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Abstract. We consider the inverse problem of identifying a general source term, which
is a function of both time variable and the spatial variable, in a parabolic PDE from the
knowledge of boundary measurements of the solution on some portion of the lateral
boundary. We transform this inverse problem into a problem of solving a compact lin-
ear operator equation. For the regularization of the operator equation with noisy data,
we employ the standard Tikhonov regularization, and its finite dimensional realization
is done using a discretization procedure involving the space L2(0,τ;L2(Ω)). For illus-
trating the specification of an a priori source condition, we have explicitly obtained the
range space of the adjoint of the operator involved in the operator equation.
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1 Introduction

Let d≥1 and Ω be a bounded domain in R
d with Lipschitz boundary. For a fixed τ>0 we

denote the cylindrical domain Ω×[0,τ] by Ωτ and its lateral surface ∂Ω×[0,τ] by ∂Ωτ.

Let Σ be a relatively open subset of ∂Ω. We denote the boundary surface Σ×[0,τ] by Στ.

For

f ∈L2(0,τ;L2(Ω)), g∈L2(0,τ;L2(∂Ω)), h∈L2(Ω),
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we consider the parabolic PDE











ut−∇·(Q(x)∇u)= f in Ωτ,

Q(x)∇u·~n= g on ∂Ωτ ,

u(·,0)=h in Ω,

(1.1)

where Q ∈ (L∞(Ω))d×d is a symmetric matrix with entries from L∞(Ω) satisfying the

uniform ellipticity condition, that is, there exist a constant κ0>0 such that

Qξ ·ξ≥κ0 |ξ|2 a.e on Ω, and for all ξ∈R
d, (1.2)

where |ξ|2 = ξ1
2+ . . .+ξd

2 for ξ=(ξ1,. . .,ξd)∈R
d and~n is the outward unit normal to ∂Ω.

Throughout the paper, for a Banach space X, φ∈ L2(0,τ;X) means φ is an X-valued

function on [0,τ] such that t 7→ ‖φ(t)‖X belongs to L2[0,τ]. Also, throughout we use

the standard notations of the function spaces L2(Ω) and the Sobolev spaces H1(Ω) (see

[1–3]).

For results related to existence and uniqueness of the classical solution corresponding

to the forward problem associated with (1.1), namely, that of finding u satisfying (1.1)

from the knowledge of f ,g,h as considered above, one may refer to [4–6]. In certain

cases, a classical solution may not exist for the forward problem, but we may have a

weak solution. In [5, Theorem 2.4], the authors have given an existence result for a weak

solution of (1.1). We first state the existence result precisely, whose proof follows along

similar lines as in [5, Theorem 2.4].

Theorem 1.1. ([5, Theorem 2.4]) Let f ∈ L2(0,τ;L2(Ω)), g∈ L2(0,τ;L2(∂Ω)) and h∈ L2(Ω).
Also, let Q∈ (L∞(Ω))d×d be symmetric satisfying the uniform ellipticity condition (1.2). Then

there exists a unique u∈L2(0,τ;H1(Ω)) with ut∈L2(0,τ;(H1(Ω))′) satisfying

〈ut(·,t),ϕ〉+
∫

Ω
Q∇u(·,t)·∇ϕdx=

∫

Ω
f (·,t)ϕdx+

∫

∂Ω
g ϕdx (1.3)

for all ϕ∈H1(Ω) and for a.a.(almost all) t∈ [0,τ] with u(·,0)=h a.e. in Ω. Further, there exists

a constant C1>0, independent of f , such that

‖u‖L2(0,τ;H1(Ω))+‖ut‖L2(0,τ;(H1(Ω))′)

≤C1

(

‖ f‖L2(0,τ;L2(Ω))+‖g‖L2(0,τ;L2(∂Ω))+‖h‖L2(Ω)

)

. (1.4)

In (1.3), the notation 〈·,·〉 stands for the duality action between H1(Ω) and (H1(Ω))′,
where (H1(Ω))′ stands for the dual of H1(Ω). Also, ut denotes the distributional deriva-

tive of u with respect to t, that is, ut is the unique element in L2(0,τ;(H1(Ω))′) such that

∫ τ

0
ϕ′(t)u(t)dt=−

∫ τ

0
ϕ(t)ut(t)dt for all ϕ∈C∞

c (0,τ).



242 S. Mondal and M. T. Nair / J. Partial Diff. Eq., 34 (2021), pp. 240-257

Following [5], an element u∈L2(0,τ;H1(Ω)) with ut∈L2(0,τ;(H1(Ω))′) is called a weak

solution of the PDE (1.1), if it satisfies (1.3).

For a given f ∈ L2(0,τ;L2(Ω)), g∈ L2(0,τ;L2(∂Ω)) and h∈ L2(Ω), let u be the unique

weak solution of (1.1). Let

z(x,t)=u(x,t) for (x,t)∈Στ , i.e. u|Στ
= z.

