radius 2r2 in CHn. Let N2n be any finite sheeted cover of N2n. Then
N2n contains a codimension-0 submanifold U2n which is also isometric to an open ball of radius 2r2 in
CHn. Using Lemma 4.46, we can put a new Riemannian metric b(, ) on N2n (changing it only on U2n) such
that all the sectional curvatures of (N2n, b) lie in the interval [−4 − ε(r),−4 + ε(r)] and (N2n, b) contains a
codimension-0 submanifold isometric to an open ball of radius r ∈H2n. Here ε(r) is a positive real number
which depends only on r (and n) and ε(r) as r→∞. Now pick r large enough so that ε(r) ≤ ε. Then Lemma
4.47 is applicable to (N2n, b) completing the proof of Theorem 4.48. �

The following two results are immediate consequences of stringing together Theorem 4.43, Lemma 4.45
and Theorem 4.48.

Theorem 4.49. Let M2m be any closed complex hyperbolic manifold of complex dimension m where m be
either 4 or any integer of the form 4n + 1 where n ≥ 1 and n is an integer. Let Σ2m

∈ Θ2m denote the specific
homotopy sphere posited in Lemma 4.45. Given a positive real number ε, there exists a finite sheeted cover
N

2m of M2m such that the following is true for any finite sheeted cover N2m ofN2m:

(i) The connected sum N2m#Σ2m supports a negatively curved Riemannian metric whose sectional cur-
vatures all lie in the closed interval [−4 − ε,−1 + ε].

(ii) The smooth manifolds N2m and N2m#Σ2m are not diffeomorphic.
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Addendum 4.50. Let M10 be any closed complex hyperbolic manifold of complex dimension 5. Let Σ10
∈ Θ10

denote the specific homotopy sphere posited in Lemma 4.45. Given a positive real number ε, there exists a
finite sheeted coverN10 of M10 such that the following is true for any finite sheeted cover N10 ofN10 :
There exist two other homotopy spheres Σ10

1 and Σ10
2 (besides Σ10 such that the following is true.

(i) The manifolds N10, N10#Σ10, N10#Σ10
1 and N10#Σ10

2 are pairwise non diffeomorphic.

(ii) Each of the manifolds N10#Σ10, N10#Σ10
1 and N10#Σ10

2 supports a negatively curved Riemannian metric
whose sectional curvatures lie in the interval
[−4 − ε,−1 + ε].

By using Theorem 4.43 and Theorem 4.48, the author proved the following result, which gives counterex-
amples to smooth rigidity Problem 3.1 for negatively curved manifolds [100]:

Theorem 4.51. Let n be either 7 or 8. Given any positive number ε ∈ R, there exists a pair of closed
negatively curved Riemannian manifolds M and N having the following properties:

(i) M is a complex n-dimensional hyperbolic manifold.

(ii) The sectional curvatures of N are all in the interval [−4 − ε,−1 + ε].

(iii) The manifolds M and N are homeomorphic but not diffeomorphic.

Remark 4.52.

1. Theorem 4.38 now follows from Theorem 4.49 and Theorem 2.10.

2. Since M2m#Σ2m (m > 2) is always homeomorphic to M2m, we are left with the problem of detecting
when M2m#Σ2m and M2m are not diffeomorphic by Farrell and Jones [44]. Using Mostow’s Rigidity
Theorem 2.21 and Topological Rigidity Theorem 2.18 together with the fundamental paper of Kervaire
and Milnor [74], this question is essentially reduced to a (non-trivial) question about the stable
homotopy group π0(M2m). To address this question F.T. Farrell and L.E. Jones showed in Theorem
4.49, using a result of Deligne and Sullivan [25], that all ”sufficiently large” finite sheeted covers of
M2m embed in CPm

×R2m+1 with trivial normal bundle. This allows us to look at the above question
via Theorem 4.43 on the specific manifold CPm instead of the arbitrary compact complex hyperbolic
manifold M2m (see Corollary 4.42 and the proof of Lemma 4.45).

5. Tangential maps and exotic smoothings of locally symmetric spaces

In this section we discuss the existence of tangential map between dual symmetric spaces which was
constructed in [91]. We also discuss that how tangential map can be used to obtain exotic smooth structures
on a compact locally symmetric space of non-compact type.

In [80], Y. Matsushima constructed a map j∗ : H∗(Xu,R) → H∗(X,R), where X = Γ \ G/K is a compact
locally symmetric space of non-compact type and Xu is its global dual twin of compact type. Moreover, Y.
Matsushima showed that this map is monomorphic and, upto a certain dimension depending only on the
Lie algebra of G, epimorphic. A refinement of Matsushimas argument, due to H. Garland [58] and Borel
[17], allowed the later to extend these results to the case where X is non-compact but has a finite volume.
However, since the construction of the map j∗ is purely algebraic (in terms of invariant exterior differential
forms), the following natural question was asked by B. Okun [91] :

Question 5.1. Is there a topological map X→ Xu inducing j∗ in cohomology?.
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Remark 5.2. For the case of X being a complex hyperbolic manifold this kind of map was constructed by
F.T. Farrell and L.E. Jones in Theorem 4.40, where it was used to produce non-trivial smooth structures
on complex hyperbolic manifolds. In general, the answer to this question is negative, since Matsushima’s
map does not necessarily take rational cohomology classes into rational ones, so it cannot be induced by a
topological map. However, Boris Okun [91] showed that there is a finite sheeted cover X̂ of X = Γ \ G/K
and a tangential map (i.e., a map covered by a map of tangent bundles) X̂ → Xu, and also showed that in
the case where G and K are of equal rank, k∗ coincides with Matsushima’s map j∗ and therefore has nonzero
degree.

We shall recall the following definition and result to prove the existence of a tangential map between dual
symmetric spaces [91]:

Definition 5.3. Let Mn and Nn be smooth n-dimensional manifolds. A smooth map k : Mn
→ Nn is called

tangential map if there is a smooth map h : TM→ TN such that

(a) k ◦ π1 = h ◦ π2, where π1 : TM→M and π2 : TN→ N be tangent bundle projections.

(b) For every x ∈M, the map π−1
1 (x)→ π−1

2 (k(x)) induced by h is an isomorphism between vector spaces.

Lemma 5.4. Any map 1 : X→ Xu between the dual symmetric spaces which preserves canonical K-bundle
structure is tangential.

The following theorem provides the existence of a tangential map between dual symmetric space due to B.
Okun [91]:

Theorem 5.5. Let X = Γ \ G/K and Xu = Gu/K be dual symmetric spaces. Then there exist a finite sheeted
cover X̂ of X (i.e., a subgroup Γ̂ of finite index in Γ, X̂ = Γ̂ \ G/K) and a tangential map k : X̂→ Xu.

Proof. Consider the canonical principal fiber bundle with structure group K over X: p : Γ\G→ Γ\G/K. If we
extend the structure group to the group G we get a flat principal bundle: Γ \G×K G = G \K×Γ G→ Γ \G/K
[76]. Extend the structure group further to the group Gc. The resulting bundle is a flat bundle with an
algebraic linear complex Lie structure group, so by Theorem of Deligne and Sullivan [25] there is a finite
sheeted cover X̂ of X such that the pullback of this bundle to X̂ is trivial. This means that for X̂ the bundle
obtained by extending the structure group from K to Gu is trivial too, since Gu is the maximal compact
subgroup of Gc . Consider now the following diagram:

Xu

Cpu
��

X̂

'0   

k
>>

C
p̂

// BK

i
��

BGu

Here the map cp̂ is a classifying map for the canonical bundle p̂ over X̂. The map i, induced by
standard inclusion K ⊂ G is a fibration with a fiber Xu = Gu/K. Note that the inclusion of Xu in BK as a
fiber also classifies canonical principal bundle pu : Gu → Gu/K. By the argument above, the composition
i ◦ cp̂ : X̂ → BGu is homotopically trivial. Choose a homotopy contracting this composition to a point. As
the map i is a fibration we can lift this homotopy to BK. The image of the end map of the lifted homotopy
is contained in the fiber Xu, since its projection to BGu is a point. Thus, we obtain a map k : X̂→ Xu which
makes the upper triangle of the diagram homotopy commutative. It follows that the map k preserves
canonical bundles on the spaces X̂ and Xu : k∗(pu) = p̂. By Lemma 5.4, the map k is tangential. �
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Remark 5.6. Both Theorem 4.40 and Theorem 5.5 depend on a deep result about flat complex vector bundles
due to Deligne and Sullivan [25]. Their result was also used by Sullivan in [106] to prove Theorem 2.9.

