71
|
Parameter identification of constrained data by a new class of rational fractal function
|
S. K. Katiyar, A. K. B. Chand, Sangita Jha
|
Sibirskii Zhurnal Vychislitel'noi Matematiki
Volume: 24(3) Page: 261-276 DOI:https://doi.org/10.15372/SJNM20210303
|
2021
|
72
|
Approximation by shape preserving fractal functions with variable scalings
|
Sangita Jha, A. K. B. Chand, M. A. Navascues
|
Calcolo
Volume: 58(1) Page: 1-24 DOI:https://doi.org/10.1007/s10092-021-00396-8
|
2021
|
73
|
Generalized bivariate Hermite fractal interpolation function
|
Sangita Jha, A. K. B. Chand, M. A. Navascues
|
Numerical Analysis and Applications
Volume: 14(2) Page: 103-114 DOI:https://doi.org/10.1134/S1995423921020014
|
2021
|
74
|
Quantum Bernstein fractal functions
|
N Vijender, A. K. B Chand, M. A. Navascués, M. V. Sebastián
|
Computational and Mathematical Methods
Volume: 3(3) Page: e118 DOI:https://doi.org/10.1002/cmm4.1118
|
2021
|
75
|
DISTRIBUTION OF LINEAR FRACTAL INTERPOLATION FUNCTION FOR RANDOM DATASET WITH STABLE NOISE
|
M. Kumar. N. S. Upadhye, A. K. B. Chand
|
Fractals
Volume: 29(4) Page: 2150086 DOI:https://doi.org/10.1142/S0218348X21500869
|
2021
|
76
|
Cyclic Meir-Keeler Contraction and Its Fractals
|
R. Pasupathi, A. K. B. Chand, M. A. Navascues
|
Numerical Functional Analysis and Optimization
Volume: 49(2) Page: 1053-1072 DOI:https://doi.org/10.1080/01630563.2021.1937215
|
2021
|
77
|
Iterated functions systems composed of generalized θ-contractions
|
R. Pasupathi, M. A. Navascues, A. K. B. Chand
|
Fractal and Fractional
Volume: 5(3) Page: 69 DOI:https://doi.org/10.3390/fractalfract5030069
|
2021
|
78
|
Shape preserving rational cubic trigonometric fractal interpolation functions
|
K. R. Tyada, A. K. B. Chand, M. Sajid
|
Mathematics and Computers in Simulation
Volume: 190 Page: 866-891 DOI:https://doi.org/10.1016/j.matcom.2021.06.015
|
2021
|
79
|
Some properties of the fractal convolution of functions
|
M. A. Navascués, R. N. Mohapatra, A. K. B. Chand
|
Fractional Calculus and Applied Analysis
Volume: 24(6) Page: 1735-1757 DOI:https://doi.org/10.1515/fca-2021-0075
|
2021
|
80
|
On global bifurcation for the nonlinear Steklov problems
|
T V Anoop and Nirjan Biswas
|
Topological Methods in Nonlinear Analysis
Page: 1- 33 DOI:10.12775/TMNA.2020.080
|
2021
|