Note that, here u(x,t) on Στ has to be understood in the sense of trace (see [1, 2, 7]). We

are interested in the inverse problem of determining the source function f from the knowl-

edge of z, i.e., from the knowledge of u on the portion Στ of the boundary of Ωτ. More

precisely, our inverse problem at hand is the following:

(IP): For the given boundary data z∈ L2(0,τ;L2(Στ)), determine the source

function f in L2(0,τ;L2(Ω)) such that the corresponding unique weak solu-

tion u of (1.1) satisfies u|Στ
= z.

In general, the solution of the inverse problem, if it exists need not be unique. To see

this, we consider a simple example below.

Example 1.1. Let Ω=(0,1) and h=0 on (0,1). For t∈ [0,1], let

g(t)=

{

πt+t if x=0,

πtcosπt if x=1.

Let Q=1 on Ω, and z(1,t)=sinπt for t∈ [0,1]. Then for

u1(x,t)=sinπxt+
1

3
t(x−1)3, u2(x,t)=sinπxt+

1

5
t(x−1)5,

we have

u1(1,t)= z=u2(1,t), t∈ [0,1],

but the source functions corresponding to u1 and u2 are respectively,

f1(x,t)=πxcosπxt+
(x−1)3

3
+π2t2sinπxt−2(x−1)t,

f2(x,t)=πxcosπxt+
(x−1)5

5
+π2t2sinπxt−4(x−1)3t.

Thus, the source function f , if exists, from our considered boundary observation is not

unique, in general. But, for certain specific cases of f and for different type of boundary

measurements, the uniqueness results are well-established; see [8–10]. In [8], the author

has considered the case when f depends only on the spatial variable, whereas in [9]

the authors have considered the case, where f can be written as infinite sum of certain

type of functions. Also, in [10], the authors have considered the case, where f can be
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written as f (x,t) :=σ(t)φ(x) where σ(t)= e−λt,λ>0 and considered an inverse problem

of identifying the function φ. We carry out our analysis for a general source function f

assuming only its existence, and obtain regularized approximations for that f which has

minimum norm.

The inverse problems of source identification from boundary measurements have

vast literature and they have real world applications. For inverse problems related to

source identification, one may look into [8, 9, 11–15] and also the recent work in [16]. In

fact, in [14], the authors have mentioned explicitly various inverse problems on source

identifications from boundary measurements.

Usually the inverse source identification problems from boundary measurements or

final time observations are ill-posed in nature (see [14]), that is, either the inverse problem

do not have a unique solution, or even if the solution exist, it does not depend continu-

ously on the data. In [16], the authors have considered the inverse problem of identifying

source function from a boundary measurement for a parabolic PDE with Robin bound-

ary conditions. For obtaining stable approximate solutions, they have used the output

least square method combined with Crank-Nicolson Galerkin method to obtain numerical

approximations for the source function.

In this paper, we convert the inverse problem (IP) into a linear operator equation first,

where the associated operator is compact and is of infinite rank so that it is an ill-posed

operator equation. We use Tikhonov regularization (see [17, 18]) in the infinite dimen-

sional setting for obtaining stable approximate solutions corresponding to the noisy data.

In order to obtain approximations in a finite dimensional setting, we employ Galerkin-

projection method to the regularized operator equation, by using different projections

corresponding to space variable and time variable. Making use of the fact that the opera-

tor involved in the infinite dimensional setting is compact, we derive order optimal error

estimates by choosing the regularization parameter and the level of approximation ap-

propriately. Thus, our method of obtaining regularized approximations is much simpler

compared to the one considered in [16].

Also, we would like to mention that in [9], similar operator theoretic formulation has

been adopted for the problem of identifying the function ϕ occurring in the source func-

tion f (x,t)=
√

t ϕ(x), from the knowledge of a lateral boundary measurement z̃ defined

on Σ×[0,τ], where Σ is a relatively open subset of ∂Ω and the corresponding governing

PDE is same as (1.1) with g=0 and h=0. But in this paper, we are considering the iden-

tification of a general source function which depends on both space and time variable,

and g,h are not necessarily zero. Further, in [9], no finite dimensional analysis is done

whereas in this paper we have given a finite dimensional analysis for obtaining stable

approximations to the sought source function.

The rest of the paper is organized as follows: In Section 2, we introduce some no-

tations that we shall use throughout and obtain some results related to continuity and

compactness of the linear operator involved in the formulation of the inverse problem.

Section 3 deals with the regularization analysis corresponding to the noisy data. In Sec-
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tion 4, we have considered the finite dimensional realization of our proposed method,

which is one of the main objectives of this work. Finally, in Section 5, titled as appendix,

we have explicitly obtained the range space of the adjoint of the linear operator.

2 Operator equation formulation

Let X = L2(0,τ;L2(Ω)) and let

W={u∈L2(0,τ;H1(Ω)) : ut∈L2(0,τ;(H1(Ω))′)}.

It is well known that X is a Hilbert space with the inner product

〈u,v〉X :=
∫ τ

0
〈u(t),v(t)〉L2 dt for all u,v∈X .

It can be shown that W is a Banach space with respect to the norm defined by

‖u‖W :=‖u‖L2(0,τ; H1(Ω))+‖ut‖L2(0,τ;(H1(Ω))′) for all u∈W .