The following theorem showed that the above tangential map coincides with Matsushima’s map and hence
has a non zero degree [91]:

Corollary 5.7. Let X = Γ \ G/K and Xu = Gu/K be dual symmetric spaces. Let X̂ be the finite sheeted cover
of X and k : X̂ → Xu be the tangential map, constructed in Theorem 5.5. If the groups Gu and K are of
equal rank and the group Γ is cocompact in G then the map induced by k in cohomology coincides with
Matsushima’s map j∗ and the map k has a non zero degree.

We will now discuss how non triviality of certain types of smooth structures is preserved under tangential
maps. First, we recall the following very useful theorem :

Theorem 5.8. [74] Let ξ be a k-dimensional vector bundle over an n-dimensional space, k > n. If the
Whitney sum of ξ with a trivial bundle is trivial, then ξ itself is trivial.

The following theorem is a generalization of Theorem 4.41 and is due to Boris Okun [92]:

Theorem 5.9. Let k : Mn
→ Nn be a tangential map between two closed smooth n-dimensional manifolds.

Then Mn
×Dn+1 is diffeomorphic to a co-dimension 0-submanifold of the interior of Nn

×Dn+1.

Proof. Let i : Nn
→ Nn

×Dn+1 be the standard inclusion i(x) = (x, 0) and p : Nn
×Dn+1

→ Nn be the projection
on the first factor p(x, y) = x. Consider the composition i ◦ k : Mn

→ Nn
×Dn+1. By Whitney Embedding

Theorem, this composition can be approximated by an embedding w : Mn
→ Nn

×Dn+1, such that w is
homotopic to i ◦ k. Let ν denote the normal bundle of the manifold Mn considered as a sub manifold of
Nn
×Dn+1 via w. By definition of the normal bundle, we have:

w∗(T(Nn
×Dn+1)) = ν ⊕ T(Mn)

On the other hand, T(Nn
× Dn+1) = p∗(T(Nn)) ⊕ εn+1, where εn+1 denotes the (n + 1)-dimensional trivial

bundle. Combining these two equations together, we obtain:

ν ⊕ T(Mn) = w∗(p∗(T(Nn))) ⊕ εn+1

Since by construction w ' i◦k, we have w∗ = (i◦k)∗ = k∗◦i∗. Note that i∗◦p∗ = (p◦i)∗ = id and k∗T(Nn) = T(Mn)
since the map k is tangential. It follows that ν ⊕ T(Mn) = ν ⊕ εn+1 i.e., the bundle ν is stably trivial. By
Theorem 5.8, ν is trivial itself; therefore, the tubular neighborhood of Mn in Nn

×Dn+1 is diffeomorphic to
Mn
×Dn+1. �

The following theorem is a generalization of Corollary 4.42 and is due to Boris Okun [92]:

Theorem 5.10. Let k : Mn
→ Nn be a tangential map between n-dimensional manifolds. Then there exist a

map 1 : Σn+1Nn
→ Σn+1Mn such that the suspension Σn+1 fN and the composite Σn+1 fM ◦ 1 are homotopic

as maps from Σn+1Nn
→ Σn+1Sn = S2n+1.

Proof. Fix base points x0 ∈ Mn and y0 ∈ Nn. Let B denote a small neighborhood of x0 in Mn. By general
position, we may assume that the embedding F : Mn

×Dn+1
→ Nn

×Dn+1 of Theorem 5.9 has the additional
property that:

Im(F) ∩ (y0 ×D
n+1) ⊆ F(B ×Dn+1)

The suspensions Σn+1Mn and Σn+1Nn can be identified as the following quotient spaces:

Σn+1Mn = Mn
×Dn+1

Mn
× ∂Dn+1

∪ B ×Dn+1 , Σn+1Nn = Nn
×Dn+1

Nn
× ∂Dn+1

∪ y0 ×D
n+1 .
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Let ∗ denote the point in Σn+1Mn corresponding to the subset Mn
× ∂Dn+1

∪ B ×Dn+1 in the first formula.
Define 1 : Σn+1Nn

→ Σn+1Mn by

1(y) =


F−1(y) i f y ∈ F((Mn

− B) × Int(Dn+1)).

∗ , otherwise.

It is easy to see that Σn+1 fN and the composite Σn+1 fM ◦ 1 are homotopic. �

The following lemma shows that, atleast for this type of variation of smooth structures, tangential maps
preserve non triviality of smooth structures:

Theorem 5.11. [92] Let k : Mn
→ Nn be a tangential map between n-dimensional manifolds and assume

n ≥ 7. Let Σ1 and Σ2 be homotopy n-spheres. Suppose that Mn#Σn
1 is concordant to Mn#Σn

2 , then Nn#Σn
1 is

concordant to Nn#Σn
2 .

Proof. By Theorem 2.14, we know that concordance classes of smooth structures on a smooth manifold Zn

(n > 4) are in one-to-one correspondence with homotopy classes of maps from Zn to Top/O denoted by
[Zn,Top/O]. The space Top/O is an infinite loop space. In particular, Top/O = Ωn+1(Y) for some space Y.
We have suspension isomorphism [Zn,Top/O] � [Σn+1Zn,Y], so the smooth structures on Zn can be thought
of as (homotopy classes of) maps from Σn+1Zn to Y. In this way a connected sum Zn#Σn gives rise to a
map from Σn+1Zn to Y, which we will denote by zΣ. Using the standard sphere Sn in place of Zn we see
that an exotic sphere Σn itself corresponds to a map sΣ : S2n+1

→ Y. The naturality of this construction and
Theorem 5.10 imply that the diagram

Σn+1Nn

1

��

nΣi ##

Σn+1 fN

**
Y S2n+1

sΣioo

Σn+1Mn

mΣi

;;

Σn+1 fM

44

is homotopy commutative for i = 1, 2. In particular, we see that nΣi ' mΣi ◦ 1. Since the connected sums
Mn#Σn

1 and Mn#Σn
2 are concordant. It follows that the maps mΣ1 and mΣ2 are homotopic, and therefore the

connected sums Nn#Σn
1 and Nn#Σn

2 are concordant. �

We will now discuss that how to produce nonstandard smooth structures on the non-positively curved
symmetric spaces. For that we will use the following rigidity result.

Theorem 5.12. (Eberlein and Gromov Strong Rigidity Theorem [27, 10]) Let X be a compact locally sym-
metric space of non-compact type such that all metric factors of X have rank greater than 1. Let M be a
closed connected non-positively curved Riemannian manifold. Then any isomorphism from π1(X) to π1(Y)
is induced by a unique isometry (after adjusting the normalizing constants for X).

The following lemma provides a connection between concordance and diffeomorphism classes of smooth
structures for locally symmetric spaces by using the argument given in Theorem 3.25:

Theorem 5.13. [92] Let X = Γ \ G/K be a compact orientable symmetric space of non-compact type such
that the universal cover G/K of X has no 2-dimensional metric factor projecting to a closed subset of X and
dim X ≥ 7. Let Σ1 and Σ2 be homotopy spheres of the same dimension as X. Suppose X#Σ1 is diffeomorphic
to X#Σ2. Then X#Σ1 is concordant either to X#Σ2 or to X#(−Σ2).
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Proof. We can assume that the connected sums of X with Σ1 and Σ2 are taking place on the boundary of a
small metric ball B in X, so we think of X#Σ1 and X#Σ2 as being topologically identified with X, and the
changes in the smooth structure happen inside B. Let f : X#Σ1 → X#Σ2 be a diffeomorphism.
First we consider a special case, where f : X → X is homotopic to the identity. Thus we have a homotopy
h : X × [0, 1]→ X with h|X × 1 = f and h|X × 0 = id. Define H : X × [0, 1]→ X × [0, 1] by H(x, t) = (h(x, t), t).
Note that H is a homotopy equivalence which restricts to a homeomorphism on the boundary. Therefore,
by Farrell and Jones Topological Rigidity Theorem 2.18, H is homotopic rel boundary to a homeomorphism
Ĥ : X× [0, 1]→ X× [0, 1]. We put the smooth structure X#Σ2× [0, 1] on the range of Ĥ and, by pulling it back
along Ĥ, obtain the smooth structure N on the domain of Ĥ. Since, by construction, Ĥ : N → X#Σ2 × [0, 1]
is a diffeomorphism, Ĥ|X × 1 = f and Ĥ|X × 0 = id, N is a concordance between X#Σ1 and X#Σ2.

