EN(x) = f(x) - PN(x)
Since both f(x) and PN(x) have same value at
the xi, i = 0, 1, . . . N, the error E(x) can
be written as
EN(x) = f(x) - PN(x) = (x - x0)(x
- x1). . .(x - xN) g(x)
where g(x) represents the EN(x) at non tabulated
points x. Obviously f(x) - PN(x) - EN(x)
= 0
Þ f(x) - Pn(x) - (x -
x0)(x - x1) . . . (x - xn) g(x) = 0
let us construct an auxilary function W(t) such that
W(t) = f(t) - PN(t) - (t - x0)(t - x1)
. . . (t - xN) g(x)
i.e., W(t) is actually a function of t and x.
Example :
For the following data find f(0.15) accuracy for the maximum
possible degree. Also obtain a bound on the truncation error for this approximation
xi
|
fi
|
|
|
|
|
0.1
|
0.09983
|
|
|
|
|
|
|
0.9884
|
|
|
|
0.2
|
0.19867
|
|
-0.099499814
|
|
|
|
|
0.9685
|
|
-0.16000074
|
|
0.3
|
0.29552
|
|
-0.14750004
|
|
0.008332171
|
|
|
0.939
|
|
-0.15666787
|
|
0.4
|
0.38942
|
|
-0.1945004
|
|
|
|
|
0.9001
|
|
|
|
0.5
|
0.47943
|
|
|
|
|
f(0.15) = 0.09983 + 0.9884( 0.15 - 0.1 ) - 0.099499814(
0.15 - 0.1 )( 0.15 - 0.2 )
- 0.16000074( 0.15 - 0.1 )( 0.15 - 0.2 )( 0.15 - 0.3 )
+ 0.008332171( 0.15 - 0.1 )( 0.15 - 0.2 ) ( 0.15 - 0.3 )( 0.15 -
0.4 )
f(0.15) = 0.14943796
Error in the approximation
E5(x) = |
(.15 - .1) (.15 - .2) (.15 - .3) (.15 - .4) (.15 - .5)
|
f6(x) |
6!
|
where 0.1 < x < 0.5,
f6(x) = - sin(x)
Max | f6(x) |0.1 <
x
< 0.5 = 0.47943
ÞE5(x) = 2.1849e-08