Also, it is known that, if X is a Banach space and φ ∈ L2(0,τ;X), then ‖φ‖2
L2(0,τ;X)

:=
∫ τ

0 ‖φ(t)‖2
Xdt. Recall that Σ is a relatively open subset of Ω and Στ=Σ×[0,τ]. Throughout

we will use the notation Y= L2(0,τ;L2(Σ)).
Let γ :H1(Ω)→L2(∂Ω) be the trace map (see [1–3]). It is known that γ is a continuous

linear operator and the range of γ is H1/2(∂Ω). We define Γ :W→Y by

(Γφ)(t) :=γφ(·,t)|Σ for all t∈ [0,τ] and φ∈W . (2.1)

We first observe some properties of the map Γ.

Theorem 2.1. The map Γ :W→Y defined as in (2.1) is a bounded linear operator.

Proof. Linearity of Γ follows from the linearity of γ. Let C2>0 be such that ‖γϕ‖L2(∂Ω)≤
C2‖ϕ‖H1(Ω) for all ϕ∈H1(Ω). Then, for all φ∈W , we have

‖Γφ‖2
Y =

∫ τ

0
‖γφ(·,t)|Σ‖2

L2(Σ)dt≤
∫ τ

0
‖γφ(·,t)‖2

L2(∂Ω)dt

≤C2
2

∫ τ

0
‖φ(·,t)‖2

H1(Ω)dt=C2
2‖φ‖2

L2(0,τ;H1(Ω))

≤C2
2‖φ‖2

W .

This shows that Γ is a bounded linear operator with ‖Γ‖≤C2.

For proving one more property of Γ, we first put on record some of the embedding

results. For the proofs, one may refer to [19].
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Lemma 2.1. (cf. [19]) Let Ω be as considered and 0≤ s<1. Then we have the following

(i) The space H1(Ω) is compactly embedded in Hs(Ω) and W is compactly embedded in

L2(0,τ;Hs(Ω)).

(ii) For s> 1
2 , the trace map γ0 : Hs(Ω)→Hs−1/2(∂Ω) is a continuous linear operator.

(iii) For s> 1
2 , L2(0,τ;Hs−1/2(∂Ω)) is continuously embedded in L2(0,τ;L2(Σ)).

Remark 2.1. Let 0≤ s<1 and γ0 : Hs(Ω)→Hs−1/2(∂Ω) be the trace map (see [19]). Then

γϕ=γ0ϕ for all ϕ∈Hs(Ω). Let Γ0 : L2(0,τ;Hs(Ω))→ L2(0,τ;Hs−1/2(∂Ω)) be defined by

(Γ0φ)(t)=γ0φ(·,t) for all t∈ [0,τ], φ∈L2(0,τ;Hs(Ω)).

Since γ=γ0 on Hs(Ω), we have Γ= Γ̃0 on L2(0,τ;Hs(Ω)), where (Γ̃0φ)(t)=(Γ0φ)(t)|Σ .

Theorem 2.2. Let Γ be as defined in (2.1). Then Γ is a compact linear operator.

Proof. Let 1
2 < θ < 1 and Γ0 be as in Remark 2.1. Then by Lemma 2.1, W is compactly

embedded in L2(0,τ;Hθ(Ω)), Γ0 :L2(0,τ;Hθ(Ω))→L2(0,τ;Hθ−1/2(∂Ω)) is continuous and

L2(0,τ;Hθ−1/2(∂Ω)) is continuously embedded in Y := L2(0,τ;L2(Σ)). As mentioned in

Remark 2.1, Γ= Γ̃0 on L2(0,τ;Hθ(Ω)). Hence Γ :W→Y is compact.

Let Q(x)=(qij(x))∈ (L∞(Ω))d×d be symmetric, i.e., qij =qji a.e. on Ω for all 1≤ i, j≤d

and Q satisfies (1.2). Now consider the PDE











vt−∇·(Q(x)∇v)=Φ in Ωτ,

Q(x)∇v·~n=0 on ∂Ωτ ,

v(·,0)=0 in Ω.

(2.2)

Then by Theorem 1.1, we know that for each Φ∈X , there exists a unique weak solution

vΦ ∈W of (2.2) satisfying

‖vΦ‖W ≤C1‖Φ‖X (2.3)

where C1 is as in Theorem 1.1. We now define a map S :X →W by

SΦ=vΦ, for all Φ∈X , (2.4)

where vΦ ∈W . By the nature of PDE (2.2), it is clear that S is a linear operator. Also, by

the estimate in (2.3), it follows that S is a continuous linear operator.

We now define the map T :X →Y by

TΦ :=(Γ◦S)(Φ) for all Φ∈X . (2.5)

Theorem 2.3. Let T be as defined in (2.5). Then T is a compact linear operator and ‖T‖≤C3,

where C3=C1C2 with C1,C2 are constants as in Theorem 1.1 and Theorem 2.1, respectively.
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Proof. The linearity and continuity of T follows from the fact that Γ and S are both linear

and continuous. Since T is a composition of a compact operator Γ (see Theorem 2.2) and

a bounded linear operator S, the compactness of T follows. Finally, the estimate can be

easily obtained by applying the estimates in Theorem 2.1 and (2.3).