The general case reduces to the above special case as follows: If f : X → X is an orientation preserving
homeomorphism, then, by the Strong Mostow Rigidity Theorem 2.21, f−1 is homotopic to an orientation
preserving isometry 1. Since one can move around small metric balls in X by smooth isotopies, X is
homotopic to a diffeomorphism 1̂ : X → X such that 1̂|B = id. Since X#Σ2 is obtained by taking the
connected sum along the boundary of B and 1̂|B = id and 1̂|X \ B is a diffeomorphism, it follows that
1̂ : X#Σ2 → X#Σ2 is also a diffeomorphism. Therefore the composition
1̂◦ f : X#Σ1 → X#Σ2 is a diffeomorphism homotopic to the identity and it follows from the previous special
case that X#Σ1 and X#Σ2 are concordant. If f is an orientation reversing homeomorphism, then similar
argument produces a diffeomorphism 1̂ : X#Σ2 → X#Σ2 and it follows that X#Σ1 is concordant to X#Σ2. �

The following theorem provides examples of exotic smooth structures on locally symmetric space of
noncompact type, which give counterexamples to smooth rigidity Problem 3.1:

Theorem 5.14. [92] Let X = Γ \ G/K and Xu = Gu/K be compact dual symmetric spaces such that the
universal cover G/K of X has no 2-dimensional metric factor projecting to a closed subset of X and assume
dim X ≥ 7. Let X̂ be the oriented finite sheeted cover of X, the existence of which was established by
Theorem 5.5. Let Σ1 and Σ2 be homotopy spheres of the same dimension as X. If the connected sum Xu#Σ1

is not concordant to both Xu#Σ2 and Xu# − Σ2 then X̂#Σ1 and X̂#Σ2 are not diffeomorphic.

Proof. Suppose the connected sums X̂#Σ1 and X̂#Σ2 are diffeomorphic. Then, by Theorem 5.13, X̂#Σ1 is
concordant either to X̂#Σ2 or to X̂#Σ2. It follows from Theorem 5.11 that either Xu#Σ1 is concordant to
Xu#Σ2 or to Xu#(−Σ2), which contradicts the hypothesis. This contradiction proves the theorem. �

Applying Theorem 5.14 to the Example 2.4, we obtain the following corollary [92]:

Corollary 5.15. Let G = Gc be a complex semi simple Lie group, and let X = Γ \ Gc/Gu and Xu = Gu be
compact dual symmetric spaces such that dim X ≥ 7. Let X̂ be the oriented finite sheeted cover of X, the
existence of which was established by Theorem 5.5. Let Σ1 and Σ2 be two non diffeomorphic homotopy
spheres of the same dimension as X. Then the connected sums X̂#Σ1 and X̂#Σ2 are not diffeomorphic.

Proof. Since the group Gc is a complex Lie group, by Theorem 5.14, it suffices to show that the connected
sum Gu#Σ1 is not concordant to both Gu#Σ2 and Gu#(−Σ2). Since the tangent bundle of a Lie group is trivial.
Therefore the constant map Gu → Sdim Gu is tangential, and the required statement follows from Theorem
5.11. �

Remark 5.16.

1. The above Corollary 5.15 provides examples of exotic smooth structures on locally symmetric space
of higher rank. Therefore by Eberlein and Gromov Rigidity Theorem 5.12 these examples do not
admit Riemannian metric of non-positive curvature. This answers in the negative the question, due
to Eberlein, of whether a smooth closed manifold, homotopy equivalent to a non-positively curved
one, admits a Riemannian metric of non-positive curvature. Rank 1 examples with the same property
were independently constructed in [2] by C.S. Aravinda and F.T. Farrell.
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2. F.T. Farrell and L.E. Jones conjectured in [44] as follows :

Conjecture 5.17. Given a positive real number ε, there exist pairs of closed smooth manifolds M8
1, M8

2 and
M16

1 , M16
2 such that the following is true:

(i) M8
2 is a quaternionic hyperbolic manifold of real dimension 8 and M16

2 is a Cayley hyperbolic manifold
(of real dimension 16).

(ii) The smooth manifolds M2m
1 and M2m

2 where m = 4 and 8 are homeomorphic but not diffeomorphic.

(iii) M2m
1 (m = 4 and 8) supports a negatively curved Riemannian metric whose sectional curvatures all

lie in the closed interval [−4 − ε,−1 + ε].

Remark 5.18. C.S. Aravinda and F.T Farrell proved Conjecture 5.17 for the Cayley case in [3] where they used
Theorem 5.14 and Theorem 5.5 to construct exotic smooth structures on M2m

1 supporting almost 1
4 -pinched

negatively curved metric. Here is the result :

Theorem 5.19. Let M16 be any closed Cayley hyperbolic manifold. Given a positive real number ε, then
there exists a finite sheeted coverN16 of M16 such that the following is true for any finite sheeted cover N16

ofN16.

(i) N16#Σ16 is not diffeomorphic to N16;

(ii) N16#Σ16 supports a negatively curved Riemannian metric whose sectional curvatures all lie in the
closed interval [−4 − ε,−1].

Remark 5.20.

1. Here Σ16 is the unique closed, oriented smooth 16-dimensional manifold which is homeomorphic
but not diffeomorphic to the sphere S16. The existence and uniqueness of Σ16 is a consequence of the
following Proposition 5.21.

2. Theorem 5.19 provides counterexamples to smooth rigidity Problem 3.1.

Proposition 5.21. [3] The group of smooth homotopy spheres Θ16 is cyclic of order 2.

Proof. We have the following surgery exact sequence from [108]:

0→ Θ16 → π16(F/O)→ L16(O) = Z.

This sequence together with the fact that Θ16 is a finite group show that Θ16 can be identified with the
subgroup S of π16(F/O) consisting of all elements having finite order. Next consider the exact sequence

π16(O)
J
→ π16(F)→ π16(F/O)→ π15(O) = Z.

This sequence and the fact that π16(F) = πs
16 is a finite group show that S can be identified with cokernel of

J. Recall now that Adams [1] proved that J is monic. This result together with the facts that π16(O) = Z2
and πs

16 = Z2 ⊕Z2 ([107]) show that Θ16 = Z2. �

To prove Theorem 5.19, we have to solve the following two problem :

1. How to put an almost 1
4 -pinched negatively curved metric on N4m#Σ4m.

2. How to show that N16#Σ16 is not diffeomorphic to N16. (N16#Σ16 is clearly homeomorphic to N16.)

To solve the first problem, in view of Lemma 4.47, it suffices to construct a 1-parameter family br(, ) of
Riemannian metrics on R16 indexed by r ∈ [e,∞) which satisfy the following properties:
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(i) The sectional curvatures of br(, ) lie in the closed interval [−4− ε(r),−1] where ε(r) > 0 and ε(r)→ 0 as
r→∞.

(ii) The ball of radius r about 0 in (R16, br) is isometric to a ball of radius r in the real hyperbolic space
RH16.

(iii) The complement of the ball of radius r2 about 0 in (R16, br) is isometric to the complement of a ball of
radius r2 in OH2.

Remark 5.22.

1. C.S. Aravinda and F.T. Farrell [3] constructed these metrics using the explicit description of the
Riemannian curvature tensor for OH2 given in [11]. Now by using Lemma 4.47, we can put almost
1
4 -pinched negatively curved Riemannian metric on N16#Σ16 provided N16 has sufficiently large
injectivity radius. Here N16 is a closed, orientable Cayley hyperbolic manifold. This injectivity radius
condition is satisfied when we pass to sufficiently large finite sheeted covers of N16 since π1(N16) is a
residually finite group.

2. Theorem 5.5 gives a finite sheeted cover N16 of M16 and a nonzero degree tangential map f : N16
→

OP2. And we can arrange that N16 has arbitrarily large preassigned injectivity radius r by taking
larger covers since π1(N16) is residually finite group. Once r is determined, this is the manifold N16

in Theorem 5.19.

The argument in Theorem 4.43 is now easily adapted to yield the following lemma since all the relevant
Theorems 2.14, 2.21 and 2.18 remain valid.

Lemma 5.23. [3] Let N16 be any finite sheeted cover ofN16. If N16#Σ16 is diffeomorphic to N16, thenOP2#Σ16

is concordant to OP2.

Remark 5.24. The octave projective plane OP2 is the mapping cone of the Hopf map p : S15
→ S8. Let

φ : OP2
→ S16 be the collapsing map obtained by identifying S16 with OP2/S8 in an orientation preserving

way. By making delicate use of some calculations of Toda [107] on the stable homotopy groups of spheres,
C.S. Aravinda and F.T Farrell proved the following :

Lemma 5.25. [3] The homomorphism φ∗ : [S16,Top/O]→ [OP2,Top/O] is monic.

Remark 5.26.