Next we show that T is of infinite rank. In order to show this, we shall make use of

the representation of T∗ which is given in Section 4, as an appendix.

Theorem 2.4. Let T be as defined in (2.5). Then R(T), the range of T, is infinite dimensional.

Proof. We know that T is a bounded linear operator from X to Y . Therefore R(T) =
N(T∗)⊥. But, T∗ is an injective operator (see Theorem A.7). Therefore R(T)=N(T∗)⊥=Y .

Thus, R(T) is dense in Y , which is an infinite dimensional Hilbert space.

Let z ∈ Y . Recall that our inverse problem is to determine an f ∈ X such that the

corresponding unique weak solution u of (1.1) satisfies u|Στ
=z. As pointed out in Section

1, there may be more than one solution for this inverse problem. We assume that our

inverse problem has a solution fz. Let uz be the corresponding unique weak solution of

(1.1) for the source function fz.

Let f0 ∈X be any a priori known function and u0∈W be the unique weak solution of

(1.1) for f = f0. Then it can be seen that uz−u0 is the unique weak solution of the PDE











vt−∇·(Q(x)∇v)= fz− f0 in Ωτ,

Q(x)∇v·~n=0 on ∂Ωτ ,

v(·,0)=0 in Ω.

(2.6)

Let z0=u0 |Στ
. Then it follows that fz− f0 is a solution of the operator equation

TΦ= z−z0. (2.7)

Thus, our inverse problem has been transformed into the problem of solving the oper-

ator equation (2.7), which has a solution, namely fz− f0. Also, the solution of the operator

equation (2.7) need not be unique. We would like to identify the unique f †, where

‖ f †‖ := inf
{

‖ f‖ : T f = z−z0

}

. (2.8)

In practical application, the exact data z may not be known. Instead, we may have a

noisy measured data. But by Theorem 2.3 and Theorem 2.4, it follows that (2.7) is an ill-

posed operator equation. Therefore solving (2.7) with perturbed right hand side may not

give stable solutions, that is, small perturbation in the data may produce large deviation

in the solution. So, as mentioned in the introductory section, we shall use the theory of

Tikhonov regularization to obtain stable solutions, while dealing with noisy data.
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3 Regularization with noisy data

Let z∈Y be the exact data as considered in our inverse problem (IP). For δ>0, let zδ ∈Y
be the measured noisy data satisfying

‖z−zδ‖Y ≤δ. (3.1)

We now consider the perturbed operator equation

TΦ= zδ−z0. (3.2)

As T is a linear compact operator of infinite rank, solving the operator equation is ill-

posed. To obtain stable approximations with the help of the noisy data zδ, we shall make

use of the standard theory of Tikhonov regularization. For each α>0, let fα and f δ
α be the

unique elements in X such that

(T∗T+αI) fα =T∗(z−z0), (3.3)

(T∗T+αI) f δ
α =T∗(zδ−z0). (3.4)

The following result is known in the literature ( [17, 18]).

Theorem 3.1. For δ>0, let zδ be as in (3.1) and let fα, f δ
α be as in (3.3) and (3.4), respectively.

Let f † be as defined in (2.8). Then ‖ f †− fα‖→0 as α→0 and

‖ f †− f δ
α‖≤‖ f †− fα‖+

δ

2
√

α
.

Remark 3.1. For δ>0, if αδ is chosen in such a way that αδ→0 and δ
2
√

αδ
→0 as δ→0, then

it follows that ‖ f †− f δ
αδ
‖→0 as δ→0. For example, taking α=δ, we have ‖ f †− f δ

δ ‖→0 as

δ→0.

Remark 3.2. In order to obtain an estimate for the quantity ‖ f †− fα‖, we need to assume

some a priori condition on f †. It is well known in the theory of Tikhonov regularization

that if f †∈R(T∗), the range of T∗, then ‖ f †− fα‖≤c
√

α for some constant c>0, so that, in

this case, we also have the rate

‖ f †− f δ
αδ
‖=O(

√
δ)

for the choice α ∼ δ. More generally, if ϕ : (0,∞)→ [0,∞) is a monotonically increasing

function such that

sup
λ>0

αϕ(λ)

α+λ
≤ c0ϕ(α), α>0,

for some c0>0 and if f † ∈R(ϕ(T∗T)), then it is known that (see [18, pp. 195])

‖ f †− fα‖=O(ϕ(α)),
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so that

‖ f †− f δ
αδ
‖=O(ϕ(αδ)),

where αδ >0 is such that
√

αδ ϕ(αδ)∼ δ. Typical example of such functions are ϕ(λ) :=λν

for some ν∈ (0,1] or ϕ(λ)= [log( 1
λ )]

−p for some p>0.

In practical situation, one would like to obtain finite dimensional approximations for

f δ
α in a stable way without losing the approximating property similar to that of f δ

α . The

finite dimensional analysis is one of the main purpose of this article.