1. Lemma 5.25 implies that OP2#Σ16 is not concordant to OP2 since the concordance classes of smooth
structures on a smooth manifold X are in bijective correspondence with [X,Top/O] provided dim X >
4. Thus assertion (i) of the Theorem 5.19 is a direct consequence of Lemma 5.23 and Lemma 5.25.
Since Borel [16] has constructed closed Riemannian manifolds M16 whose universal cover is OH2,
Theorem 5.19 produces the examples for Conjecture 5.17.

2. C.S. Aravinda and F.T. Farrell also produce the examples for Conjecture 5.17 for the quaternionic case
in [4]. Here is the result :

Theorem 5.27. Let M4m be any closed Riemannian manifold whose universal cover isHHm where m = 2,
4 or 5. Then there exists a finite sheeted cover N4m of M4m such that the following is true for any finite
sheeted cover N4m of N4m. Let Σ4m be any exotic homotopy sphere satisfying the extra constraint when
m = 5 that 6[Σ20] , 0. Then

(i) N4m#Σ4m is not diffeomorphic to N4m;

(ii) N4m#Σ4m supports a Riemannian metric whose sectional curvatures are all negative.
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Addendum 5.28. The three manifolds N20, N20#Σ20
1 and N20#Σ20

2 are pairwise non-diffeomorphic when order
[Σ20

1 ] = 8 and order [Σ20
2 ] = 4 in Θ20.

Remark 5.29. Recall that Kervaire and Milnor [74] showed that each Θm is a finite group; in particular, the
abelian groups Θ8, Θ16 and Θ20 have orders 2, 2, 24, respectively.

To prove Theorem 5.27, we have to solve the following two problem :

1. How to put a negatively curved metric on N4m#Σ4m.

2. How to show that N4m#Σ4m is not diffeomorphic to N4m. (N4m#Σ4m is clearly homeomorphic to N4m.)

To solve the first problem by proving the following theorem :

Theorem 5.30. [4] Let M4m be any closed Riemannian manifold whose universal cover is HHm (m ≥ 2).
Then there exists a finite sheeted coverM4m such that the following is true for any finite sheeted cover N4m

ofM4m. Let Σ4m be any homotopy sphere. Then N4m#Σ4m supports a Riemannian metric whose sectional
curvatures are all negative.

To prove Theorem 5.30, in view of Lemma 4.47, it suffices to construct a 1-parameter family br(, ) of
Riemannian metrics on R4m indexed by r ∈ [e,∞) which satisfy the following properties:

(i) The sectional curvatures of br(, ) are all negative provided r is sufficiently large.

(ii) The ball of radius r about 0 in (R4m, br) is isometric to a ball of radius r in the real hyperbolic space
RH4m.

(iii) The complement of the ball of radius r2 about 0 in (R4m, br) is isometric to the complement of a ball of
radius r2 inHHm.

Remark 5.31. C.S. Aravinda and F.T Farrell in [4] constructed these metrics which is similar to that made
in [44, 3] but the verification of property (i) requires a different technique. They used O’Neills semi-
Riemannian submersion formula [93, pp.213] to estimate the curvatures rather than getting an explicit
formula as is done in [44, 3]. By using this result together with Lemma 4.47, they put a negatively curved
Riemannian metric on N4m#Σ4m provided N4m has sufficiently large injectivity radius. Here N4m is a closed,
orientable quarternionic hyperbolic manifold. This injectivity radius condition is satisfied when we pass to
sufficiently large finite sheeted covers of N4m since π1(N4m) is a residually finite group. Motivated by this
construction, C.S. Aravinda and F.T Farrell [4] asked, more generally, the following naive question :

Question 5.32. Let b(, ) be a complete Riemannian metric on Rm whose sectional curvatures are bounded
above by −1 and let r be a positive real number. Does there exist a second complete, negatively curved
Riemannian metric b̄(, ) on Rm satisfying :

(i) A metric ball of radius r in RHm can be isometrically embedded in (Rm, b̄).

(ii) b and b̄ agree at infinity, i.e., off some compact subset of Rm.

Remark 5.33.

1. An affirmative answer to Question 5.32 would allow to extend Theorem 5.30 to arbitrary closed
negatively curved manifolds M with residually finite fundamental groups by setting b equal to the
Riemannian metric on the universal cover of M.

2. Theorem 5.5 gives a finite sheeted cover N4m of M4m and a nonzero degree tangential map f :
N

4m
→ HPm. Since π1(N4m) is residually finite group, we can arrange that N4m has arbitrarily large

preassigned injectivity radius r by taking larger covers. Once r is determined, this is the manifold
N

4m in Theorem 5.27.
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The argument in Theorem 4.43 is now easily adapted to yield the following lemma since all the relevant
Theorems 2.14, 2.21 and 2.18 remain valid.

Lemma 5.34. [4] Let N4m be any finite sheeted cover of N4m. If N4m#Σ4m is diffeomorphic to N4m, then
HPm#Σ4m is concordant toHPm.

C.S. Aravinda and F.T. Farrell [4] proved the following result using the solution of Adams Conjecture
together with calculations of the stable homotopy groups of spheres through dimension 20 ([98, 107, 84]):

Corollary 5.35. Let φ : HPm
→ S4m denote a degree 1 map. Then φ∗ : Θ4m = [S4m,Top/O]→ [HPm,Top/O]

is non-zero if m = 2, 4 or 5. In fact, φ∗|Θ2
4m

is monic when m = 2, 4 and its kernel has order less than or equal
to 2 when m = 5.

Remark 5.36.

1. Corollary 5.35 implies that HPm#Σ4m is not concordant to HPm when m = 2, 4 or 5 since the con-
cordance classes of smooth structures on a smooth manifold X are in bijective correspondence with
[X,Top/O] provided dim X > 4. Thus assertion (i) of Theorem 5.27 is a direct consequence of Lemma
5.34 and Corollary 5.35. And using Theorem 5.14 in place of Lemma 5.34, Addendum 5.28 also follows
from Corollary 5.35. Since Borel [16] has constructed closed Riemannian manifolds M4m (for each
m ≥ 2) whose universal cover isHHm, Theorem 5.27 produces the examples for Conjecture 5.17.

2. Theorem 5.27 also provides counterexamples to smooth rigidity Problem 3.1.

2. Finally Theorem 5.27 and Theorem 5.19 together with Corlette’s Superrigidity Theorem 4.35 were used
by C.S. Aravinda and F.T. Farrell [5] to answer positively the following question posed by Petersen in
his text book [96, pp. 239-240]:

Question 5.37. Are there any compact rank 1 manifolds of non-positive sectional curvature that do not admit
a metric with non-positive curvature operator?

Recall that the curvature operator at a point p ∈ M of a manifold (M, 〈, 〉) is a linear map on the space
Λ2(TpM) to itself where TpM is the tangent space to M at p. If X, Y, Z, W ∈ TpM, then there is a scalar
product 〈, 〉 on Λ2(TpM) that is given by the formula

〈X ∧ Y,Z ∧W〉 = 〈X,Z〉〈Y,W〉 − 〈X,W〉〈Y,Z〉

and is extended by linearity to all of Λ2(TpM). Then the curvature operator R of M is defined by

〈R(X ∧ Y),Z ∧W〉 := 〈R(X,Y)W,Z〉

where R(X,Y)W is the Riemann curvature tensor of M.

The curvature operator is said to be non-positive if all its eigenvalues are nonpositive. An elementary linear
algebra argument shows that if the curvature operator is non-positive, then all the sectional curvatures of
M are also non-positive.

Recall that any closed Riemannian manifold all of whose sectional curvatures are negative is automatically
a rank 1 manifold. Hence the following result shows that the answer to Question 5.37 is yes :

Theorem 5.38. [5] There exist closed Riemannian manifolds whose sectional curvatures are all negative,
but which do not admit any Riemannian metric whose curvature operator is non-positive. In fact, such
manifolds exist (at least) in dimensions 8, 16 and 20. Furthermore, given any ε > 0, such examples can be
constructed (at least in dimension 16) whose sectional curvatures all lie in the interval [−4,−1 + ε].
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Remark 5.39. Given a closed quaternionic hyperbolic manifold of quaternionic dimension 2, 4 or 5 (i.e.,
real dimension 8, 16 or 20) or a closed Cayley hyperbolic manifold M (whose real dimension is 16), C.S.
Aravinda and F.T. Farrell constructed, in Theorem 5.27 and Theorem 5.19, exotic differential structures
carrying negatively curved Riemannian metrics on certain finite covers M̂ of M; that is, there exist closed
negatively curved manifolds that are homeomorphic but not diffeomorphic to the natural locally symmetric
structure on M̂. Applying Theorem 4.35, we conclude that the exotic differential structures on M̂ can not
support metrics with non-positive curvature operator. Also, in the case where M is Cayley hyperbolic
the sectional curvatures of the Riemannian metric constructed in Theorem 5.19 for the exotic differential
structure on M̂ all lie in the interval [−4,−1 + ε]. This proves Theorem 5.38.

Remark 5.40.

1. We can recover exotic smoothings of Theorem 3.21, Theorem 4.38, Theorem 5.27 and Theorem 5.19
by applying Theorem 5.14 to real, complex, quaternionic and cayley hyperbolic manifolds. This is
trivial in the real case, since the dual space is a sphere. Since the dual symmetric space of complex
hyperbolic manifold is complex projective space , exotic smoothings of Theorem 4.38 follows from
Theorem 5.14 and Lemma 4.45. Similarly, exotic smoothings of Theorem 5.27 and Theorem 5.19 follow
from Theorem 5.14, Corollary 5.35 and Lemma 5.25 since the dual symmetric spaces of quarternionic
and Cayley hyperbolic manifolds are the quaternionic projective space and Cayley projective plane
respectively.

2. As we have observed in the above remark (1) and Remark 4.52, by using Mostow’s Rigidity Theorem
2.21, Farrell-Jones Topological Rigidity Theorem 2.18, Theorem 2.14, Theorem 5.9 and Theorem 5.5
together with the fundamental paper of Kervaire and Milnor [74], the problem of detecting when
Mn#Σn and Mn are not diffeomorphic, where M is a closed locally symmetric space of noncompact
type such that the universal cover of M has no 2-dimensional metric factor projecting to a closed
subset of M is essentially reduced to look at the problem of detecting exotic structure on the dual
symmetric space Mu of M.

6. Topology on the space of all Riemannian metrics

In this section we want to study the basic topological properties of the space of all negatively curved
Riemannian metrics and the Teichmuller space of negatively curved metrics on a manifold. Let us introduce
some notation.

Let Mn be a closed smooth manifold and letMET (Mn) be the space of all Riemannian metrics on Mn with
the smooth topology. Since any two metrics 10 and 11 are connected by a line segment t10+(1−t)11, the space
MET (Mn) is contractible. A subspace of metrics whose sectional curvatures lie in some interval (closed,
open, semi-open) will be denoted by placing a superscript on MET (Mn). For example, MET sec<ε(Mn)
denotes the subspace ofMET (Mn) of all Riemannian metrics on Mn that have all sectional curvatures less
that ε. Thus saying, for instance, that Mn admits a negatively curved metric is equivalent to saying that
MET

sec<0(Mn) , ∅. Or, saying that all sectional curvatures of a Riemannian metric 1 lie in the interval
[a, b] is equivalent to saying that 1 ∈ MET a≤sec≤b(Mn). Note thatMET sec=−1(Mn) is the space of hyperbolic
metricsHyp(Mn) on Mn.

A natural question about a closed negatively curved manifold M posed by K. Burns and A. Katok ([15,
Question 7.1]) is the following :

Question 6.1. Is the spaceMET sec<0(Mn) path connected?

Remark 6.2.

1. In dimension two, Richard Hamilton’s theorem on Ricci Flow [66] shows thatHyp(M2) is a deforma-
tion retract ofMET sec<0(Mn). ButHyp(M2) fibers over the Teichmuller space T (M2) � R6µ−6 (µ is the
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genus of M2), with contractible fiber D0 = R+
× DIFF0(M2) [30] (Here DIFF0(M2) consists of all self

diffeomorphisms of M2 which are homotopic to idM2). Therefore, Hyp(M2) and MET sec<0(M2) are
contractible.

2. It was shown by Farrell and Ontaneda [54] that, for n ≥ 10,MET sec<0(Mn) has infinitely many path
components. Moreover, they showed that all the groups π2p−4(MET sec<0(Mn)) are non-trivial for
every prime number p > 2, and such that p < n+5

6 . (In fact, these groups contain the infinite sum (Zp)∞

ofZp = Z/pZ ’s, and hence they are not finitely generated.) They also showed thatπ1(MET sec<0(Mn))
is not finitely generated when n ≥ 14. These results about πk are true for each path component of
MET

sec<0(Mn) i.e., relative to any base point.

Before we state Farrell and Ontaneda [54] Main Theorem, we need some definitions.

Denote by DIFF(M) the group of all smooth self-diffeomorphisms of M. We have that DIFF(M) acts on
MET (M) pulling-back metrics: φ1 = (φ−1)∗1 = φ∗1, for 1 ∈ MET (M) and φ ∈ DIFF(M), that is, φ1 is
the metric such that φ : (M, 1) → (M, φ1) is an isometry. Note that DIFF(M) leaves invariant all spaces
MET

sec∈I(M), for any I ⊂ R. For any metric 1 on M we denote by DIFF(M)1 the orbit of 1 by the action of
DIFF(M). We have a map Λ1 : DIFF(M) → MET (M), given by Λ1(φ) = φ∗1. Then the image of Λ1 is the
orbit DIFF(M)1 of 1. And Λ1 of course naturally factors throughMET sec∈I(M), if 1 ∈ MET sec∈I(M). Note
that if dim M ≥ 3 and 1 ∈ MET sec=−1(M), then the statement of Mostow’s Rigidity Theorem is equivalent
to saying that the map Λ1 : DIFF(M)→MET sec=−1(M) = Hyp(M) is a surjection. Here is the statement of
Farrell and Ontaneda [54] main result :

Theorem 6.3. Let M be a closed smooth n-manifold and let 1 be a negatively curved Riemannian metric on
M. Then we have that:

(i) the map π0(Λ1) : π0(DIFF(M))→ π0(MET sec<0(M)) is not constant, provided n ≥ 10.

(ii) the homomorphism π1(Λ1) : π1(DIFF(M))→ π1(MET sec<0(M)) is non-zero, provided n ≥ 14.

(iii) For k = 2p − 4, p prime integer and 1 < k ≤ n−8
3 , the homomorphism πk(Λ1) : πk(DIFF(M)) →

πk(MET sec<0(M)) is non-zero.

Addendum 6.4. [54] We have that the image of π0(Λ1) is infinite and in cases (ii), (iii) mentioned in the
Theorem 6.3, the image of πk(Λ1) is not finitely generated. In fact we have:

(i) For n ≥ 10, π0(DIFF(M)) contains (Z2)∞, and π0(Λ1)|(Z2)∞ is one-to-one.

(ii) For n ≥ 14, the image of π1(Λ1) contains (Z2)∞.

(iii) For k = 2p − 4, p prime integer and 1 < k ≤ n−8
3 , the image of πk(Λ1) contains (Zp)∞.

For a < b < 0 the map Λ1 factors through the inclusion mapMET a≤sec≤b(M) ↪→MET sec<0(M) provided
1 ∈Meta≤sec≤b(M). Therefore we have

Corollary 6.5. [54] Let M be a closed smooth n-manifold, n ≥ 10. Let a < b < 0 and assume that
MET

a≤sec≤b(M) is not empty. Then the inclusion map MET a≤sec≤b(M) ↪→ MET
sec<0(M) is not null-

homotopic. Indeed, the induced maps, at the k-homotopy level, are not constant for k = 0, and non-zero for
the cases (ii), (iii) mentioned in the Theorem 6.3. Furthermore, the image of these maps satisfy a statement
analogous to the one in the Addendum 6.4 to the Theorem 6.3.

If a = b = −1 we have
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Corollary 6.6. [54] Let M be a closed hyperbolic n-manifold, n ≥ 10. Then the inclusion map Hyp(M) ↪→
MET

sec<0(M) is not null-homotopic. Indeed, the induced maps, at the k-homotopy level, are not constant
for k = 0, and non-zero for the cases (ii), (iii) mentioned in the Theorem 6.3. Furthermore, the image of
these maps satisfy a statement analogous to the one in the Addendum 6.4 to the Theorem 6.3.

Remark 6.7.

1. Hence, taking k = 0 (i.e., p = 2) in Corollary 6.6, we get that for any closed hyperbolic manifold (Mn, 1),
n ≥ 10, there is a hyperbolic metric 1′ on M such that 1 and 1′ cannot be joined by a path of negatively
curved metrics.

2. Also, taking a = −1− ε, b = −1(0 ≤ ε) in Corollary 6.5 we have that the spaceMET −1−ε≤sec≤−1(M) of ε-
pinched negatively curved Riemannian metrics on M has infinitely many path components, provided
it is not empty and n ≥ 10. And the homotopy groups πk(MET −1−ε≤sec≤−1(M)), are non-zero for the
cases (ii), (iii) mentioned in the Theorem 6.3. Moreover, these groups are not finitely generated.