4 Finite dimensional analysis

For each n∈N, let Pn : L2(Ω)→ L2(Ω) be an orthogonal projection of rank n and for each

m∈N, let Πm : L2(0,τ)→ L2(0,τ) be an orthogonal projection of rank m such that

Pn → I and Πm → I

pointwise on L2(Ω) and L2(0,τ), respectively. Note that, these assumptions are natural

in the context of numerical approximations: For instance, in numerical approximation

of functions, one may have R(Pn) ⊂ R(Pn+1), R(Πm)⊂ R(Πm+1) for all n,m ∈ N, and
⋃

n R(Pn)= L2(Ω),
⋃

m R(Πm)= L2(0,τ). In such case, we do have the above mentioned

pointwise convergences.

Let {ϕ1,. . .,ϕn} be an orthonormal basis of R(Pn) and {g1,. . .,gm} be an orthonormal

basis of R(Πm). Using the idea proposed in [20], for each n,m, we define Qm
n :X →X as

(Qm
n Φ)(t) :=

n

∑
i=1

Πm(〈Φ(t),ϕi〉)ϕi for all Φ∈X . (4.1)

Note that, for any Φ∈X and ϕ∈ L2(Ω), the map t 7→ 〈Φ(t),ϕ〉 is an element of L2(0,τ).
Therefore, the map Qm

n is well-defined. Also, it can be easily seen that Qm
n is a linear

operator, and it is of finite rank. Our next result shows that Qm
n is also an orthogonal pro-

jection of finite rank. Here we would like to mention that the proof is similar to the proof

of Theorem 4.5 in [20]. But, since the context is different, for the sake of completeness we

are giving the detailed proof.

Theorem 4.1. For n,m∈N, the linear operator Qm
n :X →X defined as in (4.1) is an orthogonal

projection of rank nm. In fact, if

Φij(t)= gj(t)ϕi, t∈ (0,τ), (4.2)

for i=1,.. . ,n, j=1,.. .,m, then {Φij : i=1,.. . ,n, j=1,.. . ,m} is an orthonormal set in X and

Qm
n Φ=

n

∑
i=1

m

∑
j=1

〈Φ,Φij〉X Φij, Φ∈X .
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Proof. Since {g1,. . .,gm}⊂ L2(0,τ) is an orthonormal basis of R(Πm), we have

Πmh=
m

∑
j=1

〈h,gj〉L2(0,τ) gj, h∈L2(0,τ).

Let Φij(t) be as in (4.2). Then, we see that, Φij ∈X for all i=1,.. . ,n, j=1,.. .,m, and

〈Φij,Φrs〉X = 〈ϕi,ϕr〉L2(Ω)
〈gj,gs〉L2(0,τ)

=δirδjs,

where δpq = 1 for p= q and δpq = 0 for p 6= q. Therefore, {Φij : i= 1,.. .,n, j= 1,.. .,m} is an

orthonormal set in X .

Next, we show that rank of Qm
n is nm. For Φ∈X we denote φi(t) := 〈Φ(t),ϕi〉 for all

i=1,.. . ,n and t∈ (0,τ). Then for Φ∈X and t∈ (0,τ),

(Qm
n Φ)(t)=

n

∑
i=1

(Πmφ)(t)ϕi=
n

∑
i=1

( m

∑
j=1

〈φi,gj〉L2(0,τ) gj(t)
)

fi =
n

∑
i=1

m

∑
j=1

aijΦ
ij(t),

where aij = 〈φi,gj〉L2(0,τ). Again by the definition of φi, we have

aij =
∫ τ

0
φi(t)gj(t)dt=

∫ τ

0
〈Φ(t),ϕi〉L2(Ω) gj(t)dt

=
∫ τ

0
〈Φ(t),gj(t)ϕi〉L2(Ω)dt=

∫ τ

0
〈Φ(t),Φij(t)〉L2(Ω)dt

=〈Φ,Φij〉X .

Thus,

Qm
n Φ=

n

∑
i=1

m

∑
j=1

〈Φ,Φij〉X Φij, Φ∈X .

Since {Φij : i = 1,.. . ,n, j = 1,.. . ,m} is an orthonormal set, therefore Qm
n is an orthogonal

projection of rank nm.

Recall that our aim is to solve (3.4) in a finite dimensional setting. We are now in

a position to do so. We shall use the Galerkin method for obtaining solutions in a finite

dimensional space. We first observe that f δ
α satisfies (3.4) if and only if

〈(T∗T+αI) f δ
α ,Φ〉= 〈T∗(zδ−z0),Φ〉 for all Φ∈X . (4.3)

Now, we obtain approximate solution in the finite dimensional space X m
n := R(Qm

n ) by

varying Φ in X m
n :=R(Qm

n ). That is, we would like to obtain a unique f̃ ∈X m
n satisfying

the equation

〈(T∗T+αI) f̃ ,Φ〉= 〈T∗(zδ−z0),Φ〉 for all Φ∈X m
n . (4.4)
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Since Qm
n is an orthogonal projection, the equation (4.4) is same as

〈(Qm
n T∗TQm

n +αI) f̃ ,Φ〉= 〈Qm
n T∗(zδ−z0),Φ〉 for all Φ∈X m

n ; (4.5)

equivalently,

(Qm
n T∗TQm

n +αI) f̃ =Qm
n T∗(zδ−z0).