3. The restriction on n = dim M given in the Theorem 6.3, its Addendum 6.4 and its Corollaries 6.5 and
6.6 are certainly not optimal. In particular, in Theorem 6.3 (iii) it can be improved to 1 ≤ k ≤ n−10

2 by
using Igusas Surjective Stability Theorem ([72, p. 7]).

4. Another interesting application of the Theorem 6.3 shows that the answer to the following natural
question is negative:

Question 6.8. [54] Let E→ B be a fibre bundle whose fibres are diffeomorphic to a closed negatively curved
manifold Mn. Is it always possible to equip its fibres with negatively curved Riemannian metrics (varying
continuously from fibre to fibre)?

Remark 6.9.

1. The negative answer is gotten by setting B = Sk+1, where k is as in the Theorem 6.3 case (iii) (or k = 0,
1, case (i), (ii)), and the bundle E→ Sk+1 is obtained by the standard clutching construction using an
element α ∈ πk(DIFF(M)) such that π1(Λ1)(α) , 0, for every negatively curved Riemannian metric 1
on M. F. T. Farrell and P. Ontaneda [54] method for proving the Theorem 6.3 (in particular Theorem
6.10 below) one sees that such elements α, which are independent of 1, exist in all cases (i), (ii), (iii).

2. Theorem 6.3 follows from Theorems 6.10 and 6.12 below. Before we state these results we need some
definitions and constructions.

For a manifold N, let P(N) be the space of topological pseuso-isotopies of N, that is, the space of all
homeomorphisms N × I → N × I, I = [0, 1], that are the identity on (N × 0) ∪ (∂N × I). We consider P(N)
with the compact-open topology. Also, Pdi f f (N) is the space of all smooth pseudo-isotopies on N, with the
smooth topology. Note that Pdi f f (N) is a subset of P(N). The map of spaces Pdi f f (N)→ P(N) is continuous
and will be denoted by ιN, or simply by ι. Let DIFF(N, ∂) denotes the subspace of DIFF(N) of all self-
diffeomorphism of N which are the identity on ∂N. Note that DIFF(N × I, ∂) is the subspace of Pdi f f (N) of
all smooth pseudo-isotopies whose restriction to N × 1 is the identity. The restriction of ιN to DIFF(N × I, ∂)
will also be denoted by ιN. The map ιN : DIFF(N × I, ∂) → P(N) is one of the ingredients in the statement
Theorem refmoduthe1.
We will also need the following construction. Let M be a negatively curved n-manifold. Let α : S1

→M be
an embedding. Sometimes we will denote the image α(S1) just by α. We assume that the normal bundle of
α is orientable, hence trivial. Let V : S1

→ TM × ... × TM, be an orthonormal trivialization of this bundle:
V(z) = (v1(z), ..., vn−1(z)) is an orthonormal base of the orthogonal complement of α(z)′ in TzM. Also, let
r > 0, such that 2r is less that the width of the normal geodesic tubular neighborhood of α. Using V, and
the exponential map of geodesics orthogonal to α, we identify the normal geodesic tubular neighborhood
of width 2r minus α, with S1

× Sn−2
× (0, 2r]. Define Φ = ΦM(α,V, r) : DIFF(S1

× Sn−2
× I, ∂)→ DIFF(M) in the
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following way. For φ ∈ DIFF(S1
×Sn−2

× I, ∂) let Φ(φ) : M→M be the identity outside S1
×Sn−2

× [r, 2r] ⊂M,
and Φ(φ) = λ−1φλ, where λ(z,u, t) = (z,u, tr

r ), for (z,u, t) ∈ S1
× Sn−2

× [r, 2r]. Note that the dependence of
Φ(α,V, r) on α and V is essential, while its dependence on r is almost irrelevant.
We denote by 1 the negatively curved metric on M. Hence we have the following diagram :

DIFF(S1
× Sn−2

× I, ∂) Φ
−−−−−→ DIFF(M)

Λ1
−−−−−→ MET

sec<0(M)

ι
y

P(S1
× Sn−2)

where ι = ιS1×Sn−2 and Φ = ΦM(α,V, r).

Theorem 6.10. [54] Let M be a closed n-manifold with a negatively curved metric 1. Let α, V, r and
Φ = Φ(α,V, r) be as above, and assume that α in not null-homotopic. Then Ker(πk(λ1Φ)) ⊂ Ker(πk(ι)), for
k < n − 5. Here πk(Λ1Φ) and πk(ι) are the homomorphisms at the k-homotopy group level induced by Λ1Φ
and ι = ιS1×Sn−2 , respectively.

Remark 6.11.

1. In the statement of Theorem 6.10 above, by Ker(π0(Λ1Φ)) (for k = 0) we mean the set (π0(Λ1Φ))−1([1]),
where [1] ∈ π0(MET sec<0(M)) is the connected component of the metric 1.

2. Hence to deduce the Theorem 6.3 from Theorem 6.10 we need to know that πk(ιS1×Sn−2) is a non-zero
homomorphism. Furthermore, to prove the Addendum 6.4 to the Theorem 6.3 we have to show that
πk(DIFF(S1

× Sn−2
× I, ∂)) contains an infinite sum ofZp’s (resp. Z2’s) where k = 2p− 4, p prime (resp.

k = 1) and πk(ιS1×Sn−2) restricted to this sum is one-to-one. This follows from the following result :

Theorem 6.12. [54] Let p be a prime integer such that max {9, 6p − 5} < n. Then for k = 2p − 4 we have that
πk(DIFF(S1

× Sn−2
× I, ∂)) contains (Zp)∞ and πk(ιS1×Sn−2) restricted to (Zp)∞ is one-to-one.

Definition 6.13. LetD(M) be the group R+
×DIFF(M). The groupD(M) acts onMET (M) by scaling and

pulling-back metrics: (λ, φ)1 = λ(φ−1)∗1 = λφ∗1, for 1 ∈ MET (M) and (λ, φ) ∈ D(M). The quotient space
M(M) =MET (M)/D(M) is called the moduli space of metrics on M.

Let us go back to dimension two for a moment and let Σ1 be an orientable two-dimensional manifold
of genus 1 > 1. Recall that uniformization techniques (see [30], or, more recently, Hamilton’s Ricci flow
[66]) show that every Riemannian metric on Σ1, 1 > 1, can be canonically deformed to a hyperbolic
metric. Moreover, Hamilton’s Ricci flow [66] shows that every negatively curved metric on Σ1, 1 > 1 can
be canonically deformed (through negatively curved metrics) to a hyperbolic metric. Hence the space
of all hyperbolic metrics on Σ1 is canonically a deformation retract of the space of all negatively curved
Riemannian metrics on Σ1. This deformation commutes with the action of DIFF(Σ1) (this is true at least
for the Ricci flow), therefore, the Teichmuller space of Σ1 is canonically a deformation retract of the space
which is the quotient of all negatively curved Riemannian metrics on Σ1 by the action of the group of all
smooth self-diffeomorphisms which are homotopic to the identity. Also, instead of considering the space
of all negatively curved metrics we can consider the space of all pinched negatively curved metrics, or for
that matter, the space of all Riemannian metrics. These are the concepts that F. T. Farrell and P. Ontaneda
generalized in [53]. Next, we give detailed definitions and introduce some notation.

Definition 6.14. Let M be a closed smooth manifold. We denote by DIFF0(M) the subgroup of DIFF(M)
of all smooth diffeomorphisms of M which are homotopic to the identity IM and by D0(M) the group
R+
× DIFF0(M). In [53], the Teichmuller space of metrics on M is defined as the quotient space T (M) =

MET (M)/D0(M). Given 0 ≤ ε ≤ ∞, let MET ε(M) denote the space of all ε-pinched negatively curved
Riemannian metrics on M, that is, 1 ∈ MET ε(M) if and only if there is a positive real number λ such that λ1
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has all its sectional curvatures in the interval [(1+ε),−1]. Note that a 0-pinched metric is a metric of constant
negative sectional curvature and an∞-pinched metric is just a negatively curved Riemannian metric. The
quotient space Mε(M) = MET ε(M)/D(M) is called the moduli space of ε- pinched negatively curved
metrics on M. Denote by κ the quotient map MET ε(M) → Mε(M). Also, T ε(M) = MET ε(M)/D0(M)
is called the Teichmuller space of ε-pinched negatively curved metrics on M. In particular, T∞(M) is the
Teichmuller space of all negatively curved metrics on M.

Note that the inclusions MET ε(M) ↪→ MET (M) induce the inclusions T ε(M) ↪→ T (M). Also note
that, for δ ≥ ε, these inclusions factor as follows: MET ε(M) ↪→ MET δ(M) ↪→ MET ε(M) and T ε(M) ↪→
T
δ(M) ↪→ T (M).

Remark 6.15.