Since Qm
n T∗TQm

n is a positive self adjoint operator, Qm
n T∗TQm

n +αI is invertible for each

α>0, and hence, there exists a unique f̃ ∈X m
n satisfying (4.5). We shall denote this f̃ by

f δ
n,m,α∈X m

n . Thus,

(Qm
n T∗TQm

n +αI) f δ
n,m,α=Qm

n T∗(zδ−z0) (4.6)

and

〈(Qm
n T∗TQm

n +αI) f δ
n,m,α,Φ〉= 〈T∗(zδ−z0),Φ〉 for all Φ∈X m

n ,

equivalently

〈T f δ
n,m,α, TΦij〉+α〈 f δ

n,m,α,Φij〉= 〈(zδ−z0), TΦij〉 for all i=1,.. . ,n, j=1,.. . ,m. (4.7)

Let f δ
n,m,α =∑

n
i=1∑

m
j=1 cijΦ

ij for some scalars cij, i= 1,.. . ,n, j= 1,.. . ,m. Then (4.7) takes the

form

n

∑
i=1

m

∑
j=1

cij〈TΦij, TΦpq〉+α
n

∑
i=1

m

∑
j=1

cij〈Φij,Φpq〉

=〈zδ−z0, TΦpq〉 for all 1≤ p≤n, 1≤q≤m.

Therefore, we have the matrix equation

(A+αD)~c=~b, (4.8)

where

A=[~a11,. . .,~anm]
t, D=[~d11,. . .,~dnm]

t, ~b=[b11,. . .,bnm]
t

with

~apq :=(〈TΦ11, TΦpq〉,. . .,〈TΦnm, TΦpq〉), ~dpq :=(〈Φ11,Φpq〉,. . .,〈Φnm,Φpq〉)

and bpq=〈zδ−z0,Φpq〉, for 1≤ p≤n, 1≤q≤m. Note that, since (4.5) has a unique solution,

the matrix equation (4.8) also has a unique solution. Thus, we have obtained

f δ
n,m,α=

n

∑
i=1

m

∑
j=1

cijΦ
ij

where~c=[c11,. . .,cnm]t is the unique solution of (4.8).

Having obtained the finite dimensional solution f δ
n,m,α, we want to know how good

it is as an approximation for the sought source function f †. For that we first obtain an

estimate for ‖ f †− f δ
n,m,α‖.
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Theorem 4.2. Let zδ be as in (3.1) and fα, f δ
α and f δ

n,m,α be as in (3.3), (3.4) and (4.6), respectively,

Then

‖ f †− f δ
n,m,α‖≤‖ f †− fα‖+

‖T−TQm
n ‖√

α
‖ f †‖+ δ

2
√

α
.

Proof. Since f † is a solution of (2.7) and f δ
n,m,α satisfies (4.6), we have

‖ f †− f δ
n,m,α‖

≤‖ f †− fα‖+‖ fα− f δ
n,m,α‖

≤‖ f †− fα‖+‖(T∗T+αI)−1T∗−(Qm
n T∗TQm

n +αI)−1Qm
n T∗‖‖z−z0‖

+‖((Qm
n T∗TQm

n +αI)−1Qm
n T∗‖‖z−zδ‖

≤‖ f †− fα‖+‖(Qm
n T∗TQm

n +αI)−1Qm
n T∗(T−TQm

n )T
∗T(T∗T+αI)−1‖‖ f †‖

+α‖(Qm
n T∗TQm

n +αI)−1(Qm
n T∗−T∗)(T∗T+αI)−1T‖‖ f †‖

+‖((Qm
n T∗TQm

n +αI)−1Qm
n T∗‖‖z−zδ‖.

Now, using the estimates

‖(Qm
n T∗TQm

n +αI)−1‖≤ 1

α
, ‖T∗T(T∗T+αI)−1‖≤1,

‖(Qm
n T∗TQm

n +αI)−1Qm
n T∗‖≤ 1

2
√

α
, ‖(TT∗+αI)−1T‖≤ 1

2
√

α
,

and the fact that ‖Qm
n T∗−T∗‖=‖TQm

n −T‖, we have

‖ f †− f δ
n,m,α‖≤‖ f †− fα‖+

‖T−TQm
n ‖√

α
‖ f †‖+ δ

2
√

α
.

This completes the proof.

Our next attempt is to show that the quantity ‖T−TQm
n ‖ can be made small enough

for some large n,m∈N. For that, we require a few results whose proof uses similar argu-

ments as given in [20]. But, since the context is different, for the sake of completeness we

give the proofs also.

Theorem 4.3. Let Qm
n be as defined in (4.1). Then, for each Φ∈X ,

lim
n→∞

lim
m→∞

‖Qm
n Φ−Φ‖X =0.