1. If M1 is an orientable two-dimensional manifold of genus 1 > 1, then the original Teichmuller space
of M1 is denoted (in our notation) by T 0(M1) and T 0(M1) is homeomorphic toR61−6 (see [31]). Hence
T

0(M1) is contractible. By the uniformization techniques mentioned above ([30, 66]), it follows that
T
ε(M1), T∞(M1), T (M1) are all contractible. (This is also true for non-orientable surfaces of Euler

characteristic < 0.)

2. Let M be a closed hyperbolic manifold. If dim M ≥ 3, Mostows Rigidity Theorem implies that
T

0(M) = ? ; ie. T 0(M) contains exactly one point. Therefore,MET 0(M) = D0(M). It also follows (see
Remark (1) above) that T 0(M) is contractible when dim M ≥ 2.

3. In dimensions two and three it is known that D0(M) (and henceMET 0(M)) is contractible. (This is
due to Earle and Eells [30] in dimension two and to Gabai [59] in dimension three.) This is certainly
false in dimensions ≥ 11, because π0(D0(M)) is not finitely generated (see [39, Cor.10.16 and 10.28]),
and F. T. Farrell and P. Ontaneda [53] conjectured thatD0(M) is also not contractible for dimension n,
5 ≤ n ≤ 10.

Lemma 6.16. [53] If M is aspherical and the center of π1M is trivial, then the action of DIFF0(M) andD0(M)
onMET (M) is free.

Proof. Let 1 ∈ MET (M). Note that the isotropy group H = {φ ∈ DIFF0(M), φ1 = 1} of the action of DIFF0(M)
at 1 is Isom0(M, 1), the group of all isometries of the Riemannian manifold (M, 1) that are homotopic to the
identity. Hence this isotropy group H is compact. Let γ : DIFF(M) → Out(π1M) be the homomorphism
induced by φ → φ∗. Borel-Conner Raymond showed (see [24, p. 43]) that under the assumptions above,
γ restricted to compact subgroups is monic. But γ(H) is trivial, since every element in DIFF0(M) is, by
definition, homotopic to the identity. It follows that H is trivial. Hence the action of DIFF0(M) is free.
Therefore, the action ofD0(M) is also free. This proves the Lemma. �

Remark 6.17.

1. Let M be a hyperbolic manifold. Then the action of D0(M) on MET (M) is free. Since MET (M)
is contractible by Ebins Slice Theorem [29] we have that D0(M) → MET (M) → T (M) is a princi-
pal D0(M)-bundle and T (M) is the classifying space BD0(M) of D0(M). Since T (M) is homotopy
equivalent toMET (M)/DIFF0(M) we can also write B(DIFF0(M)) = T (M).

2. Therefore, if M is a closed hyperbolic manifold thenMET ε(M) interpolates betweenMET 0(M) (which
is equal toD0(M)) andMET (M) (which is contractible). Likewise T ε(M) interpolates between T (M)
(which is equal to BD0(M)) and T 0(M) (which is contractible). Schematically, we have the following
diagram:

MET
0(M) ↪→ MET

ε(M) ↪→ MET
∞(M) ↪→ MET (M)

↓ ↓ ↓ ↓

T
0(M) ↪→ T

ε(M) ↪→ T
∞(M) ↪→ T (M)

(6.1)
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All vertical arrows represent quotient maps by the action of the group D0(M). The main result of
Farrell and Ontaneda [53] states that for a hyperbolic manifold the last two horizontal arrows of the
lower row of the diagram above are not in general homotopic to a constant map. In particular, T ε

0 ≤ ε ≤ ∞ is in general not contractible. More specifically, Farrell and Ontaneda [53] proved that
under certain conditions on the dimension n of the hyperbolic manifold M, the manifold M has a finite
cover N (which depends on ) such that πk(T ε(N))→ πk(T (N)) is non-zero. In particular, T ε(N) is not
contractible. The requirements on the dimension n are implied by one of the following conditions:
n is larger than some constant n0(4) or n is larger than 5 but in this last case we need that Θn+1 , 0.
Here is a more detailed statement of Farrell and Ontaneda [53] main result :

Theorem 6.18. For every integer k0 ≥ 1 there is an integer n0 = n0(k0) such that the following holds. Given
ε > 0 and a closed real hyperbolic n-manifold M with n ≥ n0, there is a finite sheeted cover N of M such
that, for every 1 ≤ k ≤ k0 with n + k ≡ 2 mod 4, the map πk(T ε(N)) → πk(T (N)), induced by the inclusion
T
ε(N) ↪→ T (N), is non-zero. Consequently πk(T ε(N)) , 0. In particular,T δ(N) is not contractible, for every

δ such that ε ≤ δ ≤ ∞ (provided k0 ≥ 4).

Here (and in the Corollary below) we consider the given hyperbolic metric as the basepoint for T ε(N),
T (N). As a Corollary of (proof of the) Theorem 6.18 we get :

Corollary 6.19. [53] Let M be a closed real hyperbolic manifold of dimension n, n ≥ 6. Assume that Θn+1 , 0.
Then for every ε > 0 there is a finite sheeted cover N of M such that π1(T ε(N)) , 0. Therefore, T ε(N) is not
contractible.

Remark 6.20.

1. SinceMET (M) is contractible, Theorem 6.18 implies that, for a general hyperbolic manifold M, the
map πk(MET ε(M)) → πk(T ε(M)), induced by the second vertical arrow of the diagram, is not onto
for some k.

2. By Remark 6.15 (1), the lower row of the diagram above is homotopically trivial in dimension 2. In
dimension 3 one could ask the same: is the lower row of the diagram above homotopically trivial
in dimension 3?. In view of a result of Gabai (see [59]), this is equivalent to asking: is T∞(M)
contractible?.

3. Let M be a hyperbolic manifold. Consider the upper row of the diagram (6.1). It follows from a result
of Ye on the Ricci flow (see [113]) that, provided the dimension of M is even, there is an ε0 = ε0(M) > 0
such that for all ε ≤ ε0 the inclusion map MET ε → MET∞ is D0(M)-equivariantly homotopic
to a retraction MET ε → MET 0(M) ⊂ MET∞. This has the following consequences. First the
retraction above descends to a retraction T ε(M)→ T 0(M), hence the inclusion map T ε(M)→ T∞(M)
is homotopic to a constant map (provided ε ≤ ε(M)), and hence induces the zero homomorphism
πk(T ε(M))→ πk(T (M)) for all k. Second, the inclusion mapD0(M) =MET 0(M)→MET ε(M) induces
monomorphisms πk(D0(M)) = πk(MET 0(M)) → πk(MET ε(M)), provided ε ≤ ε(M). Theorem 6.18
then shows that in many cases ε0(M) < ∞.

4. Let M be a hyperbolic manifold. Since DIFF(M)/DIFF0(M) � Out(π1(M)) we have that M(M) �
T (M)/Out(π1(M)) or, in general,Mε(M) � T ε(M)/Out(π1(M). Note that Out(π1(M)) is a finite group,
provided dim M ≥ 3.

Recall that Smooth bundles over a space X, with fiber M, modulo smooth equivalence, are classified
by [X,B(DIFF(M))], the set of homotopy classes of (continuous) maps from X to the classifying space
B(DIFF(M)). If we assume that X is simply connected, then we obtain a reduction in the structural group of
these bundles: smooth bundles over a simply connected space X, with fiber M, modulo smooth equivalence,
are classified by [X,B(DIFF0(M))] = [X,T (M)]. Also, bundles with negatively curved fibers over a (simply
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connected) space X, modulo negatively curved equivalence, are classified by [X,T sec<0(M)]. And the
inclusion map F : T sec<0(M)→ T (M) gives a relationship between the two bundle theories:

FX : [X,T sec<0(M)]→ [X,T (M)]

and the map FX is the forget the negatively curved structure map. The kernel KX of this map between the
two bundle theories is given by bundles over X, with negatively curved fibers, that are smoothly trivial.
Every bundle in KX can be represented by the choice of a negatively curved metric on each fiber of the
trivial bundle X ×M, that is, by a map X 7→ MET sec<0(M). Note that this representation is not unique,
because smoothly equivalent representations give rise to the same bundle with negatively curved fibers. In
any case, we have thatKX is the image of [X,MET sec<0(M)] by the map [X,MET sec<0(M)]→ [X,T sec<0(M)],
induced by the quotient mapMET sec<0(M) 7→ T sec<0(M). Note that we can think of [X,MET sec<0(M)] as
a bundle theory in the same way as [X,T sec<0(M)] is a bundle theory. Summarizing, we get the following
exact sequence of bundle theories:

[X,MET sec<0(M)]
RX
−→ [X,T sec<0(M)]

FX
−→ [X,T (M)] (6.2)

where the map RX is the representation map: for E ∈ KX, R−1
X (E) is the set of representations of E of the

form φ : X →MET sec<0(M), i.e. bundles of the form (X ×M, id) where the Riemannian metric on x ×M is
φ(x). The following question is asked by Farrell and Ontaneda [55]:

Question 6.21. Are FX and RX non-constant, one to one or onto ?

If, in Equation 6.2, we specify X = Sk, k > 1 (recall we are using basepoint preserving maps), we obtain
πk(MET sec<0(M)) 7→ πk(T sec<0(M)) 7→ πk(T (M)). Some information about these maps between homotopy
groups was given in Theorem 6.3, Addendum 6.4, Theorem 6.18 and Corollary 6.19:

Remark 6.22.

1. It was proved in Theorem 6.3 that π2(MET sec<0(M)) is never trivial, provided
MET

sec<0(M) , ∅ and dim M > 13. But the nonzero elements in
π2(MET sec<0(M)), constructed in Theorem 6.3, are mapped to zero by the map π2(MET sec<0(M)) 7→
π2(T sec<0(M)). Therefore, the representation map RS2 in Equation 6.2 is never one-to-one, provided
MET

sec<0(M) , ∅ and dim M > 13.

2. It was also proved in Addendum 6.4 (assumingMET sec<0(M) , ∅)
that π2(MET sec<0(M)) contains the infinite sum (Z3)∞ as a subgroup, thus
π2(MET sec<0(M)) is not finitely generated. Moreover, it was proved that the same is true for
πk(MET sec<0(M)), for k = 2p − 4, p > 2 prime (with (Z3)∞ instead of (Z3)∞), provided dim M is large
(how large depending on k). Furthermore, π1(MET sec<0(M)) contains (Z3)∞, provided dim M > 11.
And all these elements constructed in Addendum 6.4 map to zero in the corresponding homotopy
group of T sec<0(M).

3 The result mentioned in the remark (2) about π1(MET sec<0(M)) also proves that the forget struc-
ture map FS2 is not onto. To see this just glue two copies of D2

× M along S1 using an element
α ∈ π1(DIFF0(M)) which maps to one of the non-trivial elements β in π1(MET sec<0(M)) constructed
in Theorem 6.3; α exists because of the homotopy exact sequence for the bundle DIFF0(M) 7→
MET

sec<0(M) 7→ T sec<0(M) and the fact that β maps to zero in π1(T sec<0(M)) (see remark (2) above).
Thus, there are (nontrivial) smooth bundles E over S2 which do not admit a collection of negatively
curved Riemannian metrics on the fibers of E. Using the remark, the same is true for Sk, k = 2p − 3,
p > 2.
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4. It was proved in Theorem 6.18 that there are examples of closed hyperbolic manifolds for which
πk(T sec<0(M)) is nonzero. Here M depends on k and always k > 0. In Theorem 6.18 no conclusion
was reached on the case k = 0 (i.e. about the connectedness of T sec<0(M)). Also, the images of these
elements by the inclusion map T sec<0(M)) 7→ T (M)) are not zero. Hence the forget structure map FSk

is, in general, not trivial. This means also that there are bundles with negatively curved fibers that
are not smoothly trivial, i.e. the representation map RSk is not onto in these cases.

5. In all the discussion above we can replace negatively curved metrics by ε-pinched negatively curved
metrics [55]. And also Farrell and Ontaneda proved the following result [55]:

Theorem 6.23. The forget structure map FSk : πk(T sec<0(M))→ πk(T (M)) is, in general, not one-to-one, for
k = 2p − 4, p prime. Consequently T sec<0(M) is, in general, not connected.

Remark 6.24. F.T. Farrell and P. Ontaneda proved a version of Theorem 6.23 with
M

sec<0(M) instead of T sec<0(M) [56]:

Theorem 6.25. Let M be a closed non-arithmetic hyperbolic manifold and k a nonnegative integer, with
(k,dim M = n) satisfying the following condition (?).

? =


1. k = 0 and n ≥ 10
2. k = 1 and n ≥ 12
3. k = 2p − 4, p > 2 prime, and n ≥ 3k + 8

Then M has a finite sheeted cover N such that the maps

πk(MET sec<0(N))
πk(κ)
−→ πk(Msec<0(N))

H̃k(MET sec<0(N))
H̃k(κ)
−→ H̃k(Msec<0(N))

are non-zero. In particular πk(Msec<0(N)) and H̃k(Msec<0(N)) are nontrivial.

Remark 6.26.

1. The statements of the Theorem 6.25 holds also for ε-pinched negatively curved metrics [56].

2. By Theorem 6.23, for a closed hyperbolic manifold M there are non-zero elements in πk(MET sec<0(M))
that survive in πk(T sec<0(M)), provided k and n satisfy (?) and M has a closed geodesic with large
enough tubular neighborhood. The main result of [56] shows that, assuming M has a k-good geodesic,
these non-zero elements can be chosen so that they survive all the way to πk(MET sec<0(M)).

7. Final Remarks and Open Problems

In this section, we review many interesting open problems along the above direction.

The negatively curved Riemannian symmetric spaces are of 4 types: RHm, CHm, HHm and OH2. The
following question is asked by C.S. Aravinda and F.T. Farrell [4]:

Question 7.1. For each division algebra K over the real numbers and each integer n ≥ 2 (n = 2 when
K = O), does there exist a closed negatively curved Riemannian manifold Mdn(where d = dimRK) which
is homeomorphic but not CAT(Diff or PL)-isomorphic to aK-hyperbolic manifold.
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For K = R and n = 2, 3, this is impossible since homeomorphism implies diffeomorphism in these
dimensions [85]; but this is the only known constraint on this question. The answer to Question 7.1 is yes
for K = O by Theorem 5.19 since only one dimension needs to be considered in this case. When K = R,
the answer is yes provided n ≥ 6 by Theorem 3.21. When K = C, the answer is yes for n = 4m + 1 for any
integer m ≥ 1 and for n = 4 by Theorem 4.38, for n = 7 and 8 by Theorem 4.51. WhenK =H, the answer is
yes for n = 2, 4 and 5 by Theorem 5.27.

While his visit to IIT Bombay and TIFR CAM, India in 2012, F.T. Farrell mentioned the following open
problem :

Problem 7.2. Suppose that Mn and Nn are homotopy equivalent closed smooth manifolds and Mn admits
a negatively curved Riemannian metric. Does Nn admit a negatively curved Riemannian metric?

Problem 7.3. (Farrell-Jones, 1998) Let Mn and Nn be complete compact flat affine manifolds with π1(M) �
π1(N). Are they always diffeomorphic?.

Problem 7.4. (Gabai) Let f : Nn
→ Mn be a harmonic homeomorphism between closed negatively curved

manifolds. Must f be a diffeomorphic?.

Problem 7.5. Let Mn and Nn be closed negatively curved Riemannian manifolds with isomorphic marked
length spectra. Must they be diffeomorphic?.

Problem 7.6. (Farrell-Jones, 1994)

(i) Find Σ2n
∈ Θ2n if CPn#Σ2n is diffeomorphic to CPn. ([44])

(ii) Find Σ4n
∈ Θ4n ifHPn#Σ4n is diffeomorphic toHPn. ([44])

Problem 7.7. Let Mn be a negatively curved Riemannian manifold. Is π1(Mn) residually finite ?

Problem 7.8. Let X be a finite aspherical simplicial complex. Does there exist a complete negatively curved
manifold M such that π1(M) � π1(X) ?

Boris Okun [91] has provided sufficient conditions for establishing non-zero degree of the tangential
map (see Theorem 5.7). Jean-Francois Lafont and Ranja Roy [78] asked the following question :

Question 7.9. Are there examples where Okun’s tangential map has zero degree? In particular, if one has
a locally symmetric space modelled on SL(n,R)/SO(n), does the tangential map to the dual SU(n)/SO(n)
have non-zero degree?

Of course, the interest in the special case of SL(n,R)/SO(n) is due to the universality of this example:
every other locally symmetric space of non-positive curvature isometrically embeds in a space modelled on
SL(n,R)/SO(n). Now note that while the relationship between the cohomologies of closed locally symmetric
space Mn and its dual MU (with real coefficients) is well understood (and has been much studied) since
the work of Matsushima [80], virtually nothing is known about the relationship between the cohomologies
with other coefficients. Jean-Francois Lafont and Ranja Roy [78] asked the following :

Question 7.10. If t : Mn
→ MU is the tangential map, what can one say about the induced map t∗ :

H∗(MU,Zp)→ H∗(M,Zp)?
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