Proof. Let Φ∈X and for i=1,.. . ,n, let φi(t)=〈Φ(t), ϕi〉 for t∈(0,τ). Then, it can be easily

seen that for each t∈ (0,τ), φi(t)ϕi ∈ L2(Ω) so that the function t 7→φi(t)ϕi is an element

of X . Since {ϕi : i=1,.. . ,n} is an orthonormal set, we have

‖Qm
n Φ−Φ‖X =

∥

∥

∥

n

∑
i=1

(Πmφi)(·)ϕi−Φ

∥

∥

∥

X
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≤
∥

∥

∥

n

∑
i=1

[(Πmφi)(·)−φi(·)]ϕi

∥

∥

∥

X
+
∥

∥

∥

n

∑
i=1

φi(·)ϕi−Φ

∥

∥

∥

X

≤
n

∑
i=1

‖ϕi‖L2(Ω)‖Πmφi−φi‖L2(0,τ)+
∥

∥

∥

n

∑
i=1

φi(·)ϕi−Φ

∥

∥

∥

X

=
n

∑
i=1

‖Πmφi−φi‖L2(0,τ)+
∥

∥

∥

n

∑
i=1

φi(·)ϕi−Φ

∥

∥

∥

X
.

Since Πm → I pointwise in L2(0,τ), for each n∈N, we have

lim
m→∞

‖Qm
n Φ−Φ‖X ≤

∥

∥

∥

n

∑
i=1

φi(·)ϕi−Φ

∥

∥

∥

X
.

Also, since {ϕ1,. . .,ϕn} is an orthonormal basis of R(Pn), for each t∈ (0,τ), we have

PnΦ(t)=
n

∑
i=1

〈Φ(t), ϕi〉L2(Ω) ϕi=
n

∑
i=1

φi(t)ϕi.

Since Pn → I pointwise in L2(Ω) and ‖PnΦ(t)−Φ(t)‖≤ 2‖Φ(t)‖, by dominated conver-

gence theorem we have

lim
n→∞

∥

∥

∥

n

∑
i=1

φi(·)ϕi−Φ

∥

∥

∥

2

X
= lim

n→∞

∫ τ

0
‖PnΦ(t)−Φ(t)‖2

L2(O)dt=0.

Therefore

lim
n→∞

lim
m→∞

‖Qm
n Φ−Φ‖X =0

for every Φ∈X . This completes the proof.

From the above theorem we obtain the following corollary, by simply using the defi-

nition of double limits as obtained in the theorem.

Corollary 4.1. Let Qm
n be as defined in (4.1). Then, for every ε>0 and for each Φ∈X , there exist

N∈N and mn ∈N for every n≥N such that

‖Qm
n Φ−Φ‖X < ε ∀m≥mn, n≥N.

Theorem 4.4. Let T :X →Y and Qm
n :X →X be as defined in (2.5) and (4.1), respectively, and

let ε>0 be given. Then there exists N∈N and mn ∈N for every n≥N such that

‖TQm
n −T‖< ε ∀m≥mn, n≥N.
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Proof. Since T :X→Y is a compact operator, T∗ :Y→X is also a compact operator. There-

fore S=cl{T∗y : y∈Y ,‖y‖≤1} is a compact subset of X . Hence

‖TQm
n −T‖=‖Qm

n T∗−T∗‖= sup
‖y‖≤1

‖(Qm
n T∗−T∗)y‖=sup

ξ∈S

‖Qm
n ξ−ξ‖.

Let ξ ∈ S and ε > 0. Since S is a compact in X , there exists ξ1,. . .,ξk ∈ S such that S ⊂
∪k

i=1B(ξi,
ε

4
), where B(ξi,

ε
4) denotes the open ball in X centered at ξi and radius ε

4 . Let

j∈{1,.. . ,k} be such that ‖ξ−ξ j‖X <
ε
4 . Now, by Corollary 4.1, we have for each i∈{1,.. . ,k}

there exists Ni ∈N and mi,n∈N for each n≥Ni such that

‖Qm
n ξi−ξi‖<

ε

2
for all m≥mi,n, n≥Ni.

Let N=max{Ni : i=1,.. . ,k} and for n≥N, let mn =max{mi,n : i=1,.. . ,k}. Then for every

n≥N and m≥mn, we have

‖Qm
n ξi−ξi‖<

ε

2
for all i∈{1,.. . ,k}.

Thus, for every n≥N, there exists mn ∈N such that for all m≥mn

‖Qm
n ξ−ξ‖≤‖Qm

n ξ−Qm
n ξ j‖+‖Qm

n ξ j−ξ j‖+‖ξ j−ξ‖
≤2‖ξ j−ξ‖+‖Qm

n ξ j−ξ j‖
<

ε

2
+

ε

2
= ε.

Thus, the proof is completed.

In view of Theorem 4.4 and Theorem 4.2 we have the following.

Theorem 4.5. For δ>0, let nδ,mδ be in N such that ‖T−TQmδ
nδ
‖≤δ. Then

‖ f †− f δ
nδ ,mδ,α‖≤‖ f †− fα‖+

2δ√
α

C f † ,

where C f † =max{ 1
2 ,‖ f †‖}.

The above theorem along with Remark 3.2 leads to the following theorem.

Theorem 4.6. For δ>0, let n̂ :=nδ, m̂ :=mδ be as in Theorem 4.5. Then we have the following.

(i) If f †∈R(T∗) and α := cδ for some c>0, then

‖ f †− f δ
nδ,mδ,δ‖=O(

√
δ).
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(ii) If f † ∈R(ϕ(T∗T)), where ϕ is as in Remark 3.2 and if αδ >0 is such that
√

αδ ϕ(αδ)= δ,

then

‖ f †− f δ
nδ,mδ,αδ

‖=O(ϕ(αδ)).

Remark 4.1. From the characterization of R(T∗) as obtained in Theorem A.7 in the Ap-

pendix, we give a procedure to check whether an apriori known source function is in the

range of T∗ or not. Following is the condition:

Suppose f ∈W . Then f ∈R(T∗) if and only if

1. f (·,τ)=0 in Ω,

2. Q∇ f ·~n=0 on (∂Ω\Σ)×[0,τ],

3. f (·,t)=
∫ τ

t
∇·Q∇ f (·,s)ds in Ω for a.a t∈ [0,τ],

and in that case T∗(φ̂)= f , where φ̂=Q∇ f ·~n |Στ
.

Remark 4.2. In Theorem 4.6, we have considered a procedure of choosing the regulariza-

tion parameter α. There is a vast literature regarding various parameter strategies both

a priori and a posteriori. For, instance in [21, 22], the authors have given a procedure of

adaptive choice of parameters by balancing principle. Those parameter choice strategies

of choosing αδ can be employed here, leading to order optimal rate for ‖ f †− f δ
nδ ,mδ,αδ

‖.

Also, one can employ the idea of dynamic regularization algorithm for choosing the reg-

ularizing parameter, see [23, 24].

Appendix

In this section, we shall find explicitly the range space of T∗. Recall that for Φ∈X and

φ∈Y , we have

〈TΦ,φ〉=
∫ τ

0
〈(TΦ)(t),φ(t)〉L2(Σ)dt=

∫ τ

0
〈γ(SΦ(t)),φ(t)〉L2(Σ)dt

where γ is the trace map and S is the linear map defined in Section 2, by assigning each

Φ∈X , the unique weak solution vΦ :=SΦ of (2.2) .

For φ∈Y , we consider the PDE























−wt−∇·(Q(x)∇w)=0 in Ωτ,

Q(x)∇w ·~n=φ on Σ×[0,τ],

Q(x)∇w ·~n=0 on (∂Ω\Σ)×[0,τ],

w(·,τ)=0 in Ω,

(A.1)
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where Q∈ (L∞(Ω))d×d is as in (2.2). Then reversing the time direction and following the

lines of the proof of Theorem 1.1 and following Part 3 of the proof of Theorem 3 in [3, pg.

357], (A.1) has a unique weak solution wφ∈W , that is,

−〈(wφ)t(·,t), ϕ〉+
∫

Ω
Q(x)∇wφ(·,t)·∇ϕdx=

∫

Σ
φ ϕdx (A.2)

for all ϕ∈H1(Ω) for a.a. t∈ [0,τ].

Theorem A.7. For a given φ∈Y , let wφ∈W be the unique weak solution of (A.1). Let T be as

defined in (2.5). Then T∗φ=wφ,

R(T∗)=
{

wφ∈W : φ∈L2(0,τ;L2(Σ))
}

and T∗ is one-one.

Proof. Let vΦ be the unique weak solution of (2.2). Since vΦ ∈ L2(0,τ;H1(Ω)), by (A.2),

we have

−〈(wφ)t(·,t),vΦ(·,t)〉+
∫

Ω
Q(x)∇wφ(·,t)·∇(vΦ)(·,t)dx=

∫

Σ
φγ(vΦ)(·,t)dx

for a.a. t∈ [0,τ]. Integrating the above with respect to t, we have

−
∫ τ

0
〈(wφ)t(·,t),vΦ(·,t)〉dt+

∫ τ

0

∫

Ω
Q(x)∇wφ(·,t)·∇(vΦ)(·,t)dxdt

=
∫ τ

0

∫

Σ
φγ(vΦ)(·,t)dxdt.

Thus, by applying integration by parts for the first integral of the left hand side in the

above, we have
∫ τ

0
〈(wφ)(·,t), (vΦ)t(·,t)〉dt+

∫ τ

0

∫

Ω
Q(x)∇wφ(·,t)·∇(vΦ)(·,t)dxdt

=
∫ τ

0

∫

Σ
φγ(vΦ)(·,t)dxdt.

Since vΦ is the weak solution of (2.2) and wφ ∈ L2(0,τ;H1(Ω)), from the above equation

we have

∫ τ

0

∫

Ω
Φwφ =

∫ τ

0

∫

Σ
φγ(vΦ)(·,t)dxdt=

∫ τ

0
〈φ(t),γ(SΦ(t))〉L2(Σ)dt= 〈TΦ,φ〉.

Thus,

〈TΦ,φ〉L2(0,τ;L2(Σ))= 〈Φ,wφ〉L2(0,τ;L2(Ω))

for all Φ∈X and φ∈Y . Hence, T∗ : L2(0,τ;L2(Σ))→ L2(0,τ;L2(Ω)), the adjoint of T, is

defined by

T∗φ=wφ for all φ∈L2(0,τ;L2(Σ)),

and R(T∗)=
{

wφ ∈W : φ∈ L2(0,τ;L2(Σ))
}

. The fact that T∗ is one-one, follows from the

representation of T∗ as obtained above together with the second equation of (A.1